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Abstract—In this paper the authors introduce a semi-analytical 

model for the analysis and the design of a Permanent Magnet 

(PM) tubular linear generator intended for electrical energy 

generation from sea waves. The translator of the analyzed 

machine is constituted by axially magnetized ferrite PMs with 

alternating polarity and soft-magnetic pole-pieces in between; a 

two poles, double layer three-phase winding is located in the slots 

of the stator. The presented model, based on use of the Carter 

coefficient and of the Fourier transform in the direction of the 

motion, is able to take into account the end effects due to the 

finite length of the stator. The presence of slots and teeth is 

subsequently considered by some post processing calculation 

carried on the results of the semi-analytical model. Comparison 

with a Finite Element analysis and with measurements taken on a 

prototype has been performed to validate the presented model. 

The model can be easily extended to other translator typologies, 

e.g. to air core translator with Halbach array of NdFeB PMs. 

Keywords-analytical model, tubular machine, permanent 

megnet, hard ferrites, soft ferrites, Finite Elements Method. 

I.  INTRODUCTION  

The marine energy is considered as one of the most 
interesting and promising sources in the worldwide renewable 
energies scenario [1] - [9]. It is available in several forms, such 
as marine streams, tidal, temperature gradient, and waves. 
Particularly, the energy from the waves is characterized by 
high power density and widespread availability. 

In the recent past, tens of different devices using the wave 
motion were developed; some of these have already reached a 
full-scale demonstration stage and currently are moving toward 
a marketing phase, while a number of projects is under 
theoretical investigation and/or experimental validation. 

Fig. 1 shows the general structure of the wave energy 
converter developed by the Swedish company Seabased [10]. 
When the horizontal dimension of the buoy are small with 
respect to the wavelength of the incident sea waves, the WEC 
is called point absorber. The heave motion impressed to the 
buoy is converted in linear motion for driving an electrical 
generator. 

As shown in the figure the use of linear synchronous 
generators is the natural choice for this kind of applications 
[11]-[17]. These generators consist of a fixes armature and of a 
translator, made of PMs and iron, which serves to reduce the 
reluctance of the magnetic circuits. Ironless configurations are 
also available especially when Halbach arrays, are adopted. 
One of the key components of the generation system is the 
linear machine. A proper optimal design of the electric 
generator is essential for the achievement of a good efficiency. 

 
 

Figure 1.  General structure of a wave energy converter (courtesy of Seabased 
Group). 

 
Recent publications on optimization of linear generators are 

mostly based on equivalent network models, which are fast but 
may suffer of limited accuracy especially in presence of 
complex flux paths. 

Numerical tools are able to provide detailed descriptions of 
the device also considering complex nonlinear phenomena 
such as hysteresis [18]-[20], but are usually time consuming 
and are not effective to insight the dependence of the 
performance on the design parameters. 

In this work, the authors present a fast and accurate semi-
analytical model, capable to take into account both the entry 
and exit effects without the need of correction coefficients. 

The paper is organized as follows: Sect. II introduces the 
semi analytical model of the generator [21]; while sect. III 
briefly discusses the post processing activities in order to take 
into account some effects of the presence of the slot and of the 
teeth. Section IV describes a prototype of the machine, and 
finally section V reports the comparison of the results obtained 
by the proposed model with a numerical FEM analysis and 
with the measurements taken on the prototype. 

II. THE SEMI-ANALYTICAL MODEL 

Fig. 2 reports a cut of the analyzed generator. The translator 
is on the left side of the figure and is composed of axially 
magnetized ferrite PMs with alternating polarity with soft-
magnetic pole-pieces in between. In particular, in the analyzed 
device, three PMs with the same polarity (yellow) are stacked 
with three soft ferrite rings (green) and with three PMs with 



reversed polarity w.r.t. the previous ones (red); then there are 
three other soft ferrite rings and so on. A three phase winding 
with the same number of pole pairs (two) is arranged in double 
layers in the 24 stator slots. Each layer has 42 turns. 

The geometrical parameters of the machine are listed in 
table I. 

