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Abstract
Background Relaxation methods determine residual stresses by measuring the deformations produced by incremental 
removal of a subdomain of the specimen. Measured strains at any given increment, determined by the cumulative effect of 
the relieved stresses, appear as an integral equation, which must be inverted to obtain residual stresses. In practice, stress 
distributions are discretized by a finite-dimensional basis, to transform the integral equations into a linear system of equa-
tions, which is often ill-conditioned.
Objective This article demonstrates that the problem is actually ill-posed and comes with an inherent bias-variance tradeoff.
Methods The hole drilling method is used as an example application, and the practical effects of ill-posedness are illustrated.
Results Traditional regularization of the solution by limiting the resolution of the discretization reduces solution variance 
(noise) at the expense of increased bias and often results in the ultimately harmful practice of taking fewer data points. A 
careful analysis including the alternate Tikhonov regularization approach shows that the highest number of measurements 
should always be taken to reduce the variance for a given regularization scheme. Unfortunately, the variability of a regular-
ized solution cannot be used to build a valid confidence interval, since an unknown bias term is always present in the true 
overall error.
Conclusions The mathematical theory of ill-posed problems provides tools to manage the bias-variance tradeoff on a reason-
able statistical basis, especially when the statistical properties of measurement errors are known. In the long run, physical 
arguments that provide constraints on the true solution would be of utmost importance, as they could regularize the problem 
without introducing an otherwise unknown bias. Constraining the minimum length scale to some physically meaningful 
value is one promising possibility.

Keywords Residual Stress · Relaxation Methods · Bias-variance Tradeoff · Ill-posedness · Inverse Problems · Hole Drilling 
Method

Introduction

Many of the most established techniques to measure stress 
fields in a component consist of measuring the strain fields 
and exploiting the material constitutive relations to get the 
corresponding stresses [1]. However, many common strain-
measuring instruments can only measure relative strains with 
respect to an initial condition. For example, strain gauges 

measure deformations that are referenced to the moment 
they were glued; also non-contact techniques such as Digital 
Image Correlation (DIC) [2–6] or Electronic Speckle Pattern 
Interferometry (ESPI) [7, 8] measure changes in the displace-
ment fields, by comparing an initial and a final state. In these 
cases, an often implicit assumption is that the reference state 
is unstressed. Then, the relative change of strain fields allows 
to compute the absolute stress fields.

Residual stresses are defined as non-null stress fields in 
components whose boundary surfaces are traction-free and 
when the component is not subject to body loads such as 
gravity [9, 10]. In practical terms, no external load is pro-
vided, yet the material has a self-equilibrated stress field. 
This happens due to the presence of inelastic incompatible 
strains (usually referred to as inherent strains [11, 12] or 
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eigenstrains [13–15]), which would lead to penetrations or 
gaps between material points connected in the undeformed 
component. Within strength limits, the component integ-
rity is enforced by additional elastic strain fields (hence 
stress fields) that lead to compatible total strains.

When unknown residual stresses are to be measured, an 
unstressed state is not available anymore, as the target stresses 
are (by definition) those corresponding to a completely 
unloaded condition. This lack of an unstressed reference state 
defines the fundamental challenge to measuring residual 
stresses as compared to applied stresses.

X-Rays diffraction [16] and Neutron Diffraction [17] tech-
niques use in situ measurements of the lattice spacing to infer 
elastic strains by comparison to an unstressed reference value, 
whose availability is not trivial. Indirect strain measurements, 
(e.g. Magnetic [18] or Ultrasonic Methods [19]) have been 
studied too, although they suffer from the same issue.

Another common strategy is to induce a partially relaxed 
state by removing or disconnecting a subdomain of the com-
ponent [20]: by doing this, new traction-free surfaces are 
created, some compatibility conditions are removed, and the 
strain fields are redistributed to a new configuration. Then, 
the original stress fields can be identified from the strain 
changes following material removal, which can be captured 
with any relative strain measuring instrument. These meth-
ods fall under the name of relaxation methods.

For any relaxation method, the measured strains at a 
given point are determined by a cumulative effect of all the 
stresses that have been relaxed on a new free surface, due to 
Bueckner’s principle [21]. Under a continuum mechanical 
model, this relation appears as integral equations [22–25]. 
For example, in the simple 2D case of Fig. 1, it holds that:

where h denotes the cut length and x is used as a spatial coor-
dinate. Equation (1) states that the measured deformations can 

(1)�(h) = ∫
h

0

A(h, x) �(x) dx

be obtained through a weighted infinite sum of the relieved 
stresses �(x) on the cut surface, each of which contributes pro-
portionally to A(h, x). The latter is also known as the influence 
function or kernel function of the problem. See Fig. 1 for a rep-
resentative example of a relaxation experiment. To obtain �(x) , 
the relation between strains and stresses in equation (1) must 
be inverted. In general, a closed-form inversion is not possible.

Since the first pioneering studies [26–28], it was clear 
that numerical inversion of integral equations like equa-
tion (1) presented some significant difficulties, due to an 
often unmanageable ill-conditioning of the discretized equa-
tions. All subsequent research had to deal with this fact and 
proposed methods to quantify and/or decrease the solution 
uncertainty [29–32]. To the authors’ best knowledge, all the 
proposed strategies involve limiting the degrees of freedom 
(DOFs) available for the stress solutions to limit sensitivity 
to noise and/or filtering the data or the stress profile to limit 
noise itself. How to choose the optimal DOFs amount or 
filter design is then a crucial matter.

A statement of contribution can now be formulated. In this 
paper, it will be shown that:

• The inversion of the integral equations arising from relax-
ation methods is an ill-posed problem, which is a very 
specific mathematical property and must be distinguished 
from a general ill-conditioning. A very active branch of 
applied mathematics is specifically devoted to the study 
of this class of problems: the Theory of ill-posed prob-
lems, whose origins trace back to the works of Tikhonov 
in the past century [33–35].

• Ill-posed problems require additional assumptions to obtain 
a physically meaningful solution. This process falls under 
the name of regularization.

• Any numerical implementation of the original functional 
problem is itself a form of regularization; it comes with 
implicit hypotheses and associated biases. An unregu-
larized solution is both meaningless (having unbounded 
confidence intervals) and impossible to achieve in a prac-
tical setting.

• From a practical point of view, having a biased solu-
tion means that the distribution of solutions generated 
by imperfect data inputs is not centered around the true 
solution.

• Uncertainty quantification technique based on the analysis 
of input errors can only quantify the variability of the solu-
tion corresponding to the variance of problem inputs but 
it leaves out the bias introduced by regularization. Unless 
that bias can be bounded by physical considerations, it is 
potentially infinite. It can be reduced only at the expense 
of an increase of the solution variance, a fact known in the 
mathematical literature as bias-variance tradeoff [36].

• In contrast to solution variance, the solution bias is always 
inaccessible to the user, except for the remarkable case 

Fig. 1  Typical example of the experimental setup for a residual stress 
measurement through relaxation methods, in the simple case of a 2D 
problem. When a cut of length h is incrementally introduced in the 
specimen, a strain gauge (or any other measuring instrument) registers 
a deformation � . Its magnitude depends (through equation (1)) on the 
residual stresses that have been relaxed by the introduction of the cut
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where the solution is already known through other means. 
This situation is known as ground truth [37] in the math-
ematical and computer science literature and it is of funda-
mental importance for a quantitative performance evalua-
tion of various regularization techniques.

• Many strategies that have been proposed to overcome 
the typical ill-conditioning of relaxation methods can be 
unified into the same mathematical framework.

In addition, since Tikhonov regularization and the Morozov 
discrepancy principle have received increasing attention 
from the residual stress community in the last twenty years 
[25, 31, 32, 38–41], a practical explanation of their effect 
on the inverse problem solution is provided. It is shown that 
Tikhonov regularization is not an additional noise filter 
applied to the discrete solution to smooth out results but 
rather an alternative regularization technique.

In the “Theory of Ill-posed Problems” section, some basic  
concepts of inverse problem theory will be introduced, 
through the conceptually simple problem of differentiating 
a measured function. In fact, differentiation (namely, the 
inverse problem of integration) shares many mathematical 
properties with the inversion of integral equations at the 
core of relaxation methods.

In “The Hole Drilling Method” section, the ill-posedness 
of relaxation methods will be investigated through a guid-
ing example concerning the hole-drilling method [22, 23, 
42]. Its practical consequences will be analyzed in detail, 
as many intuitive concepts that can be straightforwardly 
applied to a well-posed problem show some pitfalls when 
the problem is ill-posed.

