
Post-print version of: 

 

 

Publisher: Elsevier 

Journal paper: International Journal of Fatigue, 2021, 151, 106351 

 

Title: Mode III critical distance determination with optimized V-notched specimen under 

torsional fatigue and size effects on the inverse search probability distribution 

 

Authors: C. Santus, F. Berto, M. Pedranz, M. Benedetti 

 

 

Creative Commons Attribution Non-Commercial No Derivatives License 

 

 

 

 

DOI Link: https://doi.org/10.1016/j.ijfatigue.2021.106351  

https://doi.org/10.1016/j.ijfatigue.2021.106351


Mode III critical distance determination with optimized V-notched specimen
under torsional fatigue and size effects on the inverse search probability

distribution

C. Santusa,∗, F. Bertob, M. Pedranzc, M. Benedettic

aDepartment of Civil and Industrial Engineering – DICI, University of Pisa, Italy.
bDepartment of Mechanical and Industrial Engineering, NTNU – Norwegian University of Science and Technology, Trondheim, Norway.

cDepartment of Industrial Engineering – DII, University of Trento, Italy.

Abstract

An optimized V-notched specimen is proposed for the determination of mode III, or torsional, critical distance.

Numerical procedures are provided for the inverse determination of this length, and then for a statistical analysis

of the resulting skew-normal distribution, as obtained from (symmetric) normal distributions of the plain and

notched specimen strengths. An experimental example is shown on steel 42CrMo4+QT, with clear evidence of

a significantly larger mode III critical distance than mode I. A parametric analysis is then presented to evaluate

the effects of size of the specimen on the standard deviation of the inverse search critical distance probability

distribution.
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Nomenclature

TCD theory of critical distances

LM, PM Line Method and Point Method, respectively

SED strain energy density method

SIF stress intensity factor

N-SIF notch SIF

SCF stress concentration factor

+QT quenched and tempered (heat treatment)

CV coefficient of variation

NCV normalized coefficient of variation

SND skew-normal distribution

ᾱ notch opening angle

D specimen outer diameter

R notch radius

A notch depth

a dimensionless notch depth

ρ notch radius ratio

x V-notch bisector coordinate

ξ dimensionless V-notch bisector coordinate

s3 mode III power law singularity exponent

KN3 N-SIF under mode III of an ideally sharp V-notched specimen

KN3,UU N-SIF under mode III for unitary nominal stress and unitary half diameter

τzθ shear stress induced by torsion on the V-notch bisector

∆τzθ ,av averaged shear stress, according to the LM, full range

τN nominal torsional stress at the V-notch section

∆τfl plain specimen torsional fatigue limit, full range

∆τN,fl notched specimen torsional nominal stress fatigue limit, full range

KfT fatigue stress concentration factor, under torsional loading

KtT theoretical stress concentration factor, under torsional loading

EK exponent for the KtT model

t1, . . . , t4 KtT model coefficients
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∆Kth mode I threshold SIF full range

∆KIII,th mode III threshold SIF full range

L LM critical distance under mode I fatigue loading

LT,L′T critical distance under mode III, or torsional, fatigue loading, LM and PM respectively

lT, l′T dimensionless lengths for LT,L′T, respectively

f (lT), f ′(l′T) correction functions from sharp to radiused V-notched specimen, LM and PM respectively

γ(lT),γ ′(l′T) inversion function, LM and PM respectively

l0,T, l′0,T dimensionless lengths according to the singularity N-SIF term, LM and PM respectively

lT,min, lT,int, lT,max minimum, intermediate and maximum dimensionless lengths for the LM inversion

γT,min,γT,int,γT,max LM inversion functions for lT,min, lT,int, lT,max, respectively

pi j coefficients for length and LM inversion function values, i = 1, . . . ,5 and j = 1, . . . ,4

l′T,min, . . . , l
′
T,max minimum, intermediates and maximum dimensionless lengths for the PM inversion

γ ′T,min, . . . ,γ
′
T,max PM inversion functions for l′T,min, . . . , l

′
T,max, respectively

qi j coefficients for lengths and PM inversion functions, i = 1, . . . ,5 and j = 1, . . . ,4

c1, . . . ,c3 polynomial coefficients used either for LM direct problem or inverse search

c1, . . . ,c5 polynomial coefficients used either for PM direct problem or inverse search

r,rN CV of the plain and notched specimen torsional fatigue limit range, respectively

κ rN to r ratio

Σ equivalent CV of the input data for the notch-derived critical distance estimation

∆τ̄fl,∆τ̄N,fl mean values of the normally distributed ∆τfl and ∆τN,fl, respectively

S,SN standard deviations of the normally distributed ∆τfl and ∆τN,fl, respectively

PDF(x) probability density function

α,β ,γ shape, location and scale parameters, respectively, of lT skew-normal distribution

µ,δ ,sk mean, standard deviation and skewness parameters, respectively, of lT skew-normal distribution

l̄T critical distance obtained with mean values of plain and notched specimen torsional fatigue limits

ν NCV of the critical distance, normalized with respect to the equivalent CV of the input data Σ

ν0 NCV of the critical distance for an ideally sharp V-notched specimen

lT,lim minimum, or limit, critical distance corresponding to a given value ν of the NCV

a1, . . . ,a4 coefficients of the skewness inversion function

b1, . . . ,b3 coefficients of the limit critical distance model

n1, . . . ,n4 coefficients of the NCV estimation model

m1, . . . ,m5 coefficients of the model for the critical distance mean value over l̄T ratio
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s1, . . . ,s6 coefficients of the critical distance skewness model

τa,τN,a torsional shear stress amplitudes of the plain and the notched specimens, respectively

Nf number of cycles to failure of the plain and the notched specimen tests

k1,k2 Basquin’s equation coefficients

d Plain specimen diameter

1. Introduction

The fatigue verification of machine elements is crucial in engineering design. It is particularly challenging, as

it has to take into account multiaxial loading conditions, stress gradients generated by geometrical discontinuities

(“notches”) [1, 2, 3, 4] and residual stresses produced by chemo-thermo-mechanical treatments, such as shot

peening [5, 6].

A well-known approach to deal with notch stress fields is the Theory of Critical Distances (TCD) [7]. The

theoretical framework of this group of notch verification methods was initially formulated for mode I type of

loading only, and applied to predict both (static) brittle fracture [8, 9, 10] and fatigue failure. In the fatigue

application, the critical distance was originally obtained by combining the fatigue strength of the crack, viz. the

threshold stress intensity factor (SIF) range ∆Kth, and the plain specimen fatigue limit. On the other hand, in the

brittle fracture scenario, the critical distance is usually determined by comparing the strength of two notches with

different severities [10, 11, 12, 13, 14]. The TCD was recently extended to the multiaxial fatigue, by combining

a multiaxial criterion, with the critical plane concept (where appropriate), and the stress averaging. The simpler

Point Method is usually preferred in multiaxial fatigue, however, there are also examples with Line or Area

Methods [15, 16, 17, 18, 19, 20]. A very important issue here is that the critical distance length is just considered

a unique value, i.e. without distinguishing between mode I or mixed loading. Susmel and Taylor [16, 19]

reported a variable critical distance as a function of the applied stress, however this variability was only intended

as dependent on the (predicted) number of cycles to failure. Benedetti and Santus [21] also combined several

fatigue multiaxial criteria with Point and Line Methods, and proposed different lengths, depending on the fatigue

life and elastic or elastic-plastic formulation of the multiaxial criterion. Importantly, after fixing criterion and

fatigue life, a unique material critical distance was assumed regardless of the degree of stress multiaxiality. An

interesting application with multiaxial variable stresses is the fretting fatigue. In several examples in the literature

[22, 23, 24, 25], the TCD was used to consider high gradient stresses, in combination with different criteria,

mainly the Modified WÃűhler Curve Method (MWCM), the Fatemi-Socie (FS) and the Smith-Watson-Topper

(SWT) criteria. Even in the fretting application, just a unique TCD length was assumed, which is obviously the
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length obtained from mode I type of loading, despite the high level of shear stresses induced by the local friction.

As already mentioned, to estimate the critical distance under fatigue loading, the (mode I) threshold and the

plain specimen fatigue limit are required. However, the determination of ∆Kth requires specific equipment and

expertise. For this reason, the fatigue critical distance length is more easily determined by imposing a TCD

condition and combining the plain specimen fatigue limit and the strength of a sharply notched specimen. The

authors [26, 27, 28] recently proposed and validated the use of a dedicated V-notched round specimen, with

optimized notch depth, and a radius as small as possible, still maintaining the manufacturing accuracy. In

combination with this dedicated specimen, an analytical procedure for the fatigue critical distance determination

was also provided. A numerical procedure was again proposed by the authors [29] for the statistical distribution

of the critical distance obtained with this method, by assuming both the plain and the V-notched specimen fatigue

strengths as normal (or Gaussian) distributions.

A similar approach for predicting both fatigue and fracture, also under mixed mode loading conditions, is the

strain energy density (SED), which is averaged over a structural volume whose characterized size is a material-

dependent parameter, usually referred to as the control radius [30, 31, 32]. A similar procedure used to determine

the fatigue SED control radius by the authors [33] for mode I. To extend SED to multiaxial fatigue scenarios, two

different control radii were postulated and found for in-plane and out-of-plane loadings [34, 35, 36, 37, 38, 39]. A

larger mode III radius than mode I was experimentally observed, which could be attributed to the possibly higher

threshold SIF range under out-of-plane loading. This in turn can be explained as the synergistic effect of an

intrinsic material strength and an extrinsic crack shielding mechanism, which is induced by typical factory-roof

crack surfaces [31]. The extrinsic component is not exclusive to mode III loading. In fact, it is well-known that

the plasticity induced crack closure mechanism introduces another extrinsic component under mode I loading

[40, 41, 42], and the crack surface roughness-induced closure is typical of mode II [40]. However under mode

III, this contact shielding is dominant, as pointed out by Yu et al. [43]. After accepting that values of the mode I

and mode III critical radii are quite different, the SED can be applied just by summing the two contributions in

terms of energy, averaged over two domains with different radii [34, 44, 45].

