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Abstract

An Electric Solar Wind Sail (E-sail) is an innovative propellantless propulsion system that generates a propulsive
acceleration by exchanging momentum with the solar wind charged particles. Optimal E-sail trajectories are
usually investigated by assuming an average value of the solar wind characteristics, thus obtaining a deterministic
reference trajectory. However, recent analyses have shown that the solar wind dynamic pressure should be
modelled as a random variable and an E-sail-based spacecraft may hardly be steered toward a target celestial
body in an uncertain environment with just an open-loop control law. Therefore, this paper proposes to solve
such a problem with a combined control strategy that suitably adjusts the grid electric voltage in response to the
measured value of the dynamic pressure, and counteracts the effects of the solar wind uncertainties by rectifying
the nominal trajectory at suitably chosen points. The effectiveness of such an approach is verified by simulation
using two-dimensional transfer scenarios.
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Nomenclature

= propulsive acceleration vector, [ mm/s?]
characteristic acceleration, [ mm/s?]

radial component of a, [mm/s?]
circumferential component of a, [ mm/s?]
orbit eccentricity

Hamiltonian function

performance index

generic tether length, [km]

spacecraft mass, [kg]

number of tethers

unit vector normal to the E-sail nominal plane
Sun’s center-of-mass

orbit semilatus rectum, [au]

solar wind dynamic pressure at 1au, [nPa]
Sun-spacecraft distance, [au]

reference distance equal to 1 au

radial unit vector

= polar reference frame
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t = time, [days]
td 4 = final time along the deviation arc, [days]
u = radial component of velocity, [km/s]
Vv = grid electric voltage, [kV]
Vi = ions electric potential, [kV]
v = circumferential component of velocity, [km/s]
! = pitch angle, [deg]
ay = primer vector angle, [deg]
vy = gamma distribution
€0 = vacuum permittivity, [ F/m]
0 = polar angle, [rad]
] = circumferential unit vector
Av = primer vector
{Ar, Mg, Au, Ay} = adjoint variables
Lo = Sun’s gravitational parameter, [km?/s?]
o = specific thrust at 1au, [N/m]
T = switching parameter
w = longitude of pericenter, [rad]
Subscripts
0 = value at initial time
f = wvalue at final time
max = maximum allowable value
Superscripts
= time derivative
— = nominal design value
* = optimal value

1. Introduction

An Electric Solar Wind Sail (E-sail) is an innovative propellantless propulsion system that generates a
propulsive thrust by exchanging momentum with the solar wind charged particles. An E-sail-based spacecraft
may be used in a number of different mission scenarios, such as interplanetary transfers [1], maintenance of
non-Keplerian displaced orbits, which are especially useful for continuous observation of the polar region of
a planet [2], and even more exotic Solar System escape [3].

An E-sail heliocentric trajectory is often analyzed in an optimal framework, by looking for the optimal
control law that minimizes the total time of flight required to reach a target celestial body [4, 5]. In a
preliminary mission analysis phase, the E-sail thrust vector is usually modelled by considering the sail as
an ideally flat and axially-symmetric body, and assuming average values of the solar wind characteristics.
This deterministic approach enables the determination of the E-sail trajectory either by integrating the
equations of motion, or by introducing some simplifying assumptions on the trajectory shape [6] or on
the thrust magnitude [7]. However, the solar wind properties are subject to non-negligible variations over
time [8, 9, 10, 11] and, for that reason, recent simulations suggest to describe the E-sail propulsive acceleration
as a stochastic variable, rather than a deterministic one [12, 13].

A quantification of the effects of uncertainties on aircraft and spacecraft trajectory planning is a critical
issue, which has been extensively investigated in the literature [14]. In a recent work by Greco et al. [15], an
extension of a direct multiple-shooting method has been introduced to deal with optimal control problems in
the presence of uncertainties. Ross et al. [16] defined a Lebesgue-Stieltjes optimal control problem to compute
an open-loop control law able to steer a spacecraft toward a target state in uncertain environments. Sun et
al. [17] proposed a combination of differential algebra and Gaussian mixture model method for uncertainty
propagation, which was shown to be able to capture possible non-Gaussianity in uncertainty propagation
through non-linear dynamics.



