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Abstract

The working principle of the Electric Solar Wind Sail, an innovative propellantless propulsion system proposed
in 2004, is based on the electrostatic interaction between a spinning grid of tethers, kept at a high positive
potential, and the incoming ions from the solar wind. Similar to the well-known solar sail concept, the E-sail
could simplify the feasibility of advanced (deep space) missions which would otherwise require a significative
amount of propellant, if enabled by conventional thrusters. However, the intrinsic variability of the solar wind
properties makes accurate trajectory tracking a difficult task, since the perturbations of the solar wind dynamic
pressure have the same order of magnitude as their mean value. To circumvent such a problem, in a recent
study the plasma dynamic pressure was modelled as a random variable with a gamma probability density function
and the sail grid voltage was suggested to be varied as a function of the instantaneous value of the solar wind
properties. The aim of this paper is to improve those results, by discussing a more accurate statistical model of
the solar wind dynamic pressure, which is used in the numerical simulations to estimate the actual impact of the
solar wind uncertainties on the spacecraft heliocentric trajectory. In particular, the paper proposes a control law
that is able to accurately track a nominal, non-Keplerian orbit.

Keywords: Electric solar wind sail, propulsive acceleration uncertainty, solar wind statistical model,
non-Keplerian orbit

Nomenclature

a = propulsive acceleration vector, [ mm/s2]
ac = characteristic acceleration, [ mm/s2]
C = center of displaced non-Keplerian orbit
d = error in distance, [ au]
f = probability density function
k1, k2 = gamma distribution parameters
L = tether length, [ km]
M = dimension of ξ
m = spacecraft mass, [ kg]
N = number of tethers
n = number of simulations
n̂ = normal unit vector
O = Sun’s center of mass
P = order of sum
p = solar wind dynamic pressure, [ nPa]
R = random process
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r = spacecraft position vector (with r , ‖r‖ and r̂ , r/r), [ au]
r⊕L1

= Earth-L1 distance, [ au]
S = spacecraft center of mass
TS = T-score
T = total flight time, [ years]
t = time, [ days]
V = grid electric voltage, [ kV]
Vw = solar wind electric potential, [ kV]
v = spacecraft velocity vector, [ km/s]
w = weighting function
α = E-sail thrust angle, [ deg]
αn = E-sail pitch angle, [ deg]
Γ = gamma function
ε = dimensionless error
ε0 = vacuum permittivity, [ F/m]
θ = polar angle, [ deg]
λ = Galerkin’s projection coefficient
µ� = Sun’s gravitational parameter, [ km3/s2]
µ⊕ = Earth’s gravitational parameter, [ km3/s2]
ξ = random vector
ρ = radius of circular displaced non-Keplerian orbit, [ au]
σ = specific thrust, see Eq. (4), [ N/m]
τ = switching parameter
Ψj = jth generalized polynomial basis
ψ = elevation angle, [ deg]
Ω = parameter space
ω = angular velocity of displaced non-Keplerian orbit, [ rad/year]
ωK = Keplerian orbit angular velocity, [ rad/year]

Subscripts

1 = refined probability density function
2 = gamma probability density function
gPC = generalized Polynomial Chaos
H = heliostationary condition
i = generic time step
j = polynomial basis index
k = generic summation index
L = artificial Lagrangian point
max = maximum allowable value
req = required value
st = maximum step variation
⊕ = value at r = 1 au

Superscripts

− = mean or nominal value
· = time derivative
∧ = unit vector

1. Introduction

The Electric Solar Wind Sail (E-sail) is a propellantless low-thrust propulsion system whose invention
by Pekka Janhunen dates back to 2004 [1, 2]. It basically consists of a spinning grid of electrostatically
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charged tethers, which are stretched by the centrifugal force, and maintained at a high potential by a power
source. When an E-sail is immersed into the solar wind plasma, it generates a propulsive acceleration by
exchanging momentum with the incoming ions. Possible mission scenarios that exploit an E-sail-induced
thrust include deep space transfers to planets [3] or asteroids [4, 5, 6], generation of non-Keplerian orbits [7, 8],
maintenance of artificial Lagrangian points [9, 10], and even more interesting options, such as manned Mars
operations [11], outer Solar System exploration [12, 13, 14] and interstellar missions [15]. A derivation of
the E-sail working principle, the plasma brake concept [16, 17], could be used to deorbit a spacecraft from
a low Earth orbit.

The first plasma brake test was attempted with the Estonian satellite EstCube-1 [18], but a failure
occurred to the tether unreel mechanism due to launch vibrational loads and the experiment failed [19].
Hopefully, the first in-situ test of plasma brake technology will be performed by the Finnish satellite Aalto-
1 [20], which is equipped with a single 100 m-long tether. An encouraging result of the plasma brake
experiment could lead to an operational test of the basic E-sail concept, which would require a mission
outside Earth’s magnetosphere.