Similarly to the SED method, two different TCD lengths can in principle be defined, namely the mode I and

mode III critical distances. Susmel and Taylor [46] postulated a mode III critical distance LT, obtained from

torsional mechanical tests. From the literature data, they found that LT is usually larger than L which is the

(classical) mode I length, and their ratio is approximately in the range L/LT = 0.3−0.6. Susmel and Taylor [11]

also found a similar ratio L/LT for PMMA (polymethyl methacrylate) under brittle fracture, by combining two

different notches, as previously discussed, also for torsional loading. In terms of SED, Berto et al. [31] found

for 39NiCrMo3 steel, 0.327 mm and 1.426 mm for mode I and mode III control radii, respectively. Berto et al.
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[34] reported 0.051 mm and 0.837 mm for Ti-6Al-4V alloy. Thus, similarly to LT, the mode III control radius

resulted much larger than its mode I counterpart.

In agreement with the L definition, as discussed by Susmel and Taylor [47], LT should in principle be derived

from the SIF threshold range:

LT =
1
π

(
∆KIII,th

∆τfl

)2

, ∆KIII,th =? (1)

However, ∆KIII,th is not accessible from an experimental point of view, mainly because of the instability initial

propagation of the crack [48, 49]. There is in fact no standardized procedure, such as the well-known ASTM

E647 for mode I fatigue crack growth tests, to determine ∆KIII,th. For this reason, as suggested in Ref. [47],

the same mode III and mode I lengths can be considered. This simple assumption is conservative because, as

mentioned before, the mode I critical distance is smaller than LT, thus higher averaged mode III stresses are

expected. For a more accurate mode III fatigue calculation, in this work we propose the extension of the inverse

search procedure of LT, based on a dedicated notched specimen geometry, as in our past article [26]. The value

of LT can thus be used for the back-calculation of the mode III threshold ∆KIII,th after inverting Eq. 1. A round

notched specimen is recommended here, since for other geometries edge effects arise at the notch boundaries

[50, 51, 52] which are inappropriate for this inverse search target. In addition, a further procedure determines the

statistical distribution of the length LT itself, after assuming Gaussian (or normal) distributions for the fatigue

limits of the two plain and notched specimens involved.

In the final part of this work, the effects of the size of the specimen on the mode III critical distance determination

are investigated and compared to mode I. A recent approach to the size effect considers the critical distance

dependent not only on the material, but also on the notch size [53, 54]. On the other hand, a different probabilistic

perspective only considers the fatigue limit as dependent on the size [55, 56, 57]. In agreement with this latter

assumption, the critical distance is not assumed here as being dependent on the dimensions of the specimens.

However, the size effect is investigated in terms of the inverse search reliability, in particular regarding the

mode III length. The ratio between the standard deviation over mean value, of the predicted critical distance,

and that of the (combined) input fatigue properties, is assumed as an assessment index for the inversion search

accuracy. This parameter is more precisely defined below as the normalized coefficient of variation (NCV), and

its dependences on the critical distance size, the notch radius, and the specimen outer diameter, are investigated

and discussed.
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2. Optimal specimen definition

The most effective shape to determine the mode III critical distance is a round specimen loaded under torsion

and with a sharp axisymmetric V-notch. Plate or disc shapes, under anti-plane loading, are not recommended

because a nonuniform distribution and high gradient of KIII is obtained at the edges, as investigated by Pook,

Campagnolo and Berto [51, 52]. An alternative notch shape, such as a U-notch, is also ineffective in this context,

as a very small notch radius cannot be manufactured, at least not with conventional machining.

The definition of the specimen dimensions along with the shear stress component, induced by the torsion, are

reported in Fig. 1. In this work the whole notch opening angle is referred to as ᾱ . The outer diameter of the

specimen is D, the notch radius is R, and the notch depth is A. The parameters of the specimen can be put in

dimensionless form for a more efficient evaluation of the geometry dependences:

a = A/(D/2)

ρ = R/A
(2)

The shear stress along a radius at the bisection plane of the specimen is τzθ , and as this radius is on two planes

of load antisymmetry, this stress component is the only active. And this is similar to the mode I loading for

which σy is the dominant stress. The nominal shear stress follows the well-known triangular distribution, which

undergoes a stress concentration at the notch root. The stress is singular here if a local zero radius is assumed, at

least according to the linear elastic material behaviour, while the torsional stress concentration factor (SCF) KtT

can be introduced for the radiused notch.

(a)
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Figure 1: (a) Shear stress along the radial direction, induced by torsion. (b) Specimen dimensions, scheme with exaggerated notch radius
and length LT.
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2.1. Singularity exponent

A complete formulation of different types of V-notches in round specimens under torsion can be found in

Zappalorto et al. [58]. By assuming a zero radius, the shear stress (mode III) singularity power law exponent s3,

is usually expressed as the complementary to the main eigenvalue root of the singular problem λ3, and can be

easily solved for any notch open angle ᾱ:

s3 = 1−λ3 =
1− ᾱ/π

2− ᾱ/π
(3)

and in the following formulations the exponent s3 is only used instead of λ3.

The simple Eq. 3 is mapped in Fig. 2. When the opening angle is zero, the crack solution is attained, thus

s3 = 0.5, which is the classical crack singularity. However, as opposed to the mode I singularity exponent, s3

decays relatively fast, thus leading to weak singularities for quite large angles.

3 1/ 3s =

3 0.4s =

Notch opening angle,  (deg)
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3

Figure 2: Mode III singularity exponent s3 as a function of the notch opening angle ᾱ .

Similarly to Santus et al. [26], after having the singularity exponent available, the shear stress singular term can

be easily formulated as:

τzθ (ξ ) = τN
KN3,UU

ξ s3
(4)

where the dimensionless coordinate ξ = x/(D/2) is introduced. The Notch-SIF (N-SIF) KN3,UU refers to mode

III, and can be defined as KN3, shown in Fig. 1, for a unitary radius specimen (D/2 = 1) and also unitary nominal

stress τN.

Two notch angles ᾱ = 60◦ and ᾱ = 90◦ were investigated, which are the most common V-notch angles. The

KN3,UU was found by fitting FE simulations for different values of notch depths a. Two different maxima, though

quite close, were found at the two values a = 0.25 and a = 0.2, for ᾱ = 60◦ and ᾱ = 90◦, respectively, see Fig.
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Table 1: Singular term optimum notch depths, exponents and dimensionless N-SIFs.
Notch angle Optimal notch depth Singularity exponent Dimensionless N-SIF
ᾱ a s3 KN3,UU

60◦ 0.25 0.4 0.31861
90◦ 0.2 0.33333 0.40804

3.

Max. for 90 = 

Max. for 60 = 

Optimal 

notch depth

D
im

en
si

o
n

le
ss

 N
-S

IF
, 
K

N
3

,U
U

Notch dimensionless depth, a

Figure 3: Optimization of the notch depth, different maxima for the two notch angles considered.

The element type used in the FE model was Plane183 in the Ansys software library. Despite this element type

being bidimensional, the rotation degree of freedom along the axisymmetric direction (global Y ) was activated,

thus enabling the torsional loading to be modelled. A very refined mesh was applied to these simulations, being

the numerical basis for the entire procedure, similarly to the accurate FE model introduced and described by the

authors in Ref. [26].

3. Calculation procedure for the critical distance

A vanishingly small radius at the notch root is not possible, from the manufacturing point of view, in fact

the turning tool nose determines the minimum radius that can be obtained. The assumption that this radius is

at least one order of magnitude smaller that the critical distance to be determined, is not well supported by the

evidence. The radius parameter was thus introduced, and its effect analysed. Using another dedicated set of

accurate FE analyses, after imposing the optimal notch depths previously found for each angle, the torsional

shear stress distributions were obtained, and the modelling reported below was based on this set of simulations.

The ρ values investigated were: 0.01,0.02,0.05,0.1,0.2,0.5,1.0 including any realistic notch radius ratio.
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Table 2: Coefficients to determine the torsional SCF KtT.
ᾱ t1 t2 t3 t4
60◦ 0.019956 0.10339 -0.21129 0.13357
90◦ 0.013415 0.064888 -0.22451 0.15526

3.1. Radiused specimen stress concentration factor

The maximum shear stress at the notch root was easily converted into the torsional SCF, here referred to as

KtT. This SCF depends on the notch radius ratio ρ , which is the only remaining variable. An efficient fit form

was found with a polynomial on logarithm coordinates. Eq. 5, and the ti coefficients are listed in Table 2.

EK = t1(ᾱ)(log10 ρ)3 + t2(ᾱ)(log10 ρ)2 + t3(ᾱ) log10 ρ + t4(ᾱ)

KtT = 10EK

(5)

This KtT obviously represents a maximum value for the (mode III) fatigue SCF: KfT, thus corresponding to a

vanishingly small critical distance.

3.2. Line Method inverse search

By following the same steps proposed by us in Ref. Santus et al. [26], the dimensionless critical distances

can be defined as: lT = LT/(D/2) and l′T = L′T/(D/2) for the Line and Point Methods, respectively. According

to the stress distribution of Eq. 4, it is possible to evaluate the dimensionless lengths based on the singularity

assumption, initially proposed here for the LM:

∆τzθ ,av =
1

2 lT

∫ 2 lT

0
∆τzθ (ξ )dξ = ∆τN

1
1− s3

KN3,UU

(2 l0,T)s3
(6)

This average stress is then imposed that is equal to the plain specimen fatigue limit: ∆τzθ ,av = ∆τfl. Hence:

KfT =
∆τfl

∆τN,fl
=

1
1− s3

KN3,UU

(2 l0,T)s3
(7)

where ∆τfl and ∆τN,fl are the plain specimen and the notched specimen fatigue limits, referring to the nominal

stress. In this section, these fatigue properties are simplistically considered as deterministic variables, while they

are assumed as random variables below.

The inversion of Eq. 7 can be easily solved in order to have l0,T as output:

l0,T =
1
2

(
KN3,UU

(1− s3)KfT

)1/s3

(8)

In principle, this length could be considered as an approximate evaluation of the torsional critical distance.