In the specific context of E-sail-based trajectories, Niccolai et al. [12] proposed to account for the solar
wind fluctuations by modelling the dynamic pressure as a random variable with a gamma probability density
function (PDF). They also showed, using a simple test case with a Sun-facing sail, that the uncertainty in
the spacecraft state is non-negligible even after one half revolution around the Sun only. This means that the
spacecraft cannot be steered toward a target state in an uncertain environment, by means of an open-loop
control law. The proposed solution for that problem was the introduction of a control law aimed at adjusting
the E-sail grid voltage in response to the dynamic pressure fluctuations (measured by a sensor onboard the
spacecraft), in such a way as to maintain the E-sail propulsive characteristics equal to a given design value.
However, due to the constraint on the maximum allowable value of the grid electric voltage, the spacecraft
may not be able to follow the nominal optimal reference trajectory.

This paper proposes a possible solution for such a problem. In essence, the idea is to update the control
law that steers the spacecraft toward the target orbit as soon as the spacecraft departs from the nominal
reference trajectory. The new rectified trajectory is calculated by solving an optimal problem with an
indirect approach.

The paper is organized as follows. The next section introduces the mathematical model used to compute
the E-sail trajectory. Section 3 describes the indirect method that generates the initial nominal reference
trajectory. Then, a sort of rectification method is introduced, which is finally applied in Section 4 to
two-dimensional cases involving Earth-Mars and Earth-Apophis transfers.

2. Problem description

Consider an E-sail-based spacecraft that initially covers a heliocentric elliptic orbit of semilatus rectum
po and eccentricity eg. The mission aim is to transfer the spacecraft to a coplanar, target orbit of semilatus
rectum py, eccentricity ey and longitude of pericenter wy € [0,27) rad, the latter being the angle between
the Sun-pericenter line of the two orbits measured counterclockwise from the apse line of the initial orbit;
see Fig. 1.
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Figure 1: Reference frame and geometry of the problem.

The heliocentric motion of the spacecraft is conveniently described by introducing a polar reference
frame T (O; r,6), in which O is the Sun’s center-of-mass, r is the Sun-spacecraft distance, and 6 is the polar
angle measured counterclockwise from the Sun-pericenter direction of the initial orbit; see also Fig. 1. The



spacecraft equations of motion in 7 are

r=u (1)
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where the dot symbol denotes a derivative taken with respect to time, u and v are the radial and circumfer-
ential components of the spacecraft velocity, uo is the Sun’s gravitational parameter, while a, and agy are the
components of the E-sail propulsive acceleration along the radial (with unit vector #) and circumferential
(with unit vector 8) directions, respectively.

Using the recent model proposed by Huo et al. [18], the propulsive acceleration vector a for a flat and
axially-symmetric E-sail can be written as

GcTe

a=rT
2r

[+ (7 - 1) D] (5)

where 7 € {0, 1} is a dimensionless variable that models the possibility of switching the electron gun either
on (1 = 1) or off (r = 0), and 7 is the unit vector normal to the E-sail nominal plane in the direction
opposite to the Sun. In Eq. (5), a. is the characteristic acceleration, defined as the maximum propulsive
acceleration magnitude provided by the E-sail at a reference distance rg = 1 au from the Sun. According to
Ref. [18], the characteristic acceleration can be written as a function of the E-sail design parameters as
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where N is the number of tethers, L is the generic tether length, m is the total spacecraft mass, and oy is
the thrust per unit of tether length generated by the E-sail. Bearing in mind the analysis of Toivanen and
Janhunen [19, 20], if r ~ rg the specific thrust og can be written in a compact form as

0e = 0.18 max(0,V — V;) \/éo ps (7)

where ¢y is the vacuum permittivity, ps is the dynamic pressure of the solar wind measured at a solar
distance of r = rg, V is the E-sail grid voltage, and V; is the electric potential of the ions which is about
1kV. Taking into account that V' is usually on the order of some tens of kV, Eq. (7) simplifies to

o = 0.18V /€ pg (8)

Accordingly, from Egs. (5)-(6) and (8), the components of the propulsive acceleration a along the radial (i.e.
a,) and circumferential (i.e. ag) directions are
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where a € [—90, 90] deg is the sail pitch angle, defined as the angle between the direction of # and the
direction of 7n; see Fig. 2.

In a preliminary mission analysis phase, the E-sail heliocentric transfer trajectory is typically calculated
by assuming an average value of the solar wind characteristics. In particular, the value of pg is taken as
constant and equal to its mean value, p, = 2nPa. In that case, when the control law {7, a} is known, the
spacecraft trajectory may be obtained through a numerical integration of the equations of motion (1)-(4),
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Figure 2: Sail pitch angle a.

starting from the initial conditions associated to the parking orbit, that is

Po
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r(to) 1+ e cos by (11)

u(to) = /ZT? eo sinfy (12)

u(te) = «/E2 (1 + ey cos by) (13)
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where ¢y £ 0 is the initial time, and 6y € [0, 27)rad is the polar angle at departure, which coincides with
the spacecraft true anomaly along the initial orbit.