The current state of the art of relaxation methods is well-
established both in academia and industry, as proven by 
several studies that validated the consistency of their results 
and witnessed by the formulation of standard procedures 
[43]. However, in the authors’ opinion, there is still quite 
a gap between relaxation methods and the almost century-
old mathematical theory of ill-posed problems, precisely 
concerning this class of problems. This article starts to 
bridge this gap, formalizing many concepts that are cur-
rently implicit or left to the sound discretion of the opera-
tor, hopefully leading in the future to improving solution 
accuracy and uncertainty estimation and a better under-
standing of the fundamental limits of inverse solutions.

Theory of Ill‑posed Problems

Basic Concepts

When a physical behavior is mathematically modelled, the set 
of equations is required to be consistent with both the gen-
eral laws and the experimental observations [44] at least in 

the domain of interest. Consistency requires that predictions 
resulting from the mathematical model have some basic prop-
erties: 1) existence, 2) uniqueness and 3) continuity. Existence 
guarantees that a solution can be obtained for any admissible 
set of input data. In a deterministic framework, the solution 
is also expected to be unique. When a model is continuous, 
results depart “without jumps” from the exact output as meas-
urements become more inaccurate. Correspondingly, as input 
errors tend to zero (i.e., by technological advances), so do 
output errors.

If a mathematical model satisfies these properties, its pre-
dictions can always be unambiguously compared with imper-
fect experimental outcomes, hence (at least in theory) it allows 
a verification of its consistency. In this case, the model is 
called well-posed in the sense of Hadamard [45] (“bien posè” 
in his original paper). A problem is considered ill-posed if 
it is not well-posed, hence if any of the above conditions is 
not met. The previous properties are desirable but they should 
not be regarded as necessary to produce a useful model of a 
physical process.

Quite commonly, a well-posed mathematical model is also 
needed in a reversed form, in which some outputs are available 
and some inputs are missing and they need to be evaluated 
through the model. Missing inputs are quantities that charac-
terize the system of interest but cannot be accessed directly. A 
typical example is the density distribution measured by a CT 
scan, or the reconstruction of an image that has been blurred; 
another common case arises when the current state of a system 
is given but a past state has to be reconstructed. Well-posedness 
can be substantially impaired if the known and unknown quan-
tities are inverted.

The original well-posed problem is usually called direct 
problem or forward operator and the reversed relationship 
between inputs and outputs is called inverse problem. “For-
ward” and “Inverse” do not necessarily point to a causal link 
and to its logical inversion, but, if it is the case, it is easy to 
identify the direct problem. Usually, the direct problem is the 
one that was studied first and is often well-posed. Inverse prob-
lems led to development of mathematical techniques aimed to 
overcome their typical ill-posedness, known as the Theory of 
ill-posed problems [46–49].

The Simplest Ill‑posed Problem

Problem statement

Suppose that a 100 kg object is thrown out of an airplane at 
cruising altitude Z0 . The object is equipped with a GPS sen-
sor that can measure the current altitude at any given sample 
rate. No other sensor is available.

When the object touches the ground, GPS data are col-
lected, and the problem is to retrieve the vertical speed pro-
file during the fall. No additional information is available 
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about the presence of engines, wings or parachutes that may 
alter the object trajectory.

In their functional form, GPS altitude Z(t) and vertical 
speed v(t) are related by the simple kinematic equation:

Note that equation (2) can be rearranged as a particular case 
of equation (1):

where the influence function A(t, �) is identically set to 1. Equa-
tion (2) allows one to obtain Z(t) from any given speed profile 
v(t). Actually, the inverse relation between those two quantities 
is needed. In this case, the inverse operator corresponding to 
equation (2) can be explicitly obtained in a closed form:

If Z(t) was known in a differentiable form and in absence of 
measurement errors, equation (4) would solve the problem. 
A solution example is shown in Fig. 2.

(2)Z(t) = Z0 + ∫
t

0

v(�) d�

(3)Z(t) − Z0 = ∫
t

0

A(t, �)v(�) d�

(4)v(t) =
dZ(t)

dt

Ideal discrete solution

Unfortunately, actual measurements are neither differenti-
able nor perfect. No matter how high the instrument sam-
ple rate is, a finite set of p measurements at timestamps 
t̂ = [t1, t2 … ti … tp] will be available, collected in the 
array Ẑ = [Z1, Z2 …Zi …Zp] . For now, Ẑ is still assumed 
to be an array of perfect measurements and timestamps t 
are supposed to be known with infinite accuracy. A fixed 
sample rate is also assumed, so that ti − ti−1 = Δt . Equa-
tion (4) needs to be discretized too. A reasonable option is 
to assume that the true solution v(t) is piecewise constant 
between two timestamps. This hypothesis projects v(t) on a 
finite-dimensional subspace (piecewise constant functions 
on given intervals); therefore, its values can be represented 
in an array v̂ = [v1, v2 … vi … vp] , which will constitute an 
ideal discrete solution. Here “ideal” points to the fact that 
it comes from measurements that have no error, so it is the 
best solution available with the given discretization scheme. 
Each value can be obtained through equation (4):

(5)vi =
Zi − Zi−1

Δt

(a) (b)

Fig. 2  Finding the vertical speed of a falling object from altitude meas-
urements. Although the data are made-up, the reported curves are plau-
sible. In practical settings, Z(t) is never known in an analytical closed 
form. On the contrary, a finite set of measurements is available, gath-
ered in the array Ẑ . Discretization yields a piecewise constant solution, 
whose values are stored in the array v̂ . The difference between the ideal 
discrete solution v̂ and the true solution v(t) can be arbitrarily high. 
For example, define Zeq(t) by superposing a sinusoidal perturbation of 

period Δt to Z(t). If the true object trajectory was actually Zeq(t) , the 
sampling process would yield the same array Ẑ , but the corresponding 
veq(t) would be significantly far from the obtained discrete solution. No 
discontinuity is needed to obtain this effect: Zeq(t) is still a C∞ func-
tion, exactly like Z(t). Similarly, even higher errors can be generated. 
Nevertheless, the ideal discrete solution v̂ converges to the true solution 
v(t) as the sample rate is increased, no matter how oscillatory the true 
solution is
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assuming that the cruising altitude Z0 (where the object is 
released) is known as a boundary condition. Equation (5) 
solves the problem but introduces an error through the 
assumed form of the true solution v(t). In fact, the actual 
solution to equation (4) is seldom a piecewise constant func-
tion, especially considering that a massive body cannot have 
jumps in its speed. This error could in principle be arbi-
trarily high: v(t) is free to show any behavior between two 
given timestamps, as long as its integral is kept constant (see 
Fig. 2). Nevertheless, that bias vanishes as the discretization 
scheme is refined, and the ideal discrete solution v(t) con-
verges to the true solution v(t) of equation (4).

Perturbed solution

Measurements are always affected by errors, made up by a 
bias and a variability component. Hence, the array of true 
values Ẑ is actually never attainable. Instead, the GPS sen-
sor yields a collection of inexact measurements Ẑm = Ẑ + � , 
where errors are denoted with the array � = [�1, �2 … �i … �p] . 
Timestamps t̂ are also never known exactly in a real-world 
case; this will be another source of error, often quite diffi-
cult to estimate. For the sake of simplicity, in this example 
it will be assumed that t̂ is known with negligible error. The 
interested reader will find a detailed treatise of this matter in 
[50–52].

The array � is not deterministically known, otherwise 
it could be used to obtain the perfect measurements Ẑ . At 
most, some statistical properties of � may be available. The 
individual entries of � could be correlated with each other to 
some degree (as it happens with systematic errors), but they 
always show an independent and totally random component. 
In other words, every measurement sample is affected by an 
error, a part of which is independent from the error on other 
samples. For example, electrical noise and the machine rep-
resentation error usually belong to this category. For the sake 
of simplicity, in the following it is assumed that the GPS 
sensor yields unbiased measurements and only independent 
errors are considered. Therefore, every �i is assumed to be a 
random variable with zero mean and variance �2 , independ-
ent of the measured value Zi . When Ẑm is plugged into equa-
tion (5), a perturbed version of v̂ is obtained, denoted as v̂𝛿:

The true solution v(t) was projected onto a finite-dimensional 
subspace and represented with the array v̂ , an ideal discrete 
solution. The latter was perturbed by measurement noise, so 

(6)

v�,i =
Zm,i − Zm,i−1

Δt

=
Zi − Zi−1

Δt
+

�i − �i−1

Δt

= vi +
�i − �i−1

Δt

a perturbed solution v̂𝛿 was achieved. This distinction between 
solutions is summarized in Fig. 3.