 
TABLE I. Geometrical parameters of the machine 

Parameter Symbol value unit 
airgap 

aδ  3.0 mm 

internal radius of PMs ,i Mr  27.2 mm 

external radius of PMs ,e Mr  51.7 mm 

height of PMs 
Mh  12.5 mm 

remanence of PMs 
rB  0.39 T 

coercivity 
cH  270.0 kA/m 

internal radius of stator ,SiR  54.7 mm 

external radius of stator ,SeR  128.0 mm 

stator slot depth ,r Sδ  53.0 mm 

stator slot height z,Sδ  5.5 mm 

stator length L 324.0 mm 
pole pitch 

pτ  80.0 mm 

 
 

 
Figure 2.  Cut of the PM linear generator. 
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(b) 

Figure 3.  (a) Magnetization pattern; (b) Equivalent current distribution. 
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(b) 

Figure 4.  Equivalent current distribution: (a) ,e Mr r= ; (b) ,i Mr r= . 

 
An accurate analysis of the device, taking into account the 

movement of the translator with respect to the stator requires a 
numerical model with consequent long simulation times often 
resulting in unviable automatic design procedures [22], [23]. 
Faster analyses can be performed by approximated analytical 
models, which usually discard the end effects and the presence 
of the slots.  

However, in the proposed semi analytical model, end 
effects are taken into account assuming an indefinite axial 
extension of both the stator and the translator, while the stator 
currents occupy a portion of finite length of the stators. Once 
the solution of the semi analytical model has been obtained, the 
slot leakage flux and average distribution of flux density in the 
teeth are evaluated by approximated formulas [24]-[25]. The 
effects of the presence of the slots can be taken into account by 
introducing the Carter coefficient [26] and equivalent current 
sheets. 

The model of the device is built in two steps. Preliminarily 
a no load simulation, taking into account the iron losses in the 
stator is performed in order to evaluate the induced e.m.f. at the 
terminals of the generator. Subsequently, a balanced thee phase 
current system is injected in the stator windings, with the 
equivalent magnetization currents on the PMs set to zero, with 
the aim of evaluating the internal impedance of the generator.  

When performing the evaluation of the no load voltage, the 
system of PMs on the translator is substituted by a system of 
equivalent magnetization currents. The axially magnetized PMs 
is substituted by a system of currents flowing in the inner and 
outer cylindrical surfaces of the rings. 

Fig. 3a shows the magnetization pattern of the PMs array, 
while Fig. 3b shows the equivalent magnetization current 
distribution under the hypothesis of uniform axial 
magnetization. The plus signs (“+”) indicate entering currents, 
while points (“ ∙ ”) indicate outgoing currents. 



 
Figure 5.  Cross section of the generator after the Carter procedure has been 
applied, and the PMs are substituted by their equivalent currents sheets. 

The waveforms of the equivalent surface magnetization 
currents corresponding to the axially magnetized PMs are 
shown in Figs. 4a and 4b. The first one shows the equivalent 
magnetization current distribution at ,e Mr r= , while the other 

at ,i Mr r= . In these figures the entering currents (indicated 

with the cross) are positive. 
The equivalent currents waveforms shown in Fig. 4, are 

periodic in the axial direction, so they can be expanded in 
Fourier series. For both the general expression is: 
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where λ  is the wavelength of the equivalent current 
distributions (i.e. twice the pole pitch pτ ), ϕϕϕϕ  represents the 

unit vector in the azimuth direction, 1 ,i Mr r=  2 e,Mr r=  and 

( )rδ  is the Dirac function and 1,2;q = . i,qJ  and i,qϕ  are 

respectively the amplitude and the phase of the i-th harmonic. 

We assume that these current distributions move with 
respect to the stator at a constant speed in the axial direction. 
The travelling waves of equivalent currents can be written as: 
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where T vλ=  is the time needed to the translator to travel a 

distance equal to the wavelength and 2ik iπ λ= . 

Fig. 5 shows a cross section of the generator after that the 
Carter procedure has been used to substitute the slotted stator 
with a smoothed one. In this figure the dashed circular lines 
indicate the position of the PMs equivalent current sheets 
attached to the translator, whose distributions along the axial 
direction are shown in Figs. 4 (a) and (b). 