A more reliable analysis, however, requires the effects of the solar wind uncertainties on the spacecraft
trajectory to be taken into account. Because in this work two-dimensional transfers are assumed, the possible
variations of pg, with the latitude are not considered [11]. Nevertheless, the solar wind properties are subject
to non negligible variations over time [8]. For example, Fig. 3 shows the hourly fluctuations of the solar wind
dynamic pressure at a Sun-spacecraft distance of 1 au, within a time span from January 1996 to September
2013. These data suggest the E-sail propulsive acceleration to be handled as a stochastic variable rather
than a deterministic one. This is indeed the approach pursued by Niccolai et al. [12], who suggested to
model the dynamic pressure as a random variable with a gamma distribution, in the form

A—1
_ _Ps
Y(pe) = m exp (—pe/B) (14)
with parameters A = 1.6437 and B = 1.2168. The probability density function of pg is shown in Fig. 4.
The following section proposes a possible procedure to investigate optimal (minimum-time) E-sail transfer
trajectories, which takes into account the uncertainties on the solar dynamic pressure.

3. Trajectory optimization

The heliocentric transfer problem of an E-sail-based spacecraft is usually studied within an optimal
framework, by looking for the optimal control law 7 = 7*(¢) and a = «*(¢) that minimizes the flight time
ty. As long as pg is taken constant and equal to its mean value p, = 2nPa, the spacecraft characteristic
acceleration has a constant value given by [12]

0.18NLV
ac = Tveoﬁ@ (15)
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Figure 3: Hourly variation of pg from January 1996 to September 2013. Data from NASA and figure adapted from Ref. [12].
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Figure 4: Probability density function of pg. Figure adapted from Ref. [12].

where V is the nominal design value of the grid electric voltage. The resulting optimization problem is
therefore deterministic, and amounts to maximizing the performance index

J &ty (16)



subject to the equations of motion (1)-(4), to the boundary constraints at the initial time, given by Egs. (11)-
(13), and at the final time ¢y, that is

_ by
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ulty) = \/Eef sin(fy — wy) (18)

o(ty) = \/Z (1+ e cos(by —wy)) (19)

where 0 is the polar angle at t7. Note that both the values of §y and 0 are left unconstrained.

This problem may be solved with an indirect method [21]. To that end, introduce the adjoint variables
Ar, Ao, Ay and A, associated to the state variables r, 8, u and v, respectively. The corresponding Hamiltonian
function is

2
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where a, and ag are given by Egs. (9)-(10), with p, = p, and V = V. Note that, from Eq. (22), the adjoint
variable Ay is a constant of motion.

According to Ref. [18], the optimal control law that maximizes the Hamiltonian function at each time
instant is

., 1l+sign(l+3cosay)
T =

. (25)
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where sign(-) is the signum function, whereas ay € [—180, 180]deg is the angle between the radial unit
vector # and A £ [\, A\,]7, the latter being the Lawden’s primer vector [22].

The minimum time trajectory is the solution of a two-point boundary value problem (TPBVP), con-
stituted by the equations of motion (1)-(4), the Euler-Lagrange equations (21)-(24), with initial boundary
conditions (11)-(13), final boundary conditions (17)-(19), and transversality conditions [21]
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The solution to such a TPBVP coincides with the reference trajectory that would be tracked by the
spacecraft in the nominal case, when pg = pg. However, the uncertainties on the actual value of the solar
wind dynamic pressure prevent the spacecraft to reach the target state. This problem may be solved with
the aid of a control law that suitably adjusts the tether voltage, as is now shown.

7



3.1. Reference trajectory rectification

Niccolai et al. [12] suggested a possible control strategy to track the nominal trajectory in the presence
of dynamic pressure fluctuations. Under the assumption that the spacecraft is able to measure the local
value of the solar wind dynamic pressure p(t), the grid electric voltage V' is adjusted [12] in such a way that
the spacecraft characteristic acceleration meets its nominal value a@. given by Eq. (15). The required value
of the grid voltage is therefore -

ma

ere = -
018N L /o po(t)

with pe(t) = p(t) (r/rs)?. Because the grid voltage V(t) cannot exceed a maximum value Viyay, the control
law is defined as

(30)

V(t):{Vreq(t> if Vieq(t) < Vinax 1)

Vmax if V}eq(t) Z Vmax

Note that the control variables 7 and « are exactly the same as those in the nominal case (that is, obtained
by solving the previous TPBVP). Also note that, as long as 7 = 0, the spacecraft trajectory presents a
Keplerian arc. In that case, there is no need to use the control law (31) because, as the E-sail thrust is off,
the spacecraft covers the reference trajectory for any value of pg.