Ill‑posedness

Each entry of v̂𝛿 deviates from the ideal discrete solution v̂ . 
Their difference is another random variable, whose mean 
and variance can be obtained as:

Note from equation (7) that the perturbed solution v̂𝛿 is 
an unbiased estimator of the ideal discrete solution v̂ , as 
�(v�,i − vi) is null: if the experiment could be repeated arbi-
trarily many times in the exact same conditions, the point-
wise average of the perturbed solution v̂𝛿 would converge to 
the ideal discrete solution v̂ , due to the central limit theorem. 
On the other hand, equation (8) provides information on how 
far v̂ could be from the obtained v̂𝛿.

Even if v̂𝛿 is a fully characterized unbiased estimator of v̂ , 
the real solution error shall be evaluated with respect to the 
true solution v(t). Unfortunately, the estimation properties of 
v̂𝛿 gets impaired when the discretization scheme is refined to 
diminish its bias. In fact, from equations (7) and (8), �(v�,i − vi) 
remains always null while Var(v�,i − vi) diverges as Δt → 0 . 
The key argument here is error independence, so the measure-
ment variance �2 is not affected by the sample rate.

As an attempt to reduce the discretization bias by refining 
the numerical scheme, the only available perturbed solution 
v̂𝛿 becomes an increasingly imprecise approximation of the 
ideal discrete solution v̂ . This fact is shown in Fig. 4. In 
practical terms, the differentiation of a function amplifies 

(7)�(v�,i − vi) =
�(�i − �i−1)

Δt
= 0

(8)Var(v�,i − vi) =
Var(�i − �i−1)

Δt
=

2�2

Δt

Fig. 3  Terminology of the inverse problem solutions. The true func-
tional solution is assumed to belong to the span of a finite-dimensional 
basis, so the actual solution space is projected to a finite-dimensional 
space. In general, this introduces a bias. Then, the coordinates with 
respect to that basis allow to represent the solution through an array; 
namely, an element of ℝp . The latter constitutes an ideal discrete solu-
tion, corresponding to ideally perfect measurements. In presence of 
measurement errors, only a perturbed solution is available, whose var-
iability depends on the variance of input errors
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high-frequency noise, and the latter increases with sample 
rate, until v̂𝛿 becomes substantially dominated by noise.

In the original functional setting of equation (4), where 
no bias has been introduced yet, even an infinitesimal per-
turbation of Z(t) can lead to huge output errors, so there is 
a sudden jump between the true solution and the outputs of 
imperfect input data. In fact, it can be shown that differentia-
tion (namely, the inverse problem of integration) is an ill-
posed problem in the sense of Hadamard, because it violates 
the continuity condition (see Part One, Sect. II in [53]).

As a result, a refinement of the discretization scheme is 
not always beneficial to the solution. In the inverse prob-
lem literature, this phenomenon is known as bias-variance 
tradeoff. A reduction in the former yields an increase in the 
latter, and vice-versa. A graphical representation is shown 
in Fig. 5. Every analytical or numerical estimation of the 
solution sensitivity to errors in inputs will only quantify 
the variance of v̂𝛿 , leaving out the unknown and potentially 
boundless bias given by the chosen discretization scheme. 
No mathematical caveat can overcome this curse, which is 
typical of ill-posed problems.

The same is not true for the integration of a function: a refined 
discretization scheme leaves out only high-frequency content, 
which has negligible effects on the obtained solution, and noise 
also gets attenuated by the low-pass properties of the integration, 
so both bias and variance can be reduced indefinitely.

Regularization

In most cases, some general properties are known about 
the solution. This additional information is independent of 
the mathematical equations alone and comes almost always 
from physical arguments and context-based evaluations.

Fig. 4  Solution examples corresponding to altitude measurements hav-
ing a standard deviation of 5 m. Low sampling rates yield a precise but 
inaccurate solution; however, if the sample rate is increased, the per-

turbed solution v̂𝛿 becomes more and more variable until it is completely 
dominated by random errors

Fig. 5  Illustration of the bias-variance tradeoff. Dashed quantities 
are unknown in a practical setting. By increasing DOFs to reduce the 
bias of the discrete problem, a corresponding increase in variance 
is obtained, and vice-versa. The total error (sum of bias and vari-
ance) shows a minimum, which corresponds to an optimal number of 
DOFs. Since the bias actually depends on the unknown true solution, 
in practice the optimal point cannot be determined, unless some prop-
erties of the true solution are known a priori 
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For instance, it is certainly difficult to believe that the 
most refined solution in Fig. 4 is the true vertical speed pro-
file of the falling object, even if it is actually the only solu-
tion to equation (5) corresponding to the given data. The 
involved accelerations would require technologically unfea-
sible thrust forces and inertial loads that would probably 
pulverize the object, no matter the strength of its material.

As an imaginary example, after a careful inspection of 
the fallen object, it may be noted that no moveable aero-
dynamic devices or engines are present. Thus, besides 
gravitational force and aerodynamic drag (which together 
induce a vertical acceleration between −g and ≈ 0 on a fall-
ing object), the only variable forces acting during the fall 
are due to the turbulent flow around the object. The mag-
nitude of those forces might be estimated as no higher than 
the object’s weight, thanks to a specific CFD analysis. Con-
sequently, according to Newton’s second law, the vertical 
acceleration can be constrained to lie between −2g and +g . 
Since the unique exact solution to equation (5) has already 
been found and reported in Fig. 4, these new constraints 
violate equation (5). That is coherent with the fact that true 
measurements Zi are inaccessible and only imperfect Zm,i 
are available, so the ideal discrete solution v̂ itself will not 
satisfy equation (5) when Ẑm is used. Therefore, when the 
new constraints are imposed equation (5) can be solved in 
a least-squares sense:

The solutions of equation (9) corresponding to different 
GPS sample rates are shown in Fig. 6. The introduced con-
straints implicitly filter the input data and the correspond-
ing solutions: limits on the vertical acceleration exclude the 
highly oscillating components (generated by measurement 
errors) that were impairing the unconstrained solutions in 
Fig. 4, so the resulting variance does not diverge anymore as 
the discretization scheme is refined. The ill-posed problem 
of equation (4) was successfully transformed into the well-
posed problem of equation (9) by exploiting information that 
was not available in the original problem.

The solutions of equation (9) reported in Fig. 6 are still 
quite noisy, with respect to the rather smooth (but unknown) 
true solution v(t). However, unless additional constraints or 
hypotheses are introduced, there is no way of telling whether 
their roughness is an artifact of measurement noise or a true 
physical phenomenon.

In the mathematical literature, the process of taming an 
ill-posed problem through additional assumptions to obtain 
a meaningful solution is called regularization. Since the 

(9)
v� = arg min

v

p∑
i=1

(
vi −

Zm,i − Zm,i−1

Δt

)2

subject to
−2g ≤ vi−vi−1

Δt
≤ +g

∀i ∈ {2,… , p}

Fig. 6  Solution examples corresponding to the same noisy data as 
Fig. 4, obtained by imposing that the vertical acceleration lies between 
−2g and +g . The variance of the perturbed solution v̂𝛿 does not diverge 
anymore when Δt is reduced. In fact, the new constraints implicitly fil-

ter the highly oscillating components, which impair the unregularized 
solutions of Fig. 4. Without additional constraints, there is no way to 
further distinguish the true signal from undesired noise still obtained 
in the regularized solutions



502 Experimental Mechanics (2023) 63:495–516

unregularized solution v̂𝛿 is typically unacceptably noisy, 
regularization shows a smoothening and filtering effect 
on the solution. It shall be clearly stated that the filtering 
effect is a necessary consequence and not an aim of prop-
erly applied regularization. Regularization does not modify 
an authentic solution to obtain a more presentable one. An 
authentic solution does not even exist, as every solution to the 
unregularized ill-posed problem comes with an infinite error 
bound. Regularization defines a new problem, where addi-
tional assumptions, constraints or physical inputs overcome 
ill-posedness and allow one to obtain a manageable solution 
with bounded errors, not dominated by noise. However, if 
the solution does not comply with the assumed hypotheses, 
an unknown yet potentially huge and unwanted bias is intro-
duced into the solution.

In any case, one must always recall that regularization solves 
a slightly modified problem: if the regularizing hypotheses were 
true, what would the solution be?

For example, numerical derivatives of measurements 
are almost never computed directly through equation (5). 
On the contrary, a signal is usually filtered before undergo-
ing differentiation. In this case, it is not the true derivative 
that is being calculated, but rather the numerical derivative 
obtained by assuming that everything above the low-pass 
frequency does not contain significant information. In fact, 
the (arbitrary!) choice of the low-pass frequency implicitly 
conveys all the prior knowledge of the user about the proper-
ties of the signal that is being differentiated.

In Table 1 a non-exhaustive list of regularization strate-
gies is shown. The focus is not on the mathematical details, 
but rather on the implicit assumptions that lie behind every 
technique. Tikhonov regularization with the Morozov dis-
crepancy principle will be analyzed in the “Tikhonov Regu-
larization” section, since it is a suggested strategy in the 
latest ASTM E837 standard for the hole drilling method [43] 
and it is often used with other methods [54].