The solid line attached to the inner surface of the stator 
indicates the position of the current sheet equivalent to the 

stator currents used to evaluate the internal impedance of the 
generator. The waveform of this current sheet is: 

( ) ( ) ( ), , cos
2 2stat S

L L
r z t r r kz t u z u zδ ω

   
= − − − −   

   
J ϕϕϕϕ   (3) 

where 2k p Lπ= , p is the number of pole pairs, L is the 

length of the stator; Sr  is the radius where the stator current 
sheet is located considering the correction due to the Carter 
factor, and ( )u z  is the unit step function. 

The machine is subdivided in a number of concentric 
regions. The outer is vacuum, the light gray one is laminated 
iron with an equivalent conductivity σ  which takes into 
account the eddy current losses. The inner region between the 
equivalent magnetization current sheets takes into account of 
the presence of both the hard and soft ferrites. As known, once 
the equivalent magnetization currents are considered, the PMs 
are substituted by a linear material which is characterized by a 
magnetic permeability obtained by considering the slope of the 
B-H characteristic of the PMs at the working point. We assume 
that this material is characterized by the same permeability as 
the soft ferrite and by a negligible conductivity. 

The thickness of the stator in the radial direction is the 
same as the back iron ( 20.3bir mm∆ = ). 

The axisymmetric semi–analytical model of the device is 
briefly summarized here; details are in [25]. 

The governing equation in terms of magnetic vector 
potential A  constrained by the Coulomb gauge ( 0∇ ⋅ =A ) for 
linear isotropic medium moving with velocity v , is written as: 

 ( )2

t
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where σ  and µ  respectively indicate the conductivity and the 
permeability of the medium. 

The current sheets as in (2) can be expressed as  
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where 1,2;q =  spans the current sheets as shown in Fig. 5 in 

dashed lines. A similar expression is obtained for statJ  in 
terms of its Fourier transform. 

In axisymmetric geometry and with the given currents we 

can write: ( ), j t
A r z e

ω
ϕ= ɶA ϕϕϕϕ  where tilde denotes phasors. 

Discarding j t
e

ω , after some manipulation (4) is written as: 
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Let ( ),rϕ ζA  be the Fourier transform of ( ),A r zϕ
ɶ : 
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substituting in (6) and discarding j z
e

ζ−  yields: 
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where the superscript l denotes the layers as in Fig. 5, 
( 1,..,5;l = ). In nonconductive material (air and translator) we 

have 2 2
lh ζ= , while in conductors (stator iron) 

( )22
l sh j sv jζ σµ ζ= − , where sv ω ζ=  is the synchronous 

speed and ( )s z ss v v v= −  is the slip. 

The general solution of (8) is: 
( ) ( ) ( ) ( )1 1,l

l l l lr C I h r C K h rϕ ζ ′= +A                                      (9) 

where 1I  and 1K  are the modified Bessel functions of first 

and second kind respectively. 
Because of (7), the normal component (radial) of the flux 

density is given by: 
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with: 

( ) ( ) ( )( )( )
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r l l l lr j C I h r C K h rζ ζ ′= +B                              (11) 

Similarly, the tangential (axial) component of the magnetic 
field strength can be written as: 
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Because of the asymptotic behavior of 1I  and 1K , we have 

0inner outerC C′ = = , while the other unknown integration 

coefficients are evaluated by imposing the boundary 
conditions at the interfaces between the layers: 
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where 1,.., 4l = , with 1 ,i Mr r= , 2 e,Mr r= , 3 Sr r= , 

4 S bir r r= + ∆ , and ( )l ζJ  are the Fourier transform of the 

current sheets as defined in (2) and (3). Since the equivalent 
currents of the PMs are periodic, ( )1 ζJ  and ( )2 ζJ  are 

discrete functions of ζ , with: i,1
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J  as is (2). Considering ( )3 ζJ , we 

observe that it is a continuous function since ( ), ,stat r z tJ  is 

not periodic along the axial direction. It can be discretized if 
the sampling interval is short enough to avoid spatial aliasing. 

As known, to a sampling interval ζ∆  corresponds a space 

replication of the waveform in (3), with a period of 2π ζ∆ . 