The whole reference trajectory (calculated with pg = pg) is first partitioned into a certain number of
arcs. Within each arc, the value of the solar wind dynamic pressure is maintained constant and equal to
that randomly generated with a gamma distribution (14), while the grid voltage is varied in accordance with
Egs. (30)-(31). As long as Vieq < Vmax, the spacecraft characteristic acceleration along the arc is equal to
its nominal value a., and the spacecraft is able to track the nominal optimal trajectory. However, when the
dynamic pressure becomes very small, the grid voltage Vieq needs to much increase its value to generate a
sufficient thrust, with a possible saturation problem. In that case, according to Eq. (31), the grid voltage
is set equal t0 Vinax, but, since the E-sail characteristic acceleration is less than its nominal value (that is,
a. < @), the spacecraft cannot track its reference trajectory. At the end of such an arc (referred to as
deviation arc), the state vector is therefore different from its nominal value; see Fig. 5.
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Figure 5: Deviation arc and generation of the new reference trajectory.

This problem may be circumvented by a rectification of the reference trajectory. This amounts to
generating a new optimal trajectory (starting from the spacecraft state at the end of a deviation arc), which



steers the spacecraft toward the final orbit, as is shown in Fig. 5, assuming again a constant value of pg = Pg.
Accordingly, a new optimal control problem arises, in which the performance index to maximize is

Jcorr - _(tf - tgnd) (32)

where td_ is the initial time along the new reference trajectory, which coincides with the time at the end of
the deviation arc. In this case, the spacecraft initial conditions are

r(t(eind) = rgnd’ H(tgnd) = egnd’ u(t(eind) = ugnd’ U(tgnd) = Ugnd (33)
d

where {1 4, ngd, ugnd, vgnd} are the state variables of the spacecraft at the end of the deviation arc. The final
boundary conditions are the same as those expressed by Eqs. (17)-(19), where 65 is again left unconstrained.
In other terms, the spacecraft is subject to the dynamical equations (1)-(4), and to the Euler-Lagrange
equations (21)-(24), while the resulting TPBVP is completed by the transversality conditions (28)-(29).

The solution to such a TPBVP gives a new reference trajectory (and a new optimal control law {7*, a*}),
which is tracked by the spacecraft from t = tgnd until a new deviation arc arises, when a. < a.. The previous
procedure is repeated until the spacecraft reaches the target orbit.

3.2. Comments

The strategy discussed so far to perform a time-optimal transfer with an E-sail assumes that the nominal
grid voltage V is a fixed parameter, which is maintained constant throughout the orbital transfer. However,
some additional considerations are useful on this point. In general, the closer the nominal voltage V to the
saturation voltage Vi .x, the smaller the thrust modulation capability of the E-sail. Indeed, a higher reserve
thrust (which corresponds to the thrust that could be obtained by increasing the voltage from the nominal
to the maximum value) assures a lower risk of missing the target orbit due to solar wind fluctuations, but
this comes at the cost of increasing the mission times.

An alternative strategy may be conceived by observing that the environmental uncertainty effects are
more difficult to counteract in the final phase of the orbital transfer, when an accurate thrust modulation
is required to reach the target orbit. Therefore, a high thrust could be generated in the early phase of the
transfer by using a large nominal voltage, and then decreased in the last transfer phase to guarantee a higher
reserve thrust, in order to reach the target object with an elevated confidence level. In that way, it could
be possible to effectively counteract the environmental uncertainties when they are more dangerous (i.e., in
the terminal transfer phase), without significantly sacrificing the E-sail performance. Such a strategy may
be investigated as a possible extension of this work, and is therefore left to future research.

4. Numerical simulations

In this section some numerical examples are given, where the optimal transfer trajectory is obtained
taking into account the presence of uncertainties in the solar wind dynamic pressure. A simplified Earth-
Mars and an Earth-Apophis transfer are investigated using the method described in the previous section.
In particular, the equations of motion (1)-(4) and the Euler-Lagrange equations (21)-(24) are integrated by
means of a variable-step Adams-Bashforth-Moulton solver scheme [23, 24] with absolute and relative errors
of 10712,

In the following discussion, the spacecraft is propelled by an E-sail with a total number of tethers N = 62,
each one of length L = 19.4km. The nominal grid voltage is 25kV, and the total spacecraft mass is about
m = 700kg [25]. Note that, in the ideal case of pg = pg, such a configuration has a nominal characteristic
acceleration @, = 1 mm/s?.