The Hole Drilling Method

Problem Statement

The Hole Drilling Method (HDM), one of the most widely 
used techniques to measure variable residual stresses in a 
component, is an interesting inverse problem in the field of 
mechanical engineering. The method consists of drilling a 
relatively small hole in progressive steps, and in measuring 
the corresponding relaxed strains on the surface surrounding 
the hole. By properly analyzing the measured relaxed strains, 
the residual stresses affecting the component before the drill-
ing process can be deduced. For an exhaustive introduction 
and a thorough review of the literature, see Chapter 2 of 
Schajer’s book [55].

If the drilling induces elastic strains only in a linear elastic 
material, the problem can be considered linear and Bueckner’s 
superposition principle [21] holds. Schajer [42] showed that 
the hole drilling method has an interesting (and computation-
ally easier) equivalent problem under the assumption of plane 
stress, depicted in Fig. 7 for a representative case of a uniform 

Fig. 7  Application of superposition to define the equivalent problem 
of the hole drilling method. The removal of a cylinder of material 
from a stressed body produces stress-strain fields equal to those gener-
ated by a traction distribution opposite to the stress distributions previ-
ously acting on the newly created surfaces

Table 1  A non-exhaustive list of common regularization strategies

Regularization technique Tunable parameters Implicit assumptions

Discretizing the solution in steps and controlling 
their size

Step size, variability of steps “Solution has no meaningful content inside a step”

Expressing the solution as a sum of polynomials Maximum order of the polynomial basis “Solution has negligible components on higher 
order polynomials”

Low-pass filtering input data or the solution Low-pass frequency “High-frequency component of the solution can be 
neglected”

Tikhonov regularization with the Morozov dis-
crepancy principle

Regularization parameter � “For a given penalty functional, the chosen solu-
tion is the least penalized among the statistically 
admissible ones”
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equi-biaxial residual stresses (acting on the plane normal to 
the hole axis) on a semi-infinite domain. The solution to the 
equivalent problem (namely, the predicted readings of one 
or more strain gauges glued on the body’s surface) can be 
obtained with commercially available finite element software. 
The only assumption is that the residual stress field at a given 
depth is uniform in the plane parallel to the specimen surface 
(xy plane in Fig. 8), at least on a region having the size of the 
hole diameter D0.

When residual stresses are thought to show significant var-
iations in the z direction, the traction distribution �(z) applied 
on the hole surface can be expressed as a combination �n(z) 
of n linearly independent stress functions of depth z (namely, 
a basis) with the implicit assumption that they can span the 
domain of residual stress distributions of interest. For exam-
ple, by choosing a n-dimensional polynomial basis for a gen-
eral stress distribution �(z) , the Power Series Method [23] is 
defined whose unknowns are the coefficients of a polynomial 
function.

If the interval 
[
0, hmax

]
 is divided into a finite number of 

subintervals 
[
hi−1, hi

]
 and their related indicator functions 

�[hi−1,hi](z) (1 in the subinterval 
[
hi−1, hi

]
 and 0 outside) are 

used as a basis, the Integral Method is obtained [22, 56]. 
In this case, the residual stress distribution is represented 
by a piecewise-constant function and the unknowns are the 
residual stress values si within each interval:

As described by the theorems of classical linear elasticity 
[57], for every admissible traction distribution in the equiva-
lent problem, a solution in terms of relaxed strains exists, is 
unique, and is continuous with respect to a superposition of 
a non-null traction distribution. Hence, the direct problem 
of HDM is well-posed.

(10)�n(z) =

n∑
i=1

si�[hi−1,hi](z)

By indefinitely increasing the discretization refinement 
in equation (10), the solution to the direct problem eventu-
ally becomes a definite integral of the contributions from 
each infinitesimal subdomain of the traction distribution.

If the residual stress field (hence the equivalent problem 
too) is axisymmetric, the following equation relates the equib-
iaxial stress component with the strain measured by a strain 
gauge on the surface.

where A(z,  h) is the corresponding influence function, 
depending on the elastic material properties and on the 
geometry of the hole and the strain gauges.

In the general plane stress case with unequal principal 
stresses, (at least) three strain gauges are needed and Schajer 
[22, 23, 32] provided a method with variable transformations 
such that three decoupled equations (similar to equation 
(11)) can be individually solved. Without loss of generality, 
the equibiaxial stress case will be considered here as a typi-
cal representative of the three decoupled equations.

All relaxation methods require the inversion of an equa-
tion like equation (11). The Deep-hole drilling [58] and the 
Contour method [24] are a little bit different in the sense 
that they measure a displacement distribution after the cut 
is completed; nevertheless, the displacement at any point 
is the result of the whole residual stress distribution, so an 
analogous integral equation can be obtained. In addition, 
although the Contour method does not require the user to 
carry out the inversion, the FEM software actually solves a 
similar equation in an already discretized setting.

Equation (11) is a classical Volterra equation of the first 
kind [59]. Remarkably, a closed form for A(z, h) is currently 
known just for a few practical cases, such as Sachs’ Method 
[60] and the Layer Removal method [61]. In all other cases, 
only numerical evaluations are available, while some proper-
ties of influence functions can be deduced from physical con-
siderations. In particular, they are reasonably smooth [62, 63].

Ill‑posedness of the HDM Inverse Problem

The direct problem is a low‑pass filter

Like the integration of a function (studied in “The Simplest 
Ill-posed Problem” section), the direct problem of HDM 
works as a low-pass filter, though in the spatial domain. 
This effect is shown in Fig. 9(a). As a physical interpreta-
tion, opposite peaks in oscillating stress profiles cancel each 
other’s effects out as they form groups of self-balanced loads 
on a decreasing length scale. It can also be seen as a conse-
quence of Saint Venant’s principle [64].

(11)�(h) = ∫
h

0

A(z, h) �(z) dz

GL

GW

D 0
D

x

y

z

max
h

h

Fig. 8  Hole drilling method: variables and geometrical quantities. 
Note that h refers to the hole physical depth, while z is a spatial coor-
dinate
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In rigorous terms, the filtering properties of the direct 
operator can be proven with the Riemann-Lebesgue lemma 
(see Sect. 12.5 in [65]), which states that, if A(z, h) is inte-
grable on its domain of definition, then:

It shall come with no surprise that the inversion of equation 
(11) shares many mathematical properties with the differ-
entiation of a function, even if this time an inverse operator 
is not explicitly available in closed form.

The inverse problem is a high‑frequency amplifier

Not all linear systems admit a single unique solution, as some-
times no solutions or infinitely many can be found. Actually, 
in those cases one could look for least-squares solutions and 
pick the one having minimum norm. This process is known 
as a Moore-Penrose generalized inverse operator (often called 
pseudoinverse), and it always leads to a unique result. This 
solution is commonly referred to with a dagger superscript 
�†(z) . Hence, existence and uniqueness of a result obtained 
with this strategy can be taken for granted.

Common numerical software such as MATLAB or Math-
ematica have built-in functions (respectively, pinv() and 
PseudoInverse[]) to evaluate the pseudoinverse of a 
matrix, when a finite-dimensional problem is solved. Recall 
that if a matrix is invertible, its pseudoinverse actually cor-
respond to its classical inverse.

The main observation of this article can now be stated: 
the HDM inverse problem is ill-posed. The inversion of 
a low-pass filter yields a high-frequency amplifier in the 
spatial domain, and the amplification gain grows to infin-
ity as the frequency increases. Hence, the solution to the 
inverse problem of equation (11) can be sent arbitrarily far 

(12)
lim
N→∞∫

h

0

A(z, h) sin (Nz) dz = 0

∀h ∈
[
0, hmax

]

from its true value even with a negligible perturbation of 
the measured strains, as long as it has a sufficiently high 
frequency content.

The intuitive idea of how this impairs the practical inver-
sion process was given in “The Simplest Ill-posed Problem” 
section with the differentiation of a function. Noise spans all 
available frequencies, and the high ones can dominate the 
solution through excessive amplification. This is the main 
reason why authors [29, 32] have observed the appearance 
of high oscillatory components as a result of actual or simu-
lated errors in strain measurements.