However, as shown below, when the actual critical distance is quite small, the relative size of the notch radius

limits the stress gradient, and consequently the preliminary length l0,T may be not sufficiently accurate.
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After introducing the radius, the local stress distribution and the LM average can be reformulated, as the result

according to the singularity solution times a correction function f (lT):

∆τzθ ,av =
1

2lT

∫ 2lT

0
∆τzθ (ξ )dξ = ∆τN

f (lT)
1− s3

KN3,UU

(2lT)s3
(9)

The KfT can be again introduced:

KfT =
f (lT)

1− s3

KN3,UU

(2 lT)s3
(10)

and after the definition of an inversion function γ(lT):

γ(lT) =
lT

f (lT)1/s3
(11)

Equation 10 can be reduced to the relationship below which is then solved in lT, and this represents the inverse

search problem:

γ(lT) = l0,T (12)

In order to have a reliable modelling of this inversion function γ(lT), the inverse search was limited to a range

lT,min− lT,max, and this range was then verified as including all the realistic geometry conditions. As shown in

Fig. 4, the singular term LM averaging stress was assumed as a reference.

Dimensionless LM lT

,av

N

z







tTK

lT,min
lT,max

Nearest point 

for lT,max

3

N3,UU

3 T

1

1 (2 )
s

K

s l−

Figure 4: Maximum and minimum lengths for lT, example for ᾱ = 60◦ and ρ = 0.1.

The singular term stress averaging, reduced by a correction function imposed at f (lT) = 0.5, was compared with

the FE result for unitary nominal stress. The minimum length lT,min was thus defined and found. The averaged

stress for any smaller lT, obviously tends to the finite SCF while the singular term increases indefinitely. On the

other hand, for large lT, the singular and FE averaged stresses tend to be similar, meaning that the stress gradient
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Table 3: Coefficients pi j for the determination of the LM inversion search lengths.
pi j for ᾱ = 60◦

j = 1 j = 2 j = 3 j = 4
i = 1 6.8902E−03 −1.6930E−02 1.9492E−02 3.5833E−05
i = 2 −4.9067E−02 −2.8340E−02 2.4022E−01 2.3624E−01
i = 3 3.9260E−02 −9.6279E−02 1.1055E−01 1.5262E−04
i = 4 −1.3355E−02 −3.3115E−02 1.6007E−01 3.5766E−01
i = 5 −4.2072E−02 −6.2649E−02 3.0248E−01 2.9823E−01
pi j for ᾱ = 90◦

j = 1 j = 2 j = 3 j = 4
i = 1 1.6541E−03 −4.9747E−03 8.7262E−03 −5.5895E−06
i = 2 −1.3928E−02 −4.0247E−02 1.9014E−01 3.9144E−01
i = 3 1.2120E−02 −3.7784E−02 6.8822E−02 1.5337E−05
i = 4 −3.4668E−03 −4.8702E−02 1.5578E−01 5.3637E−01
i = 5 −8.6222E−03 −1.0305E−01 3.0090E−01 5.1670E−01

in that region is going down. The lT,max was assumed at the critical distance value where the gap between these

two functions is minimum. The FE averaged stress never exceeded the singular stress average, being however

very close at lT,max. However, for mode I, there is always a length where the FE averaged stress is equal to the

singular stress, because the stress away from the notch region tends to a uniform distribution.

The determination of lT,min and lT,max was repeated for all the investigated ρ and for both notch angles. The

inversion functions γmin and γmax for each of these lT,min and lT,max, were evaluated on the basis of the FE results.

An intermediate length: lT,int = (lT,min + lT,max)/2 was also evaluated for a more effective inverse model, and the

corresponding γint was also found for the length lT,int. The γ values obtained were then fitted with respect to the

notch radius ratio ρ variable. The proposed fit models, which were found to provide a satisfying accuracy, are

reported in Eqs. 13 and 14, and the calibrated pi j coefficients are listed in Table 3.

lT,min = p11(ᾱ)ρ3 + p12(ᾱ)ρ2 + p13(ᾱ)ρ + p14(ᾱ)

lT,max = p21(ᾱ)+ p22(ᾱ)ρ + p23(ᾱ)ρ p24(ᾱ)

lT,int = (lT,max + lT,min)/2

(13)

γmin = p31(ᾱ)ρ3 + p32(ᾱ)ρ2 + p33(ᾱ)ρ + p34(ᾱ)

γint = p41(ᾱ)+ p42(ᾱ)ρ + p43(ᾱ)ρ p44(ᾱ)

γmax = p51(ᾱ)+ p52(ᾱ)ρ + p53(ᾱ)ρ p54(ᾱ)

(14)

As mentioned above, Eq. 12 can be actually considered the inversion search problem, meaning that lT is the

unknown, and l0,T is the input, after having elaborated KfT with Eq. 8. This approach is the ultimate target of

this procedure, when the experimental test results are available and lT is required. However, lT− γ mapping can

also be used when lT is known, in which case l0,T is found and finally KfT obtained with Eq. 7. This situation is
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referred to here as the direct problem.

The effectiveness of different types of modelling was tested on the FE data, and it was found that the direct

problem can be solved by interpolating the three points with a parabola:

l0,T = c1 + c2 lT + c3 l2
T (15)

while for the inverse search problem, a polynomial with a non-integer value (equal to 1.5), for the highest

exponent, was found to be more effective:

lT = c1 + c2 l0,T + c3 l1.5
0,T (16)

In Eqs. 15 and 16, the coefficients c1,c2,c3 are obviously not the same, however, the same symbols are used for

convenience. These coefficients, either for the direct problem or the inverse search, can be found by imposing

the model on the available couples l0,T− lT, which can be quickly obtained by inverting a Vandermonde matrix

even with non-integer exponents. The Vandermonde matrices for the direct problem and the inverse search are

reported in Eqs. 17 and 18, respectively:
c1

c2

c3

=


1 lT,min l2

T,min

1 lT,int l2
T,int

1 lT,max l2
T,max


−1

γmin

γint

γmax

 (17)


c1

c2

c3

=


1 γmin γ1.5

min

1 γint γ1.5
int

1 γmax γ1.5
max


−1

lT,min

lT,int

lT,max

 (18)

The coefficients obtained c1,c2,c3 depend only on the notch angle ᾱ and the radius ratio ρ , thus they are

uniquely defined by the specimen shape, regardless of the size D. A very accurate modelling with the proposed

polynomials is evident in Fig. 5, where the trends obtained are directly compared to the FE results for a certain

radius ratio ρ and angle ᾱ , and similar results are obtained for all the other geometries.

3.3. Point Method inverse search

A similar formulation is possible for the Point Method. By implementing the PM condition, the initial length

based on the singular term l′0,T can be related to the KfT:

l′0,T = 2
(

KN3,UU

KfT

)1/s3

(19)
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Figure 5: Line Method (a) direct problem and (b) inverse search for ρ = 0.1 and ᾱ = 60◦.

On the basis of the FE stress distribution, the PM dimensionless critical distance l′T can be put into relationship

to KfT, using another correction function f ′(l′T), and then the two lengths l′0,T− l′T can be related:

KfT = f ′(l′T)
KN3,UU

(l′T/2)s3
=

KN3,UU

(l′0,T/2)s3
(20)

After the definition of an analogous inversion function, γ ′(l′T):

γ
′(l′T) =

l′T
f ′(l′T)1/s3

(21)

the inverse search can be again formulated, exactly in the same form of the LM:

γ
′(l′T) = l′0,T (22)

Due to the higher variation of this latter inversion function, another two intermediate lengths were required, as

reported in Eq. 23, while the maximum and minimum lengths were assumed to be the same as those of the LM:

l′T,min = lT,min

l′T,max = lT,max

l′T,int = lT,int

l′T,1 = (l′T,int + l′T,min)/2

l′T,3 = (l′T,max + l′T,int)/2

(23)
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Table 4: Coefficients qi j for the determination of the PM inversion search lengths.
qi j for ᾱ = 60◦

j = 1 j = 2 j = 3 j = 4
i = 1 3.8218E−02 −9.5322E−02 1.1342E−01 1.3923E−04
i = 2 1.5707E−03 −4.1250E−02 1.1133E−01 6.2170E−01
i = 3 −1.0494E−02 −5.5582E−03 1.0516E−01 3.0922E−01
i = 4 −5.7542E−02 −5.1620E−03 1.7165E−01 1.6582E−01
i = 5 −1.6157E−01 −1.2746E−02 3.0575E−01 1.0109E−01
qi j for ᾱ = 90◦

j = 1 j = 2 j = 3 j = 4
i = 1 1.2941E−02 −4.1026E−02 7.6834E−02 2.0556E−05
i = 2 5.9994E−04 −4.1773E−02 1.0597E−01 7.1174E−01
i = 3 −3.4284E−03 −1.1135E−02 9.8204E−02 4.6516E−01
i = 4 −1.0763E−02 −1.6730E−02 1.3296E−01 3.8161E−01
i = 5 −1.8165E−02 −3.1322E−02 1.7997E−01 3.5741E−01

The values for the PM inversion function, corresponding to the five lengths l′T,min, . . . , l
′
T,min, were fitted and made

available with the models of Eq. 24, and the coefficients qi j are reported in Table 4

γ ′min = q11(ᾱ)ρ3 +q12(ᾱ)ρ2 +q13(ᾱ)ρ +q14(ᾱ)

γ ′1 = q21(ᾱ)+q22(ᾱ)ρ +q23(ᾱ)ρq24(ᾱ)

γ ′int = q31(ᾱ)+q32(ᾱ)ρ +q33(ᾱ)ρq34(ᾱ)

γ ′3 = q41(ᾱ)+q42(ᾱ)ρ +q43(ᾱ)ρq44(ᾱ)

γ ′max = q51(ᾱ)+q52(ᾱ)ρ +q53(ᾱ)ρq54(ᾱ)

(24)

The direct problem can be implemented by interpolating the five points with a 4th degree polynomial:

l′0,T = c1 + c2 l′T + c3 l′2T + c4 l′3T + c5 l′4T (25)

while for the inverse problem, the use of non-integer exponents was again found to be more effective:

l′T = c1 + c2 l′0.50,T + c3 l′0,T + c4 l′1.50,T + c5 l′20,T (26)

The set of coefficients c1, . . . ,c5 is obtained by inverting the Vandermonde matrices for the direct problem and

the inverse search, Eq. 27 and 28, respectively:

c1

c2

c3

c4

c5


=



1 l′T,min l′2T,min l′3T,min l′4T,min

1 l′T,1 l′2T,1 l′3T,1 l′4T,1

1 l′T,int l′2T,int l′3T,int l′4T,int

1 l′T,3 l′2T,3 l′3T,3 l′4T,3

1 l′T,max l′2T,max l′3T,max l′4T,max



−1

γ ′min

γ ′1

γ ′int

γ ′3

γ ′max


(27)
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c1

c2

c3

c4

c5


=



1 γ ′0.5min γ ′min γ ′1.5min γ ′2min

1 γ ′0.51 γ ′1 γ ′1.51 γ ′21

1 γ ′0.5int γ ′int γ ′1.5int γ ′2int

1 γ ′0.53 γ ′3 γ ′1.53 γ ′23

1 γ ′0.5max γ ′max γ ′1.5max γ ′2max



−1

l′T,min

l′T,1

l′T,int

l′T,3

l′T,max


(28)

The use of these higher order polynomials is shown in Fig. 6 for accurate modelling, although more coefficients

are required.
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Figure 6: Point Method (a) direct problem and (b) inverse search for ρ = 0.1 and ᾱ = 60◦.