Since L is the length of the stator, we have to choose 
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J , with 
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The algebraic system (13) is solved in correspondence of the 
values of the variable ζ  which provide appreciably nonzero 

values of the corresponding spatial harmonics. The inverse 
Fourier transform is then performed to obtain the distribution 
of all the electromagnetic quantities. 
The described semi analytical model is solved twice. The first 
time considering only the effects produced by the equivalent 
magnetization currents only, and the produced results are used 
to evaluate the no-load voltage. The second time considers the 
effects of the stator currents to evaluate the internal impedance 
of the machine.  
 

III. POST-PROCESSING 

Once the magnetic flux density distribution due to the 
travelling equivalent current distributions on the mover is 
known, we can evaluate the voltages at the terminals of the 
stator windings. 

A line integration of the vector potential is performed on 
circular lines located on the current sheets and corresponding to 
the turns of the windings.  

The circular lines and their orientations are determined by 
considering the position of the stator conductors inside the slots 
and the direction in which they are wound. The axial position 
of the turns of a coil ranges from the z coordinates 
corresponding to the middle points of the adjacent teeth that 
delimit the slot where the coil is located. The evaluation of the 
coil-related voltage is then obtained by a double integral. The 
summation of the contributions of these integrals is performed 
according to the winding scheme:  
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where the superscript M in ,0
M

kEɶ  indicates the action of the 

equivalent magnetization currents. In (14) ( )k

slotN  is the number 

of slots occupied by coils of the k-th phase winding and ( )
,

k

cond hN  
is the number of conductors in the h-th slot of the k-th phase. 
The coefficient ( )k

hα  assumes the values 1±  depending on the 

coil direction while ( )
1,

k

hz  and ( )
2,
k

hz  individuate the position of 
the h-th slot of the k-th phase.  

Once the no-load voltage is obtained, to evaluate the internal 
impedance of the machine we solve the model 



   a)    b) 

Figure 6. Coil distribution in a slot and winding scheme (courtesy of [25]). 

 

considering a current sheet on the stator corresponding to a 
three-phase balanced system of unit currents. 
Equation (14) is evaluated again under this feeding condition, 
and it represents only a portion of the voltage at the terminal 
windings. Let us denote this contribution by (1)

kEɶ , where the 
superscript (1) refers to the action of the unit currents. 

Considering the real arrangement of conductors in the slots, the 
effects of the voltage drops due to resistance of the conductors 
and to the leakage fluxes in the slots have to be considered. 
A leakage impedance is introduced, whose resistive part is 
evaluated using the d. c. values of the wires which constitute 
the windings, whereas the reactance is evaluated using the 
classical approach as in electrical machines textbooks [27]. 
The approach reported in [25] is here summarized. Let us 
consider Fig. 6a and assume that the magnetic field strength be 
non zero inside the slot only, and directed in the axial direction. 
Magnetic energy is written as: 
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and the self and mutual inductances are evaluated as: 
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Because of the winding constitution (ref. Fig. 2 and Fig. 6b) is: 

( ),2sect i e i eL L L M= + +
 

When the machine is connected to a three-phase balanced load, 
a three-phase balanced system of currents flows on the 
windings. An equivalent self inductance coefficient taking into 
account the coupling with the other phases and evaluated as: 
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Figure 7.  Composition of the flux density in a tooth (courtesy of [25]). 

 

can be series connected to the above mentioned resistance. 
where 

sectN  represents the number of series connected sections  

 (as in Fig. 3b) of a given phase that constitute the entire 
winding. For the shown device, 4sectN = . 

Combining the leakage impedance and the (1)
kEɶ  the internal 

impedance of the machine is obtained. 
Once a load connected to the generator is assigned, and the 

no load voltage and the internal impedance of the machine 
have been determined, the three-phase balanced system of 
currents on the windings can be evaluated. 

The model described in Sect. II is used again with the 
system of current sheet equivalent to the currents just 
evaluated. Let ( ), ,r p kB r zɶ  the flux density distribution 

obtained without considering the equivalent magnetization 
currents of the PMs and evaluated in correspondence of the 
position of the equivalent magnetization currents of the PMs 
( 1 ,i Mr r=  and 2 e,Mr r= ). 

The model described in Sect. II can be used to determine 
the flux density distribution ( ), ,r p kB r zɶ  produced by the 

current sheet which is equivalent to the three phases balanced 
currents on the stator, while the equivalent magnetization 
currents of the PMs are set to zero.  