A rigorous proof of ill-posedness can be sketched as fol-
lows. In L2 norm:

Therefore, for every arbitrarily large 𝜅 > 0 and any arbitrar-
ily low 𝜉 > 0 , a residual stress distribution �̃�(z) and a cor-
responding measured strain function �̃�(h) such that 
‖�̃�(z)‖ = 𝜅 and ‖�̃�(h)‖ < 𝜉 can be obtained by choosing 
�̃�(z) = 𝜅

√
2

hmax

sin

(
N

�

hmax

z

)
 and N sufficiently high. This 

implies that for any neighborhood of a given measured strain 
function �(h) there is a real number � and sufficiently high 
N such that a perturbed function:

lies in the neighborhood ‖‖�𝛿(h) − �(h)‖‖ < 𝜉 while the cor-
responding solution:

has arbitrarily large norm and therefore lies outside of any 
given neighborhood of the exact solution �†(z) . In equivalent 
terms, the inverse operator is not continuous. No matter how 
accurate the instrumentation is, the solution error can jump 
from 0 to arbitrarily huge values as soon as the measured 
strains deviate from their ideal values.The third Hadamard 
condition is violated, so the inverse problem is ill-posed.

Note that this happens while a unique perturbed solution 
always exists and can be found, at worst in a least-squares sense; 
however, it can potentially be infinitely far from the true stress 
profile, in the sense that no guess nor bounds on that distance 
can be built. It is then clear that a single value with potentially 
infinite error has absolutely no practical significance.

The effect is not peculiar to sinusoidal perturbations alone, 
as it concerns the frequency content of any function. For 
example, by substituting sinusoids with square waves similar 
results are obtained (see Fig. 9(b)).

To limit high-frequency content and avoid this effect, 
the problem DOFs are often decreased, but that comes 
at the cost of bias in the solution. Again, a bias-variance 

(13)
‖‖‖‖‖
sin

(
N

�

hmax

z

)‖‖‖‖‖
=

√
hmax

2
∀N ∈ ℕ

(14)�𝛿(h) = �(h) + ∫
h

0

A(z, h) �̃�(z) dz

(15)𝜎𝛿(z) = 𝜎†(z) + �̃�(z)

(a) (b)

Fig. 9  Measured strains corresponding to zero-mean periodic equi-
biaxial residual stress distributions with decreasing wavelengths. (a) 
Sine waves: �̃�(z) = 100 sin

(
N

𝜋

hmax

z
)
 (b) Square waves: �̃�(z) = 100 sgn[

sin

(
N

�

hmax

z

)]
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tradeoff is encountered. Its consequences will be analyzed 
in the “Practical Consequences of Ill-posedness” section.

Ill‑conditioned or ill‑posed?

Any mathematical operator can be characterized in terms of 
sensitivity of outputs with respect to changes in inputs. When 
a linear system is solved, that property is condensed into the 
so-called condition number [66] of the coefficient matrix. 
There exists no clear-cut definition of what makes a problem 
ill-conditioned. Indeed, ill-conditioning is more of a tech-
nological limit than a mathematical property. Any desired 
output accuracy can be obtained through sufficiently accurate 
inputs. When keeping the solution variance below a desired 
threshold becomes a technological challenge for the required 
input accuracy, the problem is said to be ill-conditioned.

On the other hand, ill-posedness is a very specific mathe-
matical property and is defined by the Hadamard conditions, 
discussed in the “Basic Concepts” section. The cause of ill-
posedness is not technological at all, as it is rather a property of 
the underlying mathematical structure, which here is the inver-
sion of a particular integral operator. A discontinuous ill-posed 
problem has infinite sensitivity to input errors in its functional 
form. In any discretized (hence regularized) form, the variance 
of the solution is inversely correlated with the regularization 
bias. Eventually, all ill-posed problems become practically ill-
conditioned when the solution has sufficiently many DOFs. 
Bias-variance tradeoffs are the most notable signature of ill-
posed problems. Depending on the specific combination of 
input errors, solution DOFs and required accuracy, an ill-posed 
problem can actually turn out to be well-conditioned.

The fact that some relaxation methods have low measure-
ment sensitivity (because of the distance between the stress 
location and the strain probe) provides an additional challenge 
and worsens the compromise between bias and variance, but, 

again, that is not the true cause of ill-posedness. For instance, 
the Contour method is still an ill-posed problem despite the 
fact that deformations are measured precisely where the 
desired stress fields lie.

To sum up, ill-conditioning and ill-posedness are two very 
distinct properties and should not be confused. Relaxation 
methods are ill-posed problems. Due to their typical experi-
mental configuration and due to the current technological 
state of the art, in practice they are often ill-conditioned too, 
even when solutions DOFs are kept reasonably low.

Ill-posed problems also show a high sensitivity to an imper-
fect knowledge of the true direct operator. Since influence 
functions of relaxation methods are seldom known in an exact 
closed form, this fact provides an additional source of error, 
which for brevity will not be analyzed here. The interested 
reader can find more details in a specialized text [67]. Neglect-
ing this error in numerical analyses causes an underestimation 
of both the solution bias and variability. The mathematical 
literature coined a specific (and quite ironic) term for this kind 
of mistake, by calling it an inverse crime [68].

A shot peening example

The discussion on ill-posedness will be carried out using a practi-
cal example of a residual stress distribution hypothetically pro-
duced by a shot peening treatment on a thick steel component 
(E = 206GPa, � = 0.3) . Considering reasonable numerical val-
ues, expressing z in mm and �(z) in MPa , the following cosine-
like equi-biaxial residual stresses distribution is assumed:

in accordance with the classical textbook of Schulze [69]. 
The distribution is plotted in Fig. 10. For simplicity, having 

(16)𝜎(z) =

{
−500 cos

[
𝜋

4
(12z − 1)

]
z ≤ 0.12

0 z > 0.12

(a) (b)

Fig. 10  (a) Hypothetical equi-biaxial residual stress distribution pro-
duced by a shot peening treatment, used as an example of the inversion 
process. The residual stress distribution is shown with and without an 
additional Gaussian noise having standard deviation � = 20MPa . (b) 

The simulated relaxed strains measured by the strain rosette, arising 
from the equi-biaxial residual stress fields of equation (16), are virtu-
ally identical
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assumed a sufficiently thick specimen, tensile residual 
stresses for z > 0.12mm are neglected. The polynomial fit-
ting reported in [62] was adopted for the influence function. 
A standard type-A strain rosette with diameter D = 5.13mm 
was considered, according to ASTM E837 standard [43], and 
a hole with diameter D0 = 2.05mm was assumed.

Combining equations (11) and (16), the direct problem can 
be solved. The corresponding strains �(h) measured by the 
rosette are shown in Fig. 10(b). It can be verified that the direct 
problem is highly robust to noise-like variations of input data, 
due to its low-pass filtering properties. As shown in Fig. 10, the 
superposition of a severe noise on the assumed residual stresses 
produced an almost negligible effect on the strain curves.

Practical consequences of ill‑posedness

As described for the example in “The Simplest Ill-posed Prob-
lem” section, the HDM problem is never solved in its func-
tional form. Measurements are sampled at a finite number p 
of hole drilling steps hi , which produce an array em , modeled 
as the superposition of ideal discrete values e with measure-
ment errors. Consequently, equation (11) cannot be solved, due 
to a partial and imperfect knowledge of �(h) . The collocation 
method [70] is usually employed to transform equation (11) 
into a linear system. To do this, the space of residual stress 
functions is approximated by the span of a n-dimensional basis 
� =

[
�1(z), �2(z)… �n(z)

]
 . This operation is a projection of the 

true solution �(z) onto its approximation �†
n
(z) =

∑n

i=1
si�i(z) 

in a finite-dimensional space, which can then be represented 
by the coefficients s =

[
s1, s2 … sn

]
 with respect to the chosen 

basis. After that, the elements Aij of a p × n matrix A are built 
by evaluating the effect of an element of the basis �j on the 
sample ei through the direct integral operator:

Eventually, a linear system with n variables and p known 
constants is obtained:

By projecting the original functional stress space onto a 
span of a finite-dimentional basis, a bias is introduced in 
the solution (unless the true solution can be proven to actu-
ally belong to that span). On the other hand, by restricting 
the solution DOFs to a finite number n, its high-frequency 
content is implicitly limited. This operation has a stabiliz-
ing effect on the solution variance, similarly as shown in 
the “Regularization” section.

Discretization transformed an ill-posed discontinuous prob-
lem into a well-posed continuous problem, though cursed by 
a bias-variance tradeoff: no matter how refined, discretization 
is always a regularizing operation. It is usually assumed that a 

(17)Aij = ∫
hi

0

A(z, h) �j(z) dz

(18)As = e

more refined numerical scheme leads to a better approximation 
of the underlying functional problem, and in a broad sense that 
is still true. Recall that, since the functional inverse problem is 
not continuous, it has infinite sensitivity to measurement noise. 
This is consistent with the fact that the ill-conditioning of the 
linear system in equation (18) diverges as the solution DOFs 
are increased. By refining the numerical scheme, the discre-
tized problem better mimics the actually undesired discontinu-
ity of the functional problem. An equivalent behavior can be 
observed when the maximum degree of polynomials in the 
Power Series method is increased [41]: like a reduction of the 
integration step size, it is an extension of the solution DOFs.