The relationship between the singularity based and the actual critical distances, for both LM and PM, remains

close to the dashed line 1:1 in Figs. 5 and 6, or even coincident for the PM at a specific length value. The two

lengths are in fact quite similar if the dimensionless critical distance itself is large. On the other hand, when the

critical distance is small, the ratio between these two lengths is quite different from unity.

4. Statistical properties of the critical distance lT

4.1. The skew-normal distribution

This section focuses on the statistical distribution of the mode III critical distance as obtained according to

the LM. The fatigue properties, namely the plain and the notched specimen fatigue strengths, are assumed here

to be stochastic variables, and in turn the length lT is therefore a variable with a probability distribution, which

is the target of this analysis. We adopt the same mathematical formalism used to infer the statistical properties

of mode I critical length L and SED control radius R1, see [29, 59]. Input fatigue properties ∆τfl and ∆τN,fl

are assumed to be normal (Gaussian) random variables, with mean value and standard deviation denoted as

∆τ̄fl,S,∆τ̄N,fl,SN, respectively. The reasonability and advantages of this option have been already discussed in
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[29, 59]. The corresponding coefficients of variation (CV) are defined as follows:

r =
S

∆τ̄fl
; rN =

SN

∆τ̄N,fl
(29)

We denote with l̄T the critical distance evaluated, considering the mean values of the plain and the notch fatigue

strengths, not necessarily coincident with its mean µ , as shown in the following.

Monte Carlo (MC) simulations (see [29, 59] for more details) highlight interesting properties of the statical

distribution of lT. As shown in Fig. 7 for the simplifying case rN = r, the probability density function (PDF) is

unimodal with a longer right-side tail.

Figure 7: Probability density function (PDF) of critical distance estimations lT. Histograms are obtained from Monte Carlo (MC)
simulations. Mean, standard deviation and skewness calculated from MC simulations are used to evaluate the parameters of the skew-
normal distributions plotted as solid lines. r is the coefficient of variation (CV) of the plain fatigue limit, which is assumed here to be
equal to CV of the notch fatigue limit (rN).

The width at half maximum and the asymmetry degree (i.e. the skewness, positive in the case of a longer right

tail) increase with increasing CV r. The PDF histograms shown in Fig. 7 and obtained from lT populations

generated via MC are well represented (solid lines) by a tri-parametric skew-normal distribution (SND) as long

as r is sufficiently small (not higher than 0.07 in the present work). Its PDF is expressed as follows:

PDF(x) =
1√
2πγ

(
1+ erf

(
α(x−β )√

2γ

))
exp
(
−(x−β )2

2γ2

)
(30)

Mean µ , standard deviation δ and skewness sk of SND are simple algebraic functions of shape α , location β and

scale γ parameters:

µ = β +

√
2
π

αγ

√
1+α2

(31)

δ = γ

√
1− 2α2

π(1+α2)
(32)
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Table 5: ai fit model coefficients for Eq. 34
a1 a2 a3 a4

2.6159 1.7983 −5.4302 4.1124

sk =

√
2(4−π)α3

(π +(π−2)α2)3/2 (33)

The skewness sk is a function of the only shape parameter α and zeroes for vanishing α . In this case, the SND

becomes normal with mean β and standard deviation γ . sk increases monotonically with α and is bounded in

the interval (-1,1). Therefore, the SND only reproduces PDF with low-to-moderate sk values. The following

analyses are restricted to r values not exceeding 0.07, as it was found that below this threshold value of skewness

of lT, PDF is lower than 1 and therefore the PDF can be represented in the form of SND. The inversion of Eq.

33 to get the shape parameter α from sk is algebraically very challenging. Therefore, the following approximate

numerical expression proposed in [29] was implemented:

α =
1√

1− sk2

4

∑
i=1

ai ski/2; 0≤ sk ≤ 1 (34)

whose best-fit coefficients ai are listed in Table 5. Once α has been calculated from Eq. 34, β and γ can be

simply evaluated from Eqs. 31, 32.

As discussed by the authors in Refs. [29, 59], the above analyses can be extended to common situations where the

two CVs, r and rN, are different. Exploiting statistical analyses on the distribution of the ratio of normal variables

with a low CV [60], the PDF of lT derived from fatigue properties of not equal r and rN is almost identical to that

obtained under assumption of r = rN, provided that both input fatigue properties have the following equivalent

CV:

Σ =

√
r2 + r2

N
2

= r

√
1+κ2

2
(35)

Where κ is the CV ratio

κ =
rN

r
(36)

The possibility of applying the statistics of lT inverse search from input fatigue properties of different CV

to that obtained assuming r = rN = Σ is confirmed by Fig. 8 (a) and (b), which compares the actual and

equivalent (approximated) PDFs of lT in the lower and upper bound of the proposed validity range of the index κ:

0.5≤ κ ≤ 2.2. Interestingly, the agreement in CV between the two distributions is good, as the relative absolute

difference is below 2.5%. It is thus possible to deduce the CV of lT directly from only the knowledge of Σ .

Figure 8 (a) and (b) highlights that the two distributions differ in mean and skewness. Correction functions are
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Table 6: Best-fit coefficients of the equations used to estimate NCV of lT (Eq. 37c)
ᾱ ν0 n1 n2 n3 n4

60◦ 3.530 −0.92133 0.34992 −0.045173 112.89
90◦ 4.250 0.97312 0.17790 0.25967 961.51

proposed in the following to adjust these discrepancies.

(a) (b)

Figure 8: Probability density functions (PDF) of critical distance estimations. The PDF accounting for the effective CV, r and rN, is
compared with that obtained considering, for the plain and notch fatigue limit, the same equivalent CV, namely Σ . (a) is obtained for the
maximum, (b) the minimum value of the validity range established for κ .

4.2. Parameters of the skew-normal distribution of lT

Parametric MC runs were launched to infer the dependency of the mean µ , the length CV δ/µ and the

skewness sk of lT on the statistical features Σ and κ of the input fatigue data and the characteristic sizes ᾱ and ρ

of the optimized notched specimen. Since the length CV δ/µ was found in [29, 59] to increase linearly with Σ ,

it is convenient to normalize it with respect to Σ :

ν =
1
Σ

δ

µ
; ν0(ᾱ)≤ ν ≤ 7⇒ l̄T = l̄T,min (37a)

The resulting normalized CV (NCV) ν is therefore only a function of the specimen geometrical parameters ᾱ

and ρ . As shown in Fig. 9 (a), ν decreases with increasing lT to ρ ratio and is bounded from below by the

condition of infinitely sharp notch (ρ = 0, black dashed line in Fig. 9 (a)), which enables ν to be minimized

since this geometrical condition results in the steepest notch stress gradient. This lower bound of NCV will be

denoted as ν0 and is listed in Table 6 for the two explored ᾱ angles. Clearly, the use of radiused notches results

in lT estimates affected by larger ν . The higher the notch radius to critical distance ratio ρ/lT, the larger the

resulting ν value.

To eliminate the explicit dependency of the statistical properties of lT upon the notch radius ratio ρ , we follow

the same approach as in [29, 59]. We investigate the statistics of the inverse search of lT performed using a

notched specimen of notch radius ratio ρ resulting in a fixed predetermined value of ν . To determine this locus
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ρ = 0 (infinitely sharp notch)

ρ = 0.04
ρ = 0.08

ρ = 0.2
ρ = 0.4

7
6
5
4
3.75ν0

Eq. (37b)

(a) (b)

Figure 9: (a) The CV of lT estimations normalized to Σ (and denoted as ν) depends on the notch radius ratio ρ . Here, the statistical
properties of lT are evaluated considering discrete values of ν , ranging from ν0 (corresponding to an infinitely sharp notch, black dashed
line) to 7. (b) lT,lim is the locus of critical distances for varying notch radii ρ corresponding to a certain value of ν .

Table 7: Best fit coefficients of the equations used to estimate lT,min (Eq. 37b)
ᾱ ν b1 b2 b3

60◦ 3.75 0.12361 0.16617 −0.17603
4 0.086041 0.17797 −0.15480
5 0.0041091 0.21648 −0.13899
6 −0.00045055 0.15402 −0.090108
7 −0.0034339 0.12326 −0.068260

90◦ 4.5 0.096206 0.052678 −0.052898
5 0.038808 0.12664 −0.082560
6 0.0066008 0.12503 −0.068673
7 0.0029409 0.087041 −0.039904

of lT, the intersections of the curves parametrically plotted in Fig. 9 (a) need to be searched for with the equation

ν = const. We consider a discrete set of constant ν values (represented by grey dashed lines in Fig. 9 (a)), namely

3.75,4,5,6,7 and 4.5,5,6,7 for ᾱ = 60◦ and ᾱ = 90◦, respectively. The dotted values in Fig. 9 (b) represent the

numerically computed roots of this nonlinear system of equations solved parametrically for such discrete set of

ν values. They are well represented by the following algebraic expression:

lT,lim = b1(ᾱ,ν)ρ1/2 +b2(ᾱ,ν)ρ +b3(ᾱ,ν)ρ3/2 (37b)

whose best-fit coefficients are listed in Table 7.