The average force on the mover in the axial direction can be 
evaluated by summing terms: 
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where k spans the current sheets ( ), ,p kJ r zϕ
ɶ  as shown in Fig. 5 

(those due to the equivalent magnetization currents of the PM) 
and p spans the harmonics as in (4). Using (18) implies 
discarding iron losses on the stator. 

We also tried to extend the results by the semi-analytical 
model in order to obtain an estimate of local quantities in the 
stator. Because of the presence of the slots and teeth, 
comparison with the results by Finite Element analysis is not 
straightforward. Some post processing on the analytical results 
is required [25]. 

The flux density in a tooth corresponding to a given current 
on the stator windings can be considered as the sum of two 
terms. 



One term ( ( )a SRΦΦΦΦ ) “enters” the tooth from the surface 

facing the air gap; the other ( )b SRΦΦΦΦ  “enters” the tooth from 

the adjacent slots. Fig 7 schematically shows how the flux lines 
compose in a stator tooth. 

To evaluate the first contribution, the magnetic flux is 
computed through a cylindrical surface attached to the stator in 
correspondence of the tooth (the cylinder extends between the 
midpoints of the adjacent slots). 
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where ( ),r SR zB  is the radial component of the flux density on 

the inner radius of the stator due to the equivalent 
magnetization currents and to the current sheet which is 
equivalent to the stator windings with the given current. The 
average flux density entering the tooth is obtained by dividing 
the flux as obtained by (19) by the surface of the tooth. 
The second contribution, due to the leakage fluxes in the slots, 
is given by: 
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IV. THE PROTOTYPE 

This section briefly describes a prototype available for 
some measurements to validate the proposed model. The 
geometry if the prototype is roughly the same as the one 
described in sect. II and the geometrical parameters are 
reported in table I. 

As shown by Fig. 8, the most significant difference lies in 
the stator geometry. The prototype is not axisymmetric; as seen 
in the figure, it is made up of 8 modules that touch in the inner 
part (the one facing the translator) and diverge in the back iron. 
The reluctances of the paths in the iron stator are increased in 
the prototype with respect to those in the modelled machine; 
because of the relatively large airgap, the effects on the 
electrical quantities at the terminal of the machine are 
negligible. 

 

 
Figure 8. A picture of the prototype of the machine used to validate the 
model. 

 

 
Figure 9. The prototype coupled with a linear motor. 

 

The translator is 60 cm long, with a stroke of 25 cm. The 
movement of the translator was obtained by a step linear motor 
capable of a nominal thrust force of 585 N, with a maximum 
speed of 1.7 m/s and a stroke of 21 cm. Fig. 9 shows the test 
bench used to evaluate the no-load voltage, and the currents on 
a resistive load of 8.5Ω . 

V. RESULTS 

This section shows the results produced by the proposed 
model to the analysis of the PMs linear tubular generator 
whose parameters are reported in Sect. II. Some experimental 
data are taken on the prototype described in the above section. 
A comparison with the numerical results obtained by a FEM 
analysis is reported too [28]. Where possible, comparisons 
between analytical, numerical and experimental results are 
reported. 

The flux density distribution produced by the translator 
alone, i.e. without the presence of the stator, has been 
investigated firstly. Fig. 10 shows the waveform of the radial 
component of the magnetic flux distribution in two regions: 
inside the translator (at the mean radius of the annular region 
occupied by the PMs), and outside the translator (1.5 mm away 
in the radial direction). 

Comparison between the analytical and numerical results 
has been performed in the first region, showing an excellent 
agreement. The origin of the z-axis is taken in correspondence 
of the middle point of the fourth PM as in Fig. 3a. 



 

Figure 10. Radial components of the magnetic flux density produced by the 
PMs without the presence of the stator.  

 

Figure 11. No load 3-phase voltage waveforms at the terminals of the 
machine: solid (red): measured, dashed (green): analytical, dashdot (blue): 
numerical. 

 

In the second region, we compared the results obtained by 
the proposed model, the FEM analysis, and experimental 
measurements. In this case too, the agreement is fully 
satisfactory. Measurements have been performed by using a 
portable Gauss-meter F. W. Bell/4048 equipped with an 
accurate Hall sensor. 