This behavior is summarized in Fig. 11 and is perfectly 
acknowledged in the field, as it has been studied as an 

Fig. 11  Graphic explanation of the regularization properties of discre-
tization. Single elements are reported as solid circles, while their uncer-
tainties are represented as colored shadows. When the solution �†(z) is 
projected onto the span of a finite-dimensional basis, a well-posed prob-
lem is obtained and the number of DOFs is chosen to obtain a manage-
able variance while limiting the representation bias. Projected stresses 
�†
n
(z) are then represented as a vector s† and obtained as a solution to a 

linear system. Its numerical conditioning allows to estimate the solution 
variability, but the representation bias is inaccessible to the user
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optimization [29, 71–73]: a smaller integration step yields a 
better spatial resolution but a higher ill-conditioning, a greater 
integration step leads to a well-conditioned problem but with 
a poorer spatial resolution. Schajer and Altus [27] defined this 
as the “Heisenberg Uncertainty Principle” of residual stress 
measurements. Non-uniform integration steps have also been 
explored to fully exploit depth-dependent error sensitivities.

Recall the shot peening example from the “A Shot Peen-
ing Example” section. Since this example is purely theoreti-
cal, the true residual stress distribution and its correspond-
ing continuous relaxed strains are available. To simulate a 
practical measurement, relaxed strains are sampled. The 
inverse problem is solved starting from a 1000-points sam-
pling of the theoretical �(h) with uniform depth steps. This 
uncommonly high value with respect to typical practical 
measurements is used to get very close to an analytical solu-
tion. Although technologically questionable, this very high 

number of intervals is actually beneficial to the solution, as 
will be shown in the “Discussion” section. An independent 
Gaussian random error with a standard deviation of 1 με is 
then added to measurements. The influence functions are 
assumed to be exact, so an inverse crime is actually commit-
ted. That is fine for illustration purposes.

To apply the collocation method, the stress basis of the 
Integral Method (piecewise constant functions) is used. The 
solution domain is divided in equally spaced sub-intervals. 
Various refinement levels are attempted; the spatial resolution 
is proportional to the number of calculation points. Note that 
only the number of calculation points is changed, while the 
number of strain samples is kept constant. To explore the solu-
tion variability, 1000 different realization of Gaussian noise 
are created and just as many perturbed solutions are obtained.

Results are shown in Fig. 12. The ideal discrete solution 
converges to the true stresses as the spatial refinement of the 

Fig. 12  Solution to the HDM inverse problem, trying to obtain the 
shot peening residual stress distribution reported in equation (16) 
from simulated strain measurements. Plots are reported for increas-
ing solution DOF. The theoretical relaxed strains are sampled at 1000 
equidistant points, and the true and the ideal discrete solution are 

reported. Then a Gaussian noise with standard deviation � = 1 με is 
added and 1000 different realizations of the perturbed solution are 
created. They are reported as ±2� intervals, together with an example. 
The solution variance diverges as the DOFs increase
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solution space basis is increased. On the contrary, when noisy 
strains are fed into the problem, convergence is not achieved 
anymore. As the degrees of freedom of the solution increase, 
the accuracy of the perturbed solution gets severely impaired.

If one wanted to minimize the perturbed solution error 
with respect to the true solution, it may be tempting to choose 
the degree of refinement to minimize the observed solution 
variability, but it would actually be a very poor choice. Due to 
the bias-variance tradeoff, the least variable solution is always 
the one with least DOFs, which in this case is a constant stress 
distribution. However, this would lead to an unacceptable bias 
in many practical cases. Variance is observable and/or simula-
ble from input data, bias is not, as Fig. 11 points out.

An experienced operator incorporates his prior knowl-
edge of the specific practical situation to choose DOFs 
wisely, so as to limit variance within an acceptable bias. 
The achieved solution variability is therefore a combined 
effect of two distinct factors: the measurement error and the 
chosen discretization scheme. If and only if the latter did not 
introduce any significant bias, then the solution variability 
provides useful information on the solution global error.

For the above-mentioned reasons:

• Choosing between different regularization strategies 
applied to a common residual stress experiment by compar-
ing the variability of their solutions is completely meaning-
less. The actual error has also a bias component, which is 
always compromised at the expense of variance. A constant 
stress solution is always the least variable, and any robust 
solution could be the result of a greater (and hidden) bias.

• In the authors’ opinion, the output of a residual stress meas-
urement obtained through relaxation methods shall not be 
limited to the stress results together with their expected 
variability. The chosen regularization scheme shall be 
clearly stated too, as it discloses any potential bias. Dif-
ferent experimental setups can be compared only if the 
regularization strategy is kept the same; only in this case 
would a mitigation of the solution variability signal a prac-
tical improvement, as it would not be achieved through the 
introduction of additional biases.

Tikhonov Regularization

Formulation in functional spaces

It is often desirable to be able to choose “how much” the 
solution has to be regularized, and to do it in a computation-
ally fast way. As seen in the “Practical Consequences of Ill-
posedness” section, the discretization of a problem is itself a 
form of regularization; however, changing the discretization 
scheme involves a lot of numerical integrations to evaluate 
the coefficients matrix A in equation (18), and that is usually 
not a computationally easy task.

The mathematical theory of ill-posed problems provides 
a solution to this challenge, usually (but not solely) by 
approximating the ill-posed inverse operator with a well-
posed one and by controlling the degree of approximation 
through an appropriate choice of a continuously variable 
regularization parameter. For an overview of classical meth-
ods, see [46–49]. Tikhonov regularization [67] is one the 
most-widely used techniques; it has been previously applied 
to the hole drilling method inverse problem [32, 38, 74] and 
it is currently included in the ASTM E837 standard [43] as 
an approved procedure for the calculation of non-uniform 
residual stresses with the HDM.

An unregularized least-squares solution to equation (11), 
corresponding to the given measured strains �(h) , is obtained 
as:

Therefore, it looks for a minimum of the so-called squared 
discrepancy (also known as residuals) �2 ≜ ‖T(�(z)) − �(h)‖2 
of the measured strains from the strains related to the com-
puted solution, and picks the corresponding argument �†(z) . 
Note that the squared discrepancy �2 is a function of the solu-
tion �(z).

On the other hand, in its general form Tikhonov regulari-
zation seeks the minimum of another functional, obtained 
by adding a penalty term, proportional to a regularization 
parameter �:

where Γ(⋅) is a user-defined operator. When solving Prob-
lem 20 it is not the original Problem 19 that is being solved, but 
rather an approximation of it, whose refinement is controlled 
by the regularization parameter � . The operator Γ(⋅) of the pen-
alty term is usually a high-pass filter, to penalize the roughness 
of the solution. A common choice in relaxation methods is to 
penalize the L2 norm of the solution or of its higher derivatives, 
as will be analyzed in the “Practical Application” section. In 
this case, it can be proven that equation (20) defines a well-
posed continuous problem ∀𝛼 > 0 (see [46]).

When � → 0 , the regularized problem tends to the original 
discontinuous one. As � → +∞ the penalty functional alone 
is actually minimized, so in general equation (20) represents a 
completely different (and usually well-conditioned) problem. 
The parameter � defines another typical bias-variance trade-
off. It can be observed in Fig. 13, using the same shot peen-
ing example of Fig. 12. However, if compared to the number 
of solution DOFs, � has a less obvious physical meaning as a 
regularization parameter. Indeed, without a physically driven 
choice for � , equation (20) has no practical sense.

(19)�†(z) ≜ argmin
�

‖T(�(z)) − �(h)‖2

(20)
�†
�
(z) ≜ argmin

�

�
‖T(�(z) − �(h)‖2

+ �‖Γ(�(z))‖2
�
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Since the problem is already regularized in its functional 
form (before discretization!), there is no need to compromise 
the number of DOFs anymore, yet a discretization scheme 
is anyway needed for a numerical solution �†

�,n
 , which is the 

projection of �†
�
 onto the span of the chosen finite-dimensional 

basis � . In practice, a very refined discretization is usually 
used, in order to leave the regularization level to the param-
eter � only. This process is summarized in Fig. 14. Tikhonov 
regularization can, however, be combined with other regu-
larization strategies, including but not limited to a coarse dis-
cretization scheme.

A reasonable choice for � (and in general, of any regulariza-
tion parameter) stems from the accuracy of the specific instru-
mentation that is being used. This is reflected in the strategy 
known as the Morozov Discrepancy Principle [75]. As seen 
before, � = 0 corresponds to the least-squares solution. Since 
data are affected by errors, the tightest match will most likely 

be an overfitting of noise. If an oracle would be able to tell the 
true stress distribution, its corresponding relaxed strains would 
actually be different from the measured ones, due to experi-
mental errors. The expected squared value of that difference is 
taken as a criterion to tune the regularization level.