In other words, Eq. 37b identifies the locus of lT characterized by a fixed NCV. Interestingly, Eq. 37b can be

inverted (analytical expression not reported here for the sake of brevity) to determine the locus of notch radii

ρlim which leads to a lT estimation affected by a given NCV ν . The dotted values in Fig. 10 are the roots of the

inverted Eq. 37b parametrically calculated for the discrete set of ν values. Of note, these points show a trend

converging to ν0 for vanishing ρ (infinitely sharp notch) which is well represented by the following expression
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(solid lines in Fig. 10):

ν = ν0(ᾱ)+

n1(ᾱ)
√

ρ +n2(ᾱ)
ρ

l̄T
+n3(ᾱ)

ρ2

l̄T
1+n4(ᾱ)l̄2

T
(37c)

whose best-fit coefficients ni are listed in Table 6. Importantly, Eq. 37c enables the notch radius of the notched

specimen to be designed according to the expected critical length lT and the desired level of NCV ν . In addition,

given the notch radius ratio ρ , the NCV ν of lT can be calculated.

ν0
lT = 0.002

lT = 0.005

lT = 0.02

lT = 0.03
lT = 0.04

lT = 0.06

lT = 0.01

lT = 0.05

Eq. (37c)

lT = 0.07

Figure 10: The dependency of ν on ρ and l̄T is well represented by Eq. 37c.

Knowledge of ν in turn enables the statistical properties of lT to be deduced. Accordingly, the length CV can

be readily evaluated from Eq. 37a. Figure 11 illustrates the results of MC simulations keeping ν fixed (at 5 in

this case) and adjusting the value of l̄T according to Eq. 37b. NCV falls within a relative error band across ν ,

comprised of between −1.0% and 2.5%, irrespectively of the statistical properties Σ and κ (Fig. 11 (b)) of the

input fatigue data and of the notch radius ratio ρ (Fig. 11 (a)). This result confirms the ability of Eqs. 35 and

37a to bring the NCV of lT for a generic set of input fatigue data back to that predicted for κ = 1 (r = rN).

+2.2%

-1.0%

Eq. (37a) Eq. (37a) +2.5%

-0.5%

(b)(a)

Figure 11: The NCV ν for the locus lT,lim is fairly independent (a) of Σ and ρ within an error band 1.0%, 2.2% and of (b) Σ and κ within
an error band 0.5%, 2.5%.

In the following, MC simulations are used to derive suitable expressions to predict mean and skewness of lT.

They are carried out parametrically for the discrete ν values. Simple interpolation can be used to evaluate the
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two statistical properties for any intermediate ν value assessed via Eq. 37c.

Figure 12 (a) and (b) plot the mean value µ normalized to l̄T as a function of ρ and Σ for κ = 0.5 and κ = 2.2,

respectively. Unlike mode I critical length and SED control radius, the mean µ is also a (declining) function of

the notch radius ratio ρ . For this purpose, the following tri-variate interpolating function is proposed here to fit

the dotted values corresponding to the MC experiments:

µ

l̄T
= m1(ᾱ,ν)+

m2(ᾱ,ν)Σ 2(
1+m3(ᾱ,ν)

√
κ
)(

1+m4(ᾱ,ν)
(a

2
ρ

)m5(ᾱ,ν)
) (37d)

whose best-fit coefficients mi are listed in Table 8.

Table 8: Best fit coefficients of the equation used to estimate the mean value over l̄T ratio (Eq. 37d).
ᾱ ν m1 m2 m3 m4 m5

60◦ 3.53 1 22.372 2.4604 1 1
3.75 1.0022 2041.9 253.53 2.2485 0.27106
4 1.0018 2988.7 154.73 5.5349 0.17527
5 0.99902 128.72 6.3145 10.779 0.52899
6 0.99659 81.239 3.9468 24.290 0.90911
7 0.99506 81.937 3.4280 41.579 1.1062

90◦ 4.25 1 23.501 1.5503 1 1
4.5 1.0027 100.14 10.916 2.0083 0.48512
5 1.0010 103.84 5.3844 3.5556 0.30453
6 0.99713 77.771 3.0126 8.3191 0.59270
7 0.99394 74.570 2.5711 19.284 0.91296

Figure 12 shows that, despite the complicated trend highlighted by the dotted values, Eq. 37d (solid lines) fits

the MC experiments fairly well, and the absolute relative error is kept below 1%.

Eq. (37d)
Eq. (37d)

(a) (b)

Figure 12: The mean normalized to the input length l̄T (estimated from the mean of plain and notch fatigue limits) is a function of the
notch radius ratio ρ and input fatigue data statistical properties Σ and κ . These dependencies are satisfactorily predicted by Eq. 37d. (a)
and (b) refer to the lower and upper bound of the explored values of κ , viz. 0.5 and 2.2, respectively. Dotted values are the results of MC
simulations, affected by some statistical fluctuations.

Figure 13 (a) and (b) plot the skewness sk as a function of ρ and Σ for κ = 0.5 and κ = 2.2, respectively. Also in

this case, the MC experiments denote a dependency not only on Σ and κ , but also on ρ . The following tri-variate
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function is then proposed to interpolate the data:

sk =
s1(ᾱ,ν)Σ + s2(ᾱ,ν)Σ 2(

1+ s3(ᾱ,ν)
√

κ
)(

1+ s4(ᾱ,ν)
(a

2
ρ

)s5(ᾱ,ν)κ+s6(ᾱ,ν)
) (37e)

whose best-fit coefficients si are listed in Table 9.

Table 9: Best fit coefficients of the equation used to estimate the skewness of lT (Eq. 37e).
ᾱ ni s1 s2 s3 s4 s5 s6

60◦ 3.53 48.054 79.153 3.7474 1 1 1
3.75 41.376 24.224 3.1506 40.722 −0.17069 1.4653
4 46.082 24.175 3.6358 30.582 −0.15974 1.4461
5 43.751 36.895 3.2785 12.007 −0.14766 1.2711
6 45.524 47.213 3.4084 6.7841 −0.13678 1.1249
7 43.092 46.486 3.1245 4.7260 −0.13870 1.0348

90◦ 4.25 49.292 105.18 3.1122 1 1 1
4.5 38.045 3.7475 2.2097 43.485 −0.12863 1.4383
5 41.739 16.599 2.4349 22.804 −0.097834 1.2823
6 41.840 38.866 2.4053 10.791 −0.093331 1.1418
7 46.732 49.577 2.7341 6.4515 −0.067528 0.98986

The solid lines in Fig. 13 indicate that the Eq. 37e well represents the MC experiments with absolute relative

errors below 5%. In conclusion, Table 10 summarizes the validity range of the proposed method to deduce the

statistical properties of the inverse estimations of the critical distance lT.

This statistical procedure, as well as the previous procedure for the initial determination of the mode III critical

distance, are implemented in twoMATLAB scripts, which are in the electronic version of the paper and described

below in the Appendix.

Eq. (37e)
Eq. (37e)

(a) (b)

Figure 13: The skewness sk is a function of the notch radius ratio and input fatigue data statistical properties Σ and κ . These dependencies
are satisfactorily predicted by Eq. 37e. (a) and (b) refer to the lower and upper bound of the explored values of κ , viz. 0.5 and 2.2,
respectively. Dotted values are the results of MC simulations, affected by some statistical fluctuations.
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Table 10: Requirements for statistically validated lT estimations.
Requirements on input fatigue data Requirements on lT inverse search
Σ ≤ 0.07 lT,min ≤ l̄T ≤ lT,max
0.5≤ κ ≤ 2.2 ν = ν(l̄T,ρ)⇒ ν ≤ 7

5. Example of the implementation

5.1. Experimental data

To test the inverse search procedure of the critical length and its statistical properties, an experimental

campaign was carried out on specimens extracted from bars of 42CrMo4+QT (quenched and tempered) steel.

The fatigue characterization was carried out under fully-reversed (load ratio R = −1) torsional fatigue on an

axisymmetric plain and V-notched samples, whose geometries are shown in Fig. 14. The sharp notch was turned

using a cutting tool insert with corner radius of 0.1 mm. The actual local radius was experimentally verified

under stereomicroscopy inspections (shown in the figure) and evaluated to be R = 0.157±0.007 mm.

(a) (b)

Figure 14: Technical drawings of (a) plain specimen and (b) optimized notched specimen, with opening angle ᾱ = 60◦ and detection of
the actual notch radius (lengths in mm).

The fatigue tests were conducted in laboratory environment using a biaxial servo-hydraulic testing machine

Walter+Bai (Löhningen, Switzerland) LFV100-T1000-HH equipped with a biaxial load cell with 100 kN and

1000 Nm axial and torsional load capacity, respectively. The load control imposed a sinusoidal torsional load

waveform with frequency of 20 Hz. The medium-to-high-cycle fatigue life in the range between nearly 5×104

and 5×106 cycles was explored employing 12 plain or notched specimens. The fatigue curves corresponding to
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50% failure probability, represented by Basquin’s equation:

τa = k1 Nk2
f (38)

were determined by fitting the log(Nf) versus log(τa) results. The scatter of the fatigue data was assessed by

computing the estimated regression variance which was assumed to be uniform for the entire fatigue life range,

and expressed by:

S2 =
∑

q
i=1 (τa,i− τ̂a,i)

2

q− p
(39)

where τa,i is the i-th fatigue amplitude data point, τ̂a,i is its estimator, q is the number of data elements, and p

is the number of parameters in the regression (p = 2 in the present case). The S-N data are reported in Fig. 15

along with the fit curves (with 50%, solid line, and 10% and 90%, dashed lines, failure probability). The high

cycle fatigue strength computed at 5×106 cycles and the corresponding standard deviation are reported in Table

11.
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Figure 15: S-N curves of plain and notched specimens used for the inverse search estimation of lT. Solid lines refer to 50% failure
probability, dashed lines to 10% and 90% failure probabilities.

Table 11: Torsion fatigue strength characteristics of the investigated specimen geometries made of steel 42CrMo4+QT.
Material R Geometry k1 k2 Fatigue life ∆τ̄fl, ∆τ̄N,fl S, SN CV

(MPa) (cycles) (MPa) (MPa) r, rN

42CrMo4+QT −1 Plain 681.6 −0.048 5×106 327.5 8.46 0.026
Notched 12863 −0.282 5×106 165.7 8.45 0.051
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5.2. Inverse search and statistical distribution of LT

The results of the inverse search for LT, from the experimental data just introduced, are listed in Table 12.