The trajectory covered by a spacecraft propelled by an E-sail is usually estimated with a simplified
approach based on two main hypotheses: 1) the E-sail is a perfectly flat and axially-symmetric body,
and 2) the solar wind properties are both independent of the spacecraft position and time. Under these
assumptions, the propulsive acceleration vector can be calculated as a function of the (constant) plasma
dynamic pressure, the Sun-spacecraft distance, the E-sail attitude, and the grid voltage [21]. Accordingly, the
E-sail trajectory can be obtained by numerically integrating the equations of motion, or by introducing some
further simplifying hypotheses that allow an analytical closed-form expression of the propelled trajectory to
be written [22, 23]. An in-depth discussion of the implications related to the first assumption may be found
in Refs. [24, 25], which show that the effects of the tether inflection on the generated thrust are actually
small. On the other hand, the second assumption has an inherent flaw, since the plasma properties are highly
fluctuating and unpredictable, as reported by in-situ measurements provided by spacecraft in heliocentric
orbits [26, 27, 28]. This makes an accurate trajectory tracking very difficult to obtain [29].

The impact of the solar wind uncertainties on the motion of a spacecraft equipped with an E-sail has
been preliminarily studied by Toivanen and Janhunen [30], who proposed an approach based on performing
a number of simulations based on historical data from different time intervals. More recently, the same
topic was analyzed at length with a different method by Niccolai et al. [31], who proposed a statistical
approach to model the solar wind dynamic pressure as a random variable with a suitable Probability Density
Function (PDF). The latter was selected as a compromise solution between accuracy and simplicity, since
the model derived from the available data requires a handy software implementation for obtaining numerical
simulations. With this in mind, a gamma PDF was chosen due to its positive asymmetry, with shape and
scale parameters selected such as to match the mean value and the standard deviation of the experimental
measurements.

The aim of this paper is to improve the results of Refs. [31], by presenting a more accurate statistical
model of the solar wind dynamic pressure, based on a PDF that is reconstructed from real data, with the
aim of investigating the possibility of tracking a nominal trajectory through a grid-voltage control law. The
obtained results are then compared with those of Ref. [31], and statistical tests are performed to evaluate
whether the differences are significant in a preliminary mission phase.

This paper is organized as follows. First, the equations describing the orbital dynamics of an E-sail-based
spacecraft are presented, and an accurate statistical model of the solar wind dynamic pressure is discussed.
Then, in analogy with Ref. [31], a simulation is performed using a generalized Polynomial Chaos (gPC)
procedure [32], to evaluate the impact of the solar wind uncertainties (modelled with the refined approach)
on the E-sail trajectory. Finally, the most effective control law of Ref. [31], based on the concept of adjusting
the E-sail grid voltage as a function of the instantaneous (local) value of the solar wind dynamic pressure, is
tested with the new model. The results are compared with those obtained in Ref. [31] by means of statistical
tests, in order to understand if the conclusions presented in the recent literature still hold. The conclusion
section resumes the main outcomes of this work.
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2. E-sail heliocentric dynamics

Consider a spacecraft S whose primary propulsion system is an E-sail, which covers a heliocentric (closed)
orbit around the Sun’s center-of-mass O. The spacecraft equations of motion can be written in a heliocentric-
ecliptic inertial reference frame as

ṙ = v (1)

v̇ = −µ�

r3
r + a (2)

where r is the spacecraft position vector (with r , ‖r‖), v is the spacecraft velocity vector, µ� is the Sun’s
gravitational parameter, and a is the E-sail propulsive acceleration vector.

The characteristic acceleration ac, that is, the maximum propulsive acceleration magnitude at a helio-
centric distance r = r⊕ , 1 au, is usually chosen as the E-sail performance parameter [33]. The value of
ac is a function of various E-sail design parameters such as the number of tethers N , the length L of each
tether, and the total spacecraft mass m, that is [21]

ac =
N Lσ⊕

m
(3)

where σ⊕ is the thrust per unit of tether length generated by the E-sail at a Sun-spacecraft distance equal
to r⊕. According to Refs. [34, 35], σ⊕ is given by

σ⊕ , 0.18 max (0, V − Vw)
√
ε0 p⊕ (4)

where V is the grid voltage, Vw ' 1 kV is the electric potential of the solar wind ions, ε0 is the vacuum
permittivity, and p⊕ is the value of the plasma dynamic pressure at r = r⊕. Note that the typical value of
V (a few tens of kilovolts) is significantly larger than that of Vw (about 1 kV) [2], and so Eq. (4) reduces to

σ⊕ = 0.18 (V − Vw)
√
ε0 p⊕ (5)

Using the geometrical model proposed by Huo et al. [21], and assuming a flat and axially-symmetric sail,
the propulsive acceleration vector can be