4.1. Earth-Mars transfer

An Earth-Mars transfer is first analyzed, assuming the orbit of both Earth and Mars to be coplanar.
The spacecraft initially covers an orbit coincident with that of the Earth (with pp = 1au and eq = 0.0167),
and must be transferred to a (coplanar) final orbit coinciding with that of Mars (py = 1.524, ey = 0.0934,
and wy = 233.1deg).

The nominal optimal trajectory (in the case of pg = pg) is first computed, and the total transfer time
is found to be 465.37 days. The whole trajectory is then partitioned into 1800 arcs, each one with a length
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of about 6.2 hours, and assuming a maximum grid voltage Viax = 80kV. Along each arc, a value of pg is
generated with the gamma PDF of Eq. (14), and each time the required grid voltage Vieq exceeds Vinax, the
spacecraft trajectory deviates from the nominal optimal one. In that case, a reference trajectory rectification
is obtained by computing a new reference path and the corresponding control law that steers the spacecraft
toward the final orbit, as previously described.

At each run, a different control law is calculated, since the latter depends on the random values of
pe generated according to its PDF. However, the numerical simulations show no significant differences
between the nominal optimal trajectory (obtained without dynamic pressure fluctuations) and the trajectory
generated by the rectification approach (which, instead, accounts for uncertainties). The latter requires a
small increase of the total flight time, on the order of a few tens of hours only. An example is shown in
Fig. 6, where the flight time increase is about Ati,. = 25.32 hours.

Figure 6: Optimal Earth-Mars trajectory.

Figures 7-8 also show the optimal control law {7*, a*} in both cases with (solid line) or without (dashed
line) uncertainties in the value of pg. Note that, even though a small deviation of the optimal value of a*
arises, the optimal control 7* in both cases is the same. Figure 8 also shows that, in the initial phase of
the transfer, the deviation in the pitch angle o* is very small, while it tends to increase when the spacecraft
approaches the target orbit.

4.2. Transfer toward asteroid 99942 Apophis

Consider now a simplified transfer toward the asteroid 99942 Apophis. Again, the spacecraft initial
orbital parameters are pg = 1au and ey = 0.0167. The orbital inclination of Apophis with respect to the
ecliptic plane (about 3.3 deg) is neglected, while the other orbital parameters are py = 0.8891 au, ey = 0.1912
and wy = 227.9deg.

The transfer time along the optimal nominal trajectory is about 83.1days. The trajectory is then
partitioned into 300 arcs of about 6.6 hours each. The optimal trajectory is shown in Fig. 9, while Figs. 10-
11 show the effect of the uncertainties on the optimal control law. In this example, the time increment is
Atine = 11.39 hours.

Again, no substantial differences can be observed in both the trajectories and the control laws involving
7*, whereas the value of a* deviates from the nominal one to steer the spacecraft towards the target orbit.

5. Conclusions

This work has proposed a possible strategy to generate an optimal trajectory to transfer an E-sail-based
spacecraft from a parking orbit toward an elliptic orbit, while taking into account the uncertainties in the
solar wind dynamic pressure. Assuming the spacecraft to be able to measure the instantaneous value of

10



1.2

Figure 7: Earth-Mars transfer: optimal control law 7* in the case with uncertainties in the value of pg (solid line), and in the
nominal case of constant pg = pg (dashed red line).

60 [ o g

30
0 100 200 300 400 500
t [days]

Figure 8: Earth-Mars transfer: optimal control law a* in the case of uncertainties in the value of pg (solid line), and in the
nominal case of constant pg = pg (dashed red line).

the local solar wind dynamic pressure, the grid voltage is varied such that the characteristic acceleration
equals its nominal design value. Since the grid electric voltage cannot exceed a maximum allowable value,
as soon as a saturation occurs, the spacecraft departs from its nominal trajectory, and a course correction
is necessary for the spacecraft to reach the target orbit. Every time such a deviation from the reference
trajectory takes place, the control law that steers the spacecraft toward the final orbit is updated, and a new
reference trajectory is generated. From the numerical simulations, a minor increase in the time of flight is
observed when compared to the nominal optimal trajectory, while a small pitch angle correction is sufficient
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Figure 9: Optimal Earth-Apophis trajectory.

1.2 s s s s

Figure 10: Earth-Apophis transfer: optimal control law 7* in the case of uncertainties in the value of pg (solid line), and in
the nominal case of constant pg, = pg (dashed red line).

for the spacecraft to reach the target orbit.
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