More precisely, L̄T was obtained after iteratively applying the inverse search procedure, and considering the

relative size of L̄T itself with respect to the plain specimen radius. The fatigue stress concentration factor was

initially determined referring to the nominal stress τN, Fig. 1, leading to:

KfT =
327.5
165.7

= 1.976→ L̄T = 0.226 mm (40)

Now the gradient stress of the plain specimen itself can be averaged over the length 2 L̄T, and having a linear

distribution, this average is equivalent to the evaluation at L̄T:

τN,1 = τN
d/2− L̄T

d/2
= 322.2 MPa (41)

which is slightly lower than τN and d = 14 mm is the diameter of the plain specimen, Fig. 14.

After this nominal stress correction τN,1, the value of KfT can be updated. A lower result is obviously obtained,

leading to a slightly higher critical distance. This procedure can be easily iterated, and a quite stable combination

of corrected nominal shear stress and critical distance is obtained after a few steps:

τN,4 = 315.7 MPa→ KfT = 1.905→ L̄T = 0.252 (42)

The same iterative correction can also be performedwith the PM, for which the stress was required to be evaluated

at L̄′T/2. The not corrected KfT produced:

KfT =
327.5
165.7

= 1.976→ L̄′T = 0.348 mm (43)

and after a few interactions, the following stable result was obtained:

KfT = 1.924→ L̄′T = 0.373 mm (44)

The statistical properties of the LM length are reported in Table 12 and were estimated using both Eqs. 37a – 37e

and MC simulations where, during each trial, LT was computed by extracting the normally distributed values of

plain and notch fatigue strengths. The agreement between the statistical properties estimated in these two ways

is convincing, as the absolute relative error is below 3%.

Table 12: Statistical properties of lT obtained for steel 42CrMo4+QT.
L̄T L̄′T Σ κ ν Monte Carlo Eqs. 37a – 37e
(mm) (mm) µ/l̄T δ/µ sk µ/l̄T δ/µ sk
0.252 0.373 0.0405 1.976 4.188 1.011 0.169 0.291 1.009 0.169 0.291
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Figure 16 compares the PDF of LT estimated through MC simulations (histogram) and the SND with parameters

deduced from Eqs. 37a – 37e. Once again, the agreement between the two approaches is very good.

Monte Carlo
Predicted
ν = 4.188

LT

Figure 16: Comparison between PDF estimated through MC simulations and predicted by Eqs. 37a – 37e.

A large LT was found compared to the mode I critical distance L, and as mentioned in the Introduction, this

situation is usual for steels. The ratio between the L of the same steel, reported in Ref. [27], and the LT obtained

here, is in the order of 0.1. The ratios reported in Refs. [20, 46] for similar steel, were also below 0.5. Berto

et al. [34] again found limited ratios, even smaller than 0.1, referring to the control radii R1 and R3 for the

SED criterion. Further investigations are planned regarding the large discrepancy between these two lengths,

extending the analysis to other materials with a different ductility and thus a different fatigue limit over yield

strength ratio.

6. Size effect of the specimens on the critical distance determination

The critical distance can be effectively determined when a limited uncertainty of the inverse search is

attributed to the result, or in other words when the critical distance standard deviation is small. However, the

fatigue input strength values are also affected by a probability distribution which can be considered an extrinsic

effect, attributed to the material, thus not dependent on the specimen geometry itself. A good estimator is

therefore provided by the NCV ν , introduced above, which is a measure of the standard deviation, however,

normalized in terms of the (combined and relative) standard deviation Σ of the fatigue strength input. From

Eq. 37c, ν depends on the notch angle ᾱ , the notch radius ratio ρ , and also importantly on the critical distance

itself l̄T. The best situation for the inverse search is when the critical distance, or more precisely a length equal

to twice the critical distance, according to the LM criterion, lies in a strong gradient region. This condition

is obtained when the angle is quite sharp, though an angle smaller than 60◦ is difficult to obtain in terms of

manufacturing, and most importantly, with a small notch radius. In principle, an almost perfectly sharp notch is
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desirable, however, again from a manufacturing perspective, the real notch radius cannot be smaller than 0.2 mm

with common manufacturing tools, or 0.1 mm at most. In addition, this radius needs to be known with accuracy,

for example measured using a section and microscope observation or with an optical profile identification. In the

example presented here, the notch radius detected was R = 0.157 mm, as shown in Fig. 14, despite the nominal

value of 0.1 mm. Additional tests were performed to determine the mode I length with the same notch angle and

same nominal notch radius, which are not reported here for the sake of brevity, and the actual (measured) radius

was 0.12 mm. The length L = 0.027 mm was obtained, in perfect agreement with our previous result [27].

As shown in Fig. 17, a notch radius as small as the mode I critical distance is not possible for common high

strength metal alloys. However, at least an intermediate radius between the two mode I and mode III lengths is

recommended, whereas a blunt notch is obviously not.

LTL

R
A

L < R < LT ,

Small D → LT ≈ A

Unrealistic, high 

gradient for the 

torsion shear stress, 

low gradient for

the tensile stress

R << L, LT

Desirable but 

unrealistic

L < R < LT

Typical and 

recommended

R > LT , R >> L

Possible though 

not recommended 

(blunt notch)

V
a

ri
a

ti
o

n
 o

f 
R

Variation of D

D/2 >> L, LT

Figure 17: Different possible relative size combinations between mode I and mode III lengths, specimen outer diameter and notch radius,
and recommended setup for an optimal inverse search determination of the critical distances.

In addition to the notch radius, which is the main geometry parameter, the outer diameter of the specimen D also

plays a role. This length cannot be either too large or too small for practical reasons, however, some considerations

are of interest even in the common range of this dimension. If the diameter is very large, the stress gradient is

basically just driven by the notch radius for both mode I and mode III. On the other hand, if small or even very

small values of D are considered, although perhaps unrealistic, the effect of this parameter is different between

the two loading modes. The torsional loading involves a nominal stress gradient which obviously is enhanced

by a small D, and this synergically interacts with the notch induced stress concentration. For this reason, the

mode III NCV is lower for a smaller D, while for mode I, the stress gradient in a region equal to 2L (according

to the LM) is less severe. Thus in turn, the mode I NCV increases with smaller D values, which as previously
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discussed, are not recommended.

ν = 4.188

ν = 5.630

42CrMo4+QT, α = 60°

LT = 0.252 mm

L = 0.027 mm

R = 0.10 mm
R = 0.16 mm

R = 0.20 mm
R = 0.12 mm

D

Figure 18: Parametric analysis of the effect induced by the outer diameter of the specimen and the notch radius, on the inverse search
NCV, for mode I and III critical distances. Experimental configurations and the values obtained for the 42CrMo4+QT steel are reported
as references.

These trends are summarized in Fig. 18. The dimensions of the actual specimens presented above, determined

ν = 5.630 and ν = 4.188 for mode I and mode III, respectively. Although not experimentally investigated, other

hypothetical diameter and notch radius values are presented in this figure together with the related effects on ν .

The same lengths L and LT are maintained, which are considered as pure material properties, not affected by the

geometry and the size. The figure highlights that NCV decreases for mode I, but increases for mode III, with

respect to the diameter D. The mode I NCV values are notably higher than for mode III, which is mainly due

to the relative size of the critical distance with respect to the notch radius. As LT is quite large, even larger than

the notch radius, the relative gradient on the averaging length is higher, which implies a more stable inversion as

previously highlighted. Different notch radii are analysed in this investigation: the two nominal values 0.1 mm

and 0.2 mm, which are the common tool nose radii, and the actual (or detected) sizes of the radius R = 0.12 mm

and R = 0.16 mm for mode I and mode III, respectively. A larger radius sensibility is evident for mode I, again

because the L value is smaller than the radius itself. The smallest possible notch radius is thus required, such as

R = 0.1 mm. On the other hand, this requirement is less demanding for mode III, for which a ν lower than 4.5

can be obtained even with R = 0.2 mm.

7. Conclusions

Wehave presented a procedure to determine themode III (or torsional) critical distance alongwith a dedicated

V-notched specimen with optimal notch design. The analytical procedure proposed is based on fit functions after

accurate and comprehensive finite element simulations, and the use of a dimensionless form, for all the lengths,

provided an efficient method for this calculation. Our approach is to initially evaluate the critical distance just
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according to the singular term, ideally assuming a perfectly sharp notch. This length is subsequently corrected

by introducing the notch radius, and this process is followed both according to the Line and the Point Methods.

A statistical analysis is then provided for the Line Method critical distance, by implementing Monte Carlo

simulations and again a modelling with dedicated fit functions is proposed. After determining just a single value

for the critical distance, its stochastic distribution is thus also provided. Assuming a normal distribution for

the two input variables, i.e. the plain and the notched specimen fatigue strengths, a skew-normal distribution is

evident for the torsional critical distance, which is in agreement with our previous study on the mode I critical

distance.

A normalized coefficient of variation (NCV) for the torsional critical distance standard deviation was defined

and modelled. This parameter was considered in this study as an effective indicator to determine the quality

of the inverse search critical distance. The NCV was therefore parametrically analysed in terms of the notched

specimen dimensions, and for a comparison, the same investigation was concurrently done for the mode I critical

distance. A typical quenched and tempered steel was considered as an example, and a significantly larger mode

III critical distance was obtained than the mode I. Since a much larger mode III length was obtained, the role

of the notch radius ratio in terms of the NCV was found less dominant than for mode I. In other words, for an

accurate determination of the mode I critical distance, the smallest possible notch radius is recommended, and

an accurate measure is required. On the other hand, for the (larger) mode III length, this focus on the radius is

less important. The size effect of the outer diameter is also worth investigating, and again a countertrend was

obtained between the two mode lengths. A large diameter is desirable for mode I, while the inherent gradient of

the torsional stress distribution suggests a small diameter to determine the mode III length.

Future developments of the present work will include the effect of plasticity and orientation of the early crack

propagation plane with respect to the specimen symmetry plane, considering a wide spectrum of structural

metallic materials.

Acknowledgements

This project was supported by the Italian Ministry of Education, University, and Research (MIUR) within

the program “Departments of Excellence” 2018–2022 (DII-UNITN)

Appendix A. Software implementation

This appendix describes the use of editable MATLAB scripts, available with the online version of this paper,

for a rapid implementation of the two proposed procedures.

The script LM_PM_ExampleModeIII.m describes the inverse search determination of the mode III critical
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distances according to both the Line and Point Methods. The input data derive from the experimental example

previously presented:

ᾱ = 60◦

D = 30 mm

R = 0.157 mm

KfT = 1.905

(A.1)

After selecting ᾱ , the coefficients of the procedure are defined from Tables 1, 2, 3, 4. The torsional stress

concentration factor can be initially found with Eq. 5:

KtT = 3.706 (A.2)

and it is substantially larger than KfT, which correctly implies a positive mode III critical distance.