Fig. 11 shows the comparison between the numerical, 
analytical and experimental values of the no load voltages at 
the terminals of the machine. The measured quantities have 
been obtained by the experimental setup described in Sect. IV. 
The step linear motor was programmed for the maximum 
stroke (21 cm) at the maximum speed (1.7 m/s). The measured 
voltages, recorded on a digital oscilloscope, are shown by the 
red lines. The blue lines refer to the numerical analysis, while 
the green ones are obtained by the analytical model, in 
particular by using (14). Both experimental and numerical 

results are affected by a ripple due to the presence of slots and 
teeth on the stator. 

Fig. 12 reports the radial component of the magnetic flux 
density in the middle of the airgap of the machine at the no-
load condition, and when a three phase balanced load 
constituted by three resistors of 8.5 Ω each, is star connected 
to the machine terminals. The results produced by the 
analytical model and by the finite elements analysis are 
compared at both the operating conditions. As described in 
sects. II and III the magnetic flux density at load condition is 
obtained by combining the no-load results with the effects of 
the currents which flow in the stator windings. The waveforms 
in Fig. 12 are obtained at t=33 ms, i.e. when the translator has 
moved of 5.6 cm with respect to the initial position which 
corresponds to the configuration in Fig. 10. 

 

Figure 12. Comparison between the radial components on the magnetic flux 
density in the airgap under load and no load conditions evaluated by the 
analytical model and FEM. 

 

Figure 13.  3-phase current waveforms on the 8.5 Ω resistive load; solid (red): 
measured, dashed (green): analytical, dashdot (blue): numerical. 

 



Because of the presence of the currents in the stator 
windings the magnetic flux density is slightly reduced with 
respect to the no load condition. The results by the numerical 
analysis are affected by a ripple which is produced by the 
slotted stator. As expected, the waveform produced by the 
analytical model are smooth.  

Fig. 13 shows the comparison between the currents in the 
load evaluated by the numerical (blue lines) and the analytical 
model (green lines) and the experimental results (red lines) 
taken on the prototype. A ripple, due to the slotted structure of 
the stator, is observed in the numerical and experimental 
results. 

As far the evaluation of the internal impedance per phase of 
the machine we considered the windings constituted by a 
copper wire with a cross section of 2.0 mm2; the total DC 
resistance of one winding is about 3.1 Ω while according to 
(15) - (17) we obtained 98totL mH≃ . 

 

Figure 14. Comparison between the radial components of the magnetic flux 
just inside the stator teeth.  

 

Figure 15. Waveforms of the mean value in the teeth of the radial component 
of the magnetic flux density. The solid lines refer to the semi-analytical 
model, the dashed ones to the finite elements analysis. 

By using (19) the average flux density just inside the teeth 
of the stator (r=56.5 mm) has been evaluated. Fig. 14 shows 
the comparison between the results obtained by the proposed 
formulation with those by a FEM analysis. The analytical 
formulation is able to evaluate the average of the radial 
component only, while the FEM analysis allows evaluating the 
effective distribution in the cross section of the teeth. There is a 
good agreement between the results by the two methods, 
except in the rightmost teeth where the edge effects are more 
pronounced. 

Fig. 15 reports the waveforms of the average values of the 
radial component of the magnetic flux density in some stator 
teeth as a function of the radial position. The generator operates 
under the above described load conditions. The tooth number 1, 
as referred in the legend of Fig. 15, is the leftmost one in Fig. 
14.  

Finally, by (18) we evaluated the mean value of the force 
on the mover at the speed of 1.7 m/s under the described load 
condition. The value obtained by the semi-analytical model 
was 162 N while the result of the Finite Element analysis was 
173 N. 

VI. CONCLUSION 

Some preliminary results of the application of a semi 
analytical model to the analysis of a PMs linear tubular 
generator have been presented. The proposed formulation is 
able to perform the analysis of the machine under some 
simplifying hypotheses: a) substitution of the real stator with a 
smooth one by using the Carter factor, b) magnetization of the 
PMs is not affected by the armature reaction, c) indefinite 
extension of the machine along the axial direction. The results 
by the proposed model were compared with those obtained by 
finite element analysis and with experimental data taken on a 
prototype. The analytical model was able to produce accurate 
enough results in a short time. This makes the presented model 
a candidate tool for the automatic design and optimization of 
these class of generators.  
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