In practice, the Morozov discrepancy principle states that 
� may be increased until the squared discrepancy matches its 
expected value 𝛿2 (in a deterministic or, more often, in a sta-
tistical sense). Recall that �2 is a function of �(z) , while 𝛿2 is a 
real positive value that is assumed to be known. The Morozov 
discrepancy principle assumes knowledge on how far the 
measured strains are from their ideal values, which may be dif-
ficult to determine and thus adds another error source. In the 
case of HDM, a simple and statistically justified method was 
proposed in [31, 32], which then was merged into the ASTM 
E837 standard; this procedure can easily be extended from 
hole drilling to general strain measurements.

Fig. 13  Solution to the HDM inverse problem through second-order 
Tikhonov regularization, trying to obtain the shot peening residual 
stress distribution reported in equation (16) from hypothetical strain 
measurements in the same manner as Fig.  12. Different values of 

the regularization parameter � are explored, while the discretization 
scheme is kept fixed at 1000 stress intervals. Another bias-variance 
tradeoff is obtained, controlled by the value of �
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It shall be emphasized that the Morozov discrepancy princi-
ple is only one among many strategies proposed in the mathe-
matical literature for the choice of the regularization parameter, 
though it is one of the most used. In addition, its application 
is not limited to Tikhonov regularization, since it may be used 
with any other strategy (such as discretization itself). As with 
all other strategies, there is no guarantee that the chosen param-
eter is the best in terms of solution error. Nevertheless, some 
statistically optimal properties can be proven, which the inter-
ested reader can find in a specialized textbook such as [47].

When the measurement error is not known at all, the math-
ematical literature provided ill-posed problems with regulari-
zation parameter choice criteria that are specifically designed 
to work without that piece of information, such as: Gener-
alized Cross-Validation (GCV) [76], the L-Curve criterion 

[77], Iterative Predictive Risk Optimization (I-PRO) [78] or 
the Quasi-Optimality principle [79].

Practical application

Assuming that matrix A has full rank (which is usually the case 
in relaxation methods), the least squares solution to equation 
(18) is given by:

In the context of relaxation methods, Tikhonov regulariza-
tion is usually realized by penalizing the norm of the solu-
tion second derivative [32]; this strategy is usually referred 
to as second-order Tikhonov regularization. Denoting with 
C the discrete operator that approximates the second deriva-
tive of a function (namely, the second-order finite difference 
operator corresponding to the chosen stress basis), Prob-
lem 20 in its discretized form can be written as:

A useful reference on how to build finite difference approxi-
mations can be found in [80]. When hole steps are uniform 
with interval Δh , matrix C has a simple form:

Eventually, the application of the Morozov discrepancy 
principle can be formulated as a constrained optimization 
problem:

The target value � = �∗ and the corresponding regularized 
solution s†

�
 are found by numerical means. As it is stated, 

Problem 24 does not convey a clear idea of how the regular-
ized solution is chosen. Nevertheless, it has an interesting 
equivalent problem:

The equivalence can be proven by enforcing Karush-Kuhn-
Tucker (KKT) conditions [81] in Problem 25 and excluding 
some trivial cases of no practical significance. Problem 25 
has a clear physical meaning:
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Fig. 14  Graphic explanation of Tikhonov regularization. Regularization 
occurs in the underlying functional spaces at the expense of a bias in 
�†
�
 . Then, a very refined discretization (which would lead to an excessive 

variance without Tikhonov regularization) can be adopted. Projected 
stresses �†

�,n
 are then represented as a vector s†

�
 and obtained as solution 

to a linear system. The solution variability can be estimated through the 
condition number of the coefficient matrix, but the regularization bias is 
inaccessible to the user
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• ‖‖As − em
‖‖2 ≤ 𝛿2 defines an admission criterion between 

solutions. Instead of an infinite refinement, which would 
lead to an excessive variance, all solutions that are statis-
tically compatible with the obtained measurements and 
their errors are considered as equivalent.

• argmin ‖Cs‖2 defines a preference criterion between 
solutions. Among all the equivalent solutions, the mini-
mizer of a penalty functional that disadvantages those 
with high second derivatives (hence including highly 
oscillatory solutions) is chosen.

When coupled with the Morozov discrepancy principle, Tik-
honov regularization changes the original ill-posed question 
of finding an exact solution with another query: for a given 
penalty functional, which is the least penalized solution 
among a set of admissible ones, built from knowledge of 
measurement uncertainties? In this case, the penalty func-
tional favors low second derivatives, hence smooth solutions 
with gently varying gradients. It does not strictly assume 
anything at all, since it simply provides an answer to a dif-
ferent question. Due to this, it is a very valuable strategy 
when nothing about the solution can be strictly assumed a 
priori. It is also quite reasonable: since slight experimental 
noise always affects results through highly oscillatory terms, 
it is more likely that a smooth admissible solution is closer 
to the true solution, than being coincidentally a perturbation 
of a very rough true solution. Indeed, a very interesting sta-
tistical interpretation of Tikhonov regularization is available 
[82], as a maximum a posteriori estimation corresponding 
to a prior distribution of the possible solutions. Whether the 
least penalized admissible solution is actually close to the 
true solution, it depends on the properties of the latter, and 
that is where physical considerations must come into play. 
Solution variability will not help in quantifying the global 
solution error, as was the case for discretization. This fact is 
summarized in Fig. 14.

Recalling the shot peening example, second-order Tikhonov 
regularization with the Morozov discrepancy principle has been 
applied to its inverse problem. Results are reported in Fig. 15. 
Since the problem defined by equation (20) is well-posed in its 
functional form, the solution is convergent as the integration 
step is reduced and its variance does not diverge anymore. The 
compromise between bias and variance is already controlled by 
� , as shown in Fig. 13: in fact, the attached perturbed solution 
example is slightly smoother than the true solution, (i.e. the 
sharp corner point is not well reproduced).

As measurements are increasingly affected by noise, which 
means 𝛿 is increased, the admissible set of solutions in Prob-
lem 25 grows, hence second-order Tikhonov regularization and 
the Morozov discrepancy principle actually pick a smoother 
solution (as it has a lower penalty value). This is of great sig-
nificance for the practical user: poor measurement accuracy 
will generally yield smoother regularized solutions (so with 

poorer spatial resolution) than those arising from precise instru-
mentation, and that may be quite misleading. For example, the 
1000 shot peening cases were also simulated with measurement 
noise having a standard error of 5 με , which corresponds to 
a quite low signal-to-noise ratio. The solutions are compared 
with the previous ones in Fig. 16. It is then clear why an accu-
rate estimate of the noise properties is at least as important as 
the noise level itself: a poor estimation leads to an inaccurate 
admission criterion, which can then result in dangerous under- 
or over-regularization.

Discussion

Any process that limits the solution DOFs and/or filters high 
frequencies has a regularizing effect. A variably refined dis-
cretization and Tikhonov regularization are only two among 
many strategies to deal with ill-posed problems. As long 
as problem linearity can be assumed (as in most relaxation 
methods), applying a low-pass linear filter to input strains or 
to output stresses yields the same results, as they are actually 
the same operation.

When prior knowledge suggests that the solution coef-
ficients with respect to a given basis will be significantly 
sparse, it is certainly convenient to adopt that basis and 
enforce sparsity by truncating the corresponding solution 
expansion at a limited number of elements. Besides the 
Integral Method, several different basis have been explored: 
polynomials [41, 83, 84], splines [72, 85], Fourier series 
[24] and wavelets [28, 86]. It cannot be stressed enough that 
all these methods should not be compared by their achieved 
sensitivity to noise, and that the selection should rather be 
made based on physical arguments and real-world cases. If 

Fig. 15  Solution to the HDM inverse problem through second-order 
Tikhonov regularization and the Morozov discrepancy principle, try-
ing to obtain the shot peening residual stress distribution reported in 
equation (16) from hypothetical strain measurements in the same man-
ner as Fig. 12. Compared to Fig. 12, the variance no longer diverges 
when a very refined spatial resolution is adopted
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no assumptions can be made, it can actually be shown (see 
Sect. 3.3 in [46]) that none of the above-mentioned methods 
is optimal: for a given number of DOFs, the minimum vari-
ability is achieved with a truncated singular value decom-
position (TSVD) [87] of the integral operator.