The singularity based LM length is deduced from the KfT and the N-SIF parameters, Eq. 8, thus obtaining:

l0,T = 0.02051
(A.3)

The minimum and maximum (dimensionless) lengths can be found, along with the intermediate length, with

Eqs. 13:

lT,min = 0.00082

lT,max = 0.06326

lT,int = 0.03204

(A.4)

The LM inversion function corresponding values are obtained with Eq. 14:

γmin = 0.00462

γint = 0.03671

γmax = 0.07271

(A.5)

The Vandermonde matrices for both the LM direct problem and the inverse search are computed according to

Eqs. 17 and 18. The singularity based length l0,T, reported before in Eq. A.3, is then converted into lT with Eq.

16, and finally scaled with D/2 to obtain the actual length:

LT = lT(D/2) = 0.252 mm (A.6)

In order to obtain a confirmation, the direct problem can be solved, Eq. 15, with an appropriate set of coefficients

c1,c2,c3, and by considering the input LT obtained here. The (back-calculated) fatigue stress concentration factor
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is thus KfT = 1.9028, in good agreement with the input (experimental) KfT value.

The procedure for the PM, follows very similar steps, although involving larger Vandermonde matrices and five

coefficients c1, . . . ,c5. Although not reported here for the sake of brevity, all the variables are available by running

the MATLAB script file.

The same experimental scenario can be used for the other procedure, to assess the statistical properties of the

critical distance, and implemented in the script LM_StatisticalModeIII.m. The critical distance is now

considered a statistical variable, thus the barred symbols are used, as explained above: l̄T = 0.0168, L̄T =

0.252 mm. The required coefficients for the procedure can be retrieved in Tables 6, 7, 8 and 9 after the selection

of the notch angle ᾱ . The NCV can be calculated according to the dimensionless lengths ρ and l̄T, with Eq. 37c,

and the following result is obtained:

ν = 4.188 (A.7)

The statistical distribution of the input fatigue strengths of plain and notched specimens can now be considered.

The CVs of the two specimens, r and rN are calculated, and thus their κ ratio and the equivalent CV Σ are easily

obtained:

κ = 1.976

Σ = 0.0405
(A.8)

The statistical properties of the skew-normal distribution can now be derived. The mean value is obtained with

Eq. 37d. More precisely, this equation is used for the ν values listed in Table 8, and the corresponding µ/l̄T

ratio values are then interpolated according to the actual ν = 4.188. An accurate mean value is thus obtained:

µ/l̄T = 1.009→ µ = 0.0170 (A.9)

which implies that the mean value of the dimensionless critical distance is slightly larger than the barred, due

to the asymmetry of the distribution. The standard deviation δ is then easily obtained by recalling the NCV

definition, thus inverting Eq. 37a:

δ = ν Σ µ = 0.00287 (A.10)

The final parameter needed for the complete definition of the distribution is the skewness sk. As above for µ ,

Eq. 37e is used, however, by evaluating the skewness for the values of ν in Table 9, and then again interpolating

for the actual ν , and finally obtaining:

sk = 0.291 (A.11)
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Now the three parameters µ,δ ,sk need to be converted into the shape, location and scale parameters, α,β ,γ ,

respectively, to obtain the analytical expression for the PDF. The parameter α is initially deduced with the

proposed approximated numerical expression, Eq. 34, just from sk. The parameter γ can be obtained from δ and

α , now both available, by inverting Eq. 32. And β is then obtained by inverting Eq. 31, with all the required

parameters µ , α and γ available.

α = 1.496

β = 0.01441

γ = 0.003840

(A.12)

The parameters α , β and γ are for the dimensionless form of the lT distribution. For the distribution of LT, the

variable lT needs to be multiplied by D/2, thus the corresponding PDF values need to be divided by D/2, and

the distribution in shown in Fig. 16 is obtained.

Appendix B. Supplementary material

The following are the supplementary MATLAB files attached to this article:

LM_PM_ExampleModeIII.m

LM_StatisticalModeIII.m

References

[1] C. Bagni, H. Askes, L. Susmel, Gradient elasticity: a transformative stress analysis tool to design notched components against
uniaxial/multiaxial high-cycle fatigue, Fatigue & Fracture of Engineering Materials & Structures 39 (8) (2016) 1012–1029.
doi:10.1111/ffe.12447.

[2] N. Gates, A. Fatemi, Notch deformation and stress gradient effects inmultiaxial fatigue, Theoretical andApplied FractureMechanics
84 (2016) 3–25. doi:10.1016/j.tafmec.2016.02.005.

[3] R. Branco, J. D. Costa, F. Berto, A. Kotousov, F. V. Antunes, Fatigue crack initiation behaviour of notched 34CrNiMo6 steel bars un-
der proportional bending-torsion loading, International Journal of Fatigue 130 (2020) 105268. doi:10.1016/j.ijfatigue.2019.105268.

[4] J. Mei, S. Xing, A. Vasu, J. Chung, R. Desai, P. Dong, The fatigue limit prediction of notched components – A critical review and
modified stress gradient based approach, International Journal of Fatigue 135 (2020) 105531. doi:10.1016/j.ijfatigue.2020.105531.

[5] M. Benedetti, V. Fontanari, C. Santus, M. Bandini, Notch fatigue behaviour of shot peened high-strength aluminium alloys:
Experiments and predictions using a critical distance method, International Journal of Fatigue 32 (10) (2010) 1600–1611.
doi:10.1016/j.ijfatigue.2010.02.012.

[6] M. Benedetti, V. Fontanari, M. Allahkarami, J. C. Hanan, M. Bandini, On the combination of the critical distance theory with
a multiaxial fatigue criterion for predicting the fatigue strength of notched and plain shot-peened parts, International Journal of
Fatigue 93 (2016) 133–147. doi:10.1016/j.ijfatigue.2016.08.015.

[7] D. Taylor, The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Elsevier Science and Technology, 2007.
[8] D. Taylor, Applications of the theory of critical distances in failure analysis, Engineering Failure Analysis 18 (2) (2011) 543–549.

doi:10.1016/j.engfailanal.2010.07.002.
[9] T. Yin, A. Tyas, O. Plekhov, A. Terekhina, L. Susmel, A novel reformulation of the Theory of Critical Distances to design notched

metals against dynamic loading, Materials and Design 69 (2015) 197–212. doi:10.1016/j.matdes.2014.12.026.
[10] L. Susmel, D. Taylor, The Theory of Critical Distances to estimate the static strength of notched samples of Al6082 loaded in

combined tension and torsion. Part II: Multiaxial static assessment, Engineering Fracture Mechanics 77 (3) (2010) 470–478.
doi:10.1016/j.engfracmech.2009.10.004.

[11] L. Susmel, D. Taylor, The theory of critical distances to predict static strength of notched brittle components subjected tomixed-mode
loading, Engineering Fracture Mechanics 75 (3-4) (2008) 534–550. doi:10.1016/j.engfracmech.2007.03.035.

[12] L. Susmel, D. Taylor, The Theory of Critical Distances as an alternative experimental strategy for the determination of KIc and
∆Kth, Engineering Fracture Mechanics 77 (9) (2010) 1492–1501. doi:10.1016/j.engfracmech.2010.04.016.

33



[13] W. Li, L. Susmel, H. Askes, F. Liao, T. Zhou, Assessing the integrity of steel structural components with stress raisers using the
Theory of Critical Distances, Engineering Failure Analysis 70 (2016) 73–89. doi:10.1016/j.engfailanal.2016.07.007.

[14] M. Peron, J. Torgersen, F. Berto, Rupture Predictions of Notched Ti-6Al-4V Using Local Approaches, Materials 11 (5) (2018) 663.
doi:10.3390/ma11050663.

[15] A. Karolczuk, Non-local area approach to fatigue life evaluation under combined reversed bending and torsion, International Journal
of Fatigue 30 (10-11) (2008) 1985–1996. doi:10.1016/j.ijfatigue.2008.01.007.

[16] L. Susmel, D. Taylor, The ModifiedWöhler Curve Method applied along with the Theory of Critical Distances to estimate finite life
of notched components subjected to complex multiaxial loading paths, Fatigue & Fracture of Engineering Materials & Structures
31 (12) (2008) 1047–1064. doi:10.1111/j.1460-2695.2008.01296.x.

[17] L. Susmel, The theory of critical distances: a review of its applications in fatigue, Engineering Fracture Mechanics 75 (7) (2008)
1706–1724. doi:10.1016/j.engfracmech.2006.12.004.

[18] L. Susmel, The Modified Wöhler Curve Method calibrated by using standard fatigue curves and applied in conjunction with the
Theory of Critical Distances to estimate fatigue lifetime of aluminium weldments, International Journal of Fatigue 31 (1) (2009)
197–212. doi:10.1016/j.ijfatigue.2008.04.004.

[19] L. Susmel, D. Taylor, A critical distance/plane method to estimate finite life of notched components under variable amplitude
uniaxial/multiaxial fatigue loading, International Journal of Fatigue 38 (2012) 7–24. doi:10.1016/j.ijfatigue.2011.11.015.

[20] B. Liu, X. Yan, An extension research on the theory of critical distances formultiaxial notchfatigue finite life prediction, International
Journal of Fatigue 117 (2018) 217–229. doi:10.1016/j.ijfatigue.2018.08.017.

[21] M. Benedetti, C. Santus, Mean stress and plasticity effect prediction on notch fatigue and crack growth threshold, combining the
theory of critical distances and multiaxial fatigue criteria, Fatigue & Fracture of Engineering Materials & Structures 42 (6) (2019)
1228–1246. doi:10.1111/ffe.12910.

[22] L. Bertini, C. Santus, Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by
deep rolling, International Journal of Fatigue 81 (2015) 179–190. doi:10.1016/j.ijfatigue.2015.08.007.

[23] J. A. Araújo, F. C. Castro, S. Pommier, J. Bellecave, J. Meriaux, On the design and test of equivalent configurations for notch and
fretting fatigue, Fatigue & Fracture of Engineering Materials & Structures 39 (10) (2016) 1241–1250. doi:10.1111/ffe.12435.