An ill-posed problem is regularized by a limitation of 
the solution DOFs, and the latter in turn are limited by the 
measurement samples, so reducing the dimension of input 
data seems to improve the ill-conditioning of the problem 
[29, 71]. However, for a given regularization bias (governed 
by the chosen solution basis), having more measurements is 
always beneficial, as it reduces the solution variance. This 
happens because an overdetermined system exploits redun-
dancy and implicitly averages out random errors by fitting 
a solution having less DOFs than measurement points. This 
effect is shown in Fig. 17 and is of fundamental significance 
for the design of relaxation experiments. Similar proper-
ties hold for Tikhonov regularization with the Morozov 
discrepancy principle [47]. Therefore, compatibly with 
technological and timing constraints, the highest number of 
measurements should be taken, as observed in [30]. Then, 
a suitable regularization level should be tuned according to 
prior knowledge and physical principles.

Standard uncertainty estimates only capture the variance 
and fail to capture the bias. Since residual stress measure-
ments can be used for life critical structural integrity assess-
ments, such a non-conservative uncertainty estimate is cause 
for concern. This issue has been recognized under the name 
of model error by Prime and Hill [30], with an attempt to 
estimate the additional uncertainty for the case of a series 
expansion method applied to incremental slitting. While 
adequate for their example problems, the method cannot be 
conservative for the general case. As a matter of fact, bias-
variance tradeoffs and underestimated uncertainties affect 

measurements throughout experimental mechanics, because 
many of them include an inverse problem such as fitting a 
diffraction pattern to a Gaussian peak for neutron diffraction 
measurements of residual stress.

Olson et al. [88, 89] proposed a method to evaluate the 
regularization uncertainty in relaxation methods, similar 
to the model error estimation of Prime and Hill [30]. The 
uncertainty due to a given regularization level is estimated 
by varying the regularization parameter in an appropriate 
interval and evaluating the corresponding change in the 
solution. The specific properties of that interval are tuned 
on both numerical and practical experiments. Then, the 

Fig. 16  Comparison of solutions obtained through second-order Tik-
honov regularization and the Morozov discrepancy principle, arising 
from measurements having different noise levels. A discretization 
scheme with 1000 stress intervals is used. 1000 random realizations 

of a perturbed solution are reported in the plots. A greater measure-
ment noise is fairly rejected, though at the cost of an increased solu-
tion bias towards smoothness. (a) � = 1 με (b) � = 5 με

Fig. 17  Comparison of perturbed solutions with 20 DOFs, arising from 
two different number of strain samples (100 and 1000 hole steps), which 
share the same Gaussian noise with standard deviation � = 0.1 με . 1000 
different realizations of the perturbed solution are created and reported 
as ±2� intervals. Tikhonov regularization is not applied. For given stress 
DOFs (hence solution bias), having more measurement points is benefi-
cial to the solution variance
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regularization uncertainty is combined with the uncertainty 
due to input noise in order to pick the regularization param-
eter at the minimum of the total combined error. Since an 
optimal regularization level corresponds to a minimum of 
the distance between the perturbed and the true solution, 
it is definitely reasonable to expect that it occurs at a place 
where the solution is not very sensitive to changes in the 
regularization level and to input noise. A similar parameter 
choice strategy is known in the mathematical literature as 
Quasi-Optimality principle [79], and its properties are well 
known. Nevertheless, the uncertainty value that is obtained 
through the method should not be interpreted as a general 
estimator of the solution error, because the full extent of the 
bias component remains unknown. Anyway, in the study 
of problems that are similar to the ones used to calibrate 
the procedure, it is reasonable to expect that the estimated 
uncertainty is a valid heuristic.

In a recent article, Tognan et al. [90] applied Gaussian Pro-
cess Regression (GPR) to the Contour method to perform input 
data filtering and obtain residual stress uncertainties through 
a procedure that does not depend on the user’s discretion. 
This promising approach shares many properties with Tik-
honov regularization and the Morozov discrepancy principle. 
It assumes that close samples of the true solution are highly 
correlated in space, according to a specific covariance kernel 
that is governed by a finite set of variable hyperparameters 
that can tune this relation. Like Tikhonov regularization, it 
generally penalizes roughness, while controlling the regulari-
zation level through tunable parameters. Like the Morozov 
discrepancy principle, the hyperparameters are chosen on the 
basis of input data, by assuming a given measurement noise. In 
this case, they are chosen by maximizing likelihood over input 
data. Once again, the resulting stress uncertainty is actually the 
solution variance corresponding to the chosen regularization 
bias, which depends on the kernel choice and on the estimation 
of measurement variance. If the true solution does not follow 
the assumed kernel (e.g. due to discontinuities), the introduced 
bias may be arbitrarily high.

As a final consideration on this ill-posed problem, it should 
be noted that its undesirable mathematical properties are a 
side effect of the continuum assumption, which is instead 
fundamental for the direct problem and for the whole theory 
of elasticity. An unbounded sensitivity to perturbations is 
achieved only if stress distributions are allowed to include 
arbitrarily high frequency contents, but the latter get physi-
cally meaningless as their wavelengths become smaller than 
the typical grain size. This may suggest a sort of “natural” reg-
ularization, obtained by keeping its characteristic length scale 
above some threshold where the chosen continuum model 
fails to describe the problem. However, in most applications 
this strategy is currently unfeasible. For example, a discretiza-
tion having a resolution in the order of 10μm (a typical grain 
size of structural steel) would generate a numerical problem 

whose ill-conditioning is incompatible with the accuracy of 
presently available measurement setups, and the obtained 
solutions would be unacceptably noisy. Still, one may recon-
sider whether stresses at low spatial scales are really that 
important: many failure processes involve an integral effect 
of stresses over some sort of critical distance (as defined by 
Taylor [91]), which may be chosen as a target length scale.

Conclusions

A mathematical framework for the analysis of the inverse 
problem of relaxation methods has been provided, together 
with a proof of its ill-posedness. The analysis applies to any 
residual stress technique that requires an inversion of a simi-
lar integral operator.

Any discretized solution of the inverse problem comes 
with an inherent bias-variance tradeoff. Therefore, a regu-
larization strategy is unavoidable to obtain a meaningful 
solution. An effective regularization strategy adds additional 
hypotheses on the solution to reduce variance but balances 
those with the introduced bias and the ill-conditioning of the 
resulting problem.

Numerical discretization is itself a form of regularization, 
and the resulting bias has quite an intuitive form: the solu-
tion cannot have components outside of the chosen basis. 
Unfortunately, increasing the resolution of the discretiza-
tion (i.e., its degrees of freedom) to reduce the bias causes 
an unacceptable increase in the variance. When Tikhonov 
regularization is added, the inverse problem no longer suf-
fers from increasing ill-conditioning as the solution DOFs 
increase, though a slightly biased problem is solved. The 
Morozov discrepancy principle provides a strategy for 
choosing the regularization parameter � , which balances 
ill-conditioning with the introduced bias on a reasonable 
statistical basis, assuming that the input errors are known.

The bias-variance tradeoff is primarily controlled by 
the solution DOFs and not by the number of measurements 
points. Indeed, the highest number of measurements should 
always be taken, as it reduces the variance for a given regu-
larization scheme.

The variability of the regularized solution cannot be 
used to build a valid confidence interval, since an unknown 
bias term is also included in the true overall error. The only 
exception to this curse occurs when the regularizing assump-
tions can be proven true. In particular, physical arguments 
that provide a characterization of the true solution would be 
of utmost importance, as they would regularize the problem 
without introducing an otherwise unknown bias.

This kind of certain information is seldom available, and 
that is quite common in the field of inverse problems. In 
these cases, the only way to evaluate the performance of dif-
ferent regularization strategies is through ground truth data, 
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by trying to identify an accurately known stress distribution 
while having real-world error sources. For example, in the 
field of tomographic imaging the obtained reconstructions 
are usually compared with a physical sectioning of the object 
of interest (interestingly, that object is often a walnut [92]).

This paper is primarily intended to clarify some mislead-
ing concepts and to foster a correct interpretation of residual 
stress measurements through relaxation methods. It should 
not be interpreted in any way as a declaration of distrust 
towards these techniques. On the contrary, in the authors’ 
experience, skilled operators are already able to use their 
engineering judgment and prior knowledge about the prob-
lem to obtain accurate residual stress distributions, although 
this regularization process is often not reported. In fact, 
since inverse method of one sort or another are ubiquitous in 
data analysis, many other experimental mechanics methods 
likely contain similar issues that are not yet acknowledged.

It is hoped that this work will pave the way for a fruitful 
interaction between residual stress measurement methods 
and the mathematical theory of ill-posed problems, whose 
arguably biggest contribution is to provide a structured way 
to apply prior knowledge about the problem. Therefore, it 
could profitably serve as an extension of the tool set avail-
able to the residual stress engineer. As a matter of fact, many 
useful results of that theory have not yet been explored in the 
field of residual stresses.
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