[24] C. T. Kouanga, J. D. Jones, I. Revill, A.Wormald, D. Nowell, R. S. Dwyer-Joyce, J. A. Araújo, L. Susmel, On the estimation of finite
lifetime under fretting fatigue loading, International Journal of Fatigue 112 (2018) 138–152. doi:10.1016/j.ijfatigue.2018.03.013.

[25] C. Santus, Initial orientation of the fretting fatigue cracks in shrink-fit connection specimens, Frattura ed Integrità Strutturale 13
(2019) 442–450. doi:10.3221/IGF-ESIS.48.42.

[26] C. Santus, D. Taylor, M. Benedetti, Determination of the fatigue critical distance according to the Line and the Point Methods with
rounded V-notched specimen, International Journal of Fatigue 106 (2018) 208–218. doi:10.1016/j.ijfatigue.2017.10.002.

[27] C. Santus, D. Taylor, M. Benedetti, Experimental determination and sensitivity analysis of the fatigue critical distance obtained
with rounded V-notched specimens, International Journal of Fatigue 113 (2018) 113–125. doi:10.1016/j.ijfatigue.2018.03.037.

[28] M. Benedetti, C. Santus, Notch fatigue and crack growth resistance of Ti-6Al-4V ELI additively manufactured via selec-
tive laser melting: A critical distance approach to defect sensitivity, International Journal of Fatigue 121 (2019) 281–292.
doi:10.1016/j.ijfatigue.2018.12.020.

[29] M. Benedetti, C. Santus, Statistical properties of threshold and notch derived estimations of the critical distance according to the line
method of the theory of critical distances, International Journal of Fatigue 137 (2020) 105656. doi:10.1016/j.ijfatigue.2020.105656.

[30] P. Lazzarin, F. Berto, Control volumes and strain energy density under small and large scale yielding due to tension and torsion
loading, Fatigue & Fracture of Engineering Materials & Structures 31 (1) (2008) 95–107. doi:10.1111/j.1460-2695.2007.01206.x.

[31] F. Berto, P. Lazzarin, J. R. Yates, Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy
method, Fatigue&Fracture of EngineeringMaterials&Structures 34 (11) (2011) 921–943. doi:10.1111/j.1460-2695.2011.01585.x.

[32] M. R. Ayatollahi, F. Berto, A. Campagnolo, P. Gallo, K. Tang, Review of local strain energy density theory for the fracture
assessment of V-notches under mixed mode loading, Engineering Solid Mechanics (2017) 113–132doi:10.5267/j.esm.2017.3.001.

[33] M.Benedetti, C. Santus, F. Berto, Inverse determination of the fatigue Strain EnergyDensity control radius for conventionally and ad-
ditivelymanufactured roundedV-notches, International Journal of Fatigue 126 (2019) 306–318. doi:10.1016/j.ijfatigue.2019.04.040.

[34] F. Berto, A. Campagnolo, P. Lazzarin, Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading,
Fatigue & Fracture of Engineering Materials & Structures 38 (5) (2015) 503–517. doi:10.1111/ffe.12272.

[35] F. Berto, A. Campagnolo, T. Welo, Local strain energy density to assess the multiaxial fatigue strength of titanium alloys, Frattura
ed Integrità Strutturale 10 (2016) 69–79. doi:10.3221/IGF-ESIS.37.10.

[36] A. Carpinteri, F. Berto, A. Campagnolo, G. Fortese, C. Ronchei, D. Scorza, S. Vantadori, Fatigue assessment of notched specimens
by means of a critical plane-based criterion and energy concepts, Theoretical and Applied Fracture Mechanics 84 (2016) 57–63.
doi:10.1016/j.tafmec.2016.03.003.

[37] A. Campagnolo, G. Meneghetti, F. Berto, K. Tanaka, Crack initiation life in notched steel bars under torsional fatigue:
Synthesis based on the averaged strain energy density approach, International Journal of Fatigue 100 (2017) 563–574.
doi:10.1016/j.ijfatigue.2016.12.022.

[38] G. Meneghetti, A. Campagnolo, F. Berto, K. Tanaka, Notched Ti-6Al-4V titanium bars under multiaxial fatigue: Synthesis of
crack initiation life based on the averaged strain energy density, Theoretical and Applied Fracture Mechanics 96 (2018) 509–533.
doi:10.1016/j.tafmec.2018.06.010.

[39] C. Ronchei, A. Carpinteri, S. Vantadori, Energy Concepts and Critical Plane for Fatigue Assessment of Ti-6Al-4V Notched
Specimens, Applied Sciences 9 (10) (2019) 2163. doi:10.3390/app9102163.

[40] R. O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture 100 (1) (1999)
55–83. doi:10.1023/A:1018655917051.

34



[41] C. Santus, D. Taylor, Physically short crack propagation in metals during high cycle fatigue, International Journal of Fatigue 31 (8-9)
(2009) 1356–1365. doi:10.1016/j.ijfatigue.2009.03.002.

[42] J. C. J. Newman, Y. Yamada, Compression precracking methods to generate near-threshold fatigue-crack-growth-rate data, Inter-
national Journal of Fatigue 32 (6) (2010) 879–885. doi:10.1016/j.ijfatigue.2009.02.030.

[43] H. C. Yu, K. Tanaka, Y. Akiniwa, ESTIMATION OF TORSIONAL FATIGUE STRENGTH OF MEDIUM CARBON STEEL
BARS WITH a CIRCUMFERENTIAL CRACK BY THE CYCLIC RESISTANCE-CURVE METHOD, Fatigue & Fracture of
Engineering Materials & Structures 21 (9) (1998) 1067–1076. doi:10.1046/j.1460-2695.1998.00105.x.

[44] Z. Hu, F. Berto, Y. Hong, L. Susmel, Comparison of TCD and SED methods in fatigue lifetime assessment, International Journal
of Fatigue 123 (2019) 105–134. doi:10.1016/j.ijfatigue.2019.02.009.

[45] D. Liao, S.-P. Zhu, J. A. F. O. Correia, A. M. P. De Jesus, F. Berto, Recent advances on notch effects in metal fatigue: A review,
Fatigue & Fracture of Engineering Materials & Structures 43 (4) (2020) 637–659. doi:10.1111/ffe.13195.

[46] L. Susmel, D. Taylor, A simplified approach to apply the theory of critical distances to notched components under torsional fatigue
loading, International Journal of Fatigue 28 (4) (2006) 417–430. doi:10.1016/j.ijfatigue.2005.07.035.

[47] L. Susmel, D. Taylor, The Theory of Critical Distances to estimate finite lifetimeof notched components subjected to constant and
variableamplitude torsional loading, Engineering Fracture Mechanics 98 (2103) 64–79. doi:10.1016/j.engfracmech.2012.12.007.

[48] R. O. Ritchie, F. A. McClintock, H. Nayeb-Hashemi, M. A. Ritter, Mode III Fatigue Crack Propagation in Low Alloy Steel,
Metallurgical Transactions A 13 (1) (1982) 101–110. doi:10.1007/bf02642420.

[49] L. P. Pook, The Fatigue Crack Direction and Threshold Behavior of Mild Steel Under MixedMode I and III Loading, International
Journal of Fatigue 7 (1) (1985) 21–30. doi:10.1016/0142-1123(85)90004-0.

[50] F. Berto, A. Campagnolo, Three-dimensional cracked discs under anti-plane loading and effects of the boundary conditions,
International Journal of Structural Integrity 6 (4) (2015) 541–564. doi:10.1108/ijsi-02-2015-0007.

[51] L. P. Pook, A. Campagnolo, F. Berto, Coupled fracture modes of discs and plates under anti-plane loading and a disc under in-plane
shear loading, Fatigue & Fracture of Engineering Materials & Structures 39 (8) (2016) 924–938. doi:10.1111/ffe.12389.

[52] F. Berto, Cracked components under anti-plane loading: recent outcomes and future developments, Frattura ed Integrità Strutturale
11 (2017) 475–483. doi:10.3221/IGF-ESIS.41.59.

[53] S.-P. Zhu, J.-C. He, D. Liao, Q. Wang, Y. Liu, The effect of notch size on critical distance and fatigue life predictions, Materials &
Design 196 (2020) 109095. doi:10.1016/j.matdes.2020.109095.

[54] J.-C. He, S.-P. Zhu, D. Liao, X.-P. Niu, Probabilistic fatigue assessment of notched components under size effect using critical
distance theory, Engineering Fracture Mechanics 235 (2020) 107150. doi:10.1016/j.engfracmech.2020.107150.

[55] M. Muniz-Calvente, A. M. P. de Jesus, J. A. F. O. Correia, A. Fernández-Canteli, A methodology for probabilistic predic-
tion of fatigue crack initiation taking into account the scale effect, Engineering Fracture Mechanics 185 (2017) 101–113.
doi:10.1016/j.engfracmech.2017.04.014.

[56] D. Liao, S.-P. Zhu, B. Keshtegar, G. Qian, Q. Wang, Probabilistic framework for fatigue life assessment of notched components
under size effects, International Journal of Mechanical Sciences 181 (2020) 105685. doi:10.1016/j.ijmecsci.2020.105685.

[57] J.-C. He, S.-P. Zhu, D. Liao, X.-P. Niu, J.-W. Gao, H.-Z. Huang, Combined TCD and HSV approach for probabilistic assessment
of notch fatigue considering size effect, Engineering Failure Analysis 120 (2021) 105093. doi:10.1016/j.engfailanal.2020.105093.

[58] M. Zappalorto, P. Lazzarin, J. R. Yates, Elastic stress distributions for hyperbolic and parabolic notches in round shafts under
torsion and uniform antiplane shear loadings, International Journal of Solids and Structures 45 (18-19) (2008) 4879–4901.
doi:10.1016/j.ijsolstr.2008.04.020.

[59] M. Benedetti, M. Dallago, C. Santus, Statistical significance of notch fatigue prognoses based on the strain-energy–density method:
Application to conventionally and additively manufactured materials, Theoretical and Applied Fracture Mechanics 109 (2020)
102720. doi:10.1016/j.tafmec.2020.102720.

[60] E. Díaz-Francés, F. J. Rubio, On the existence of a normal approximation to the distribution of the ratio of two independent normal
random variables, Statistical Papers 54 (2) (2012) 309–323. doi:10.1007/s00362-012-0429-2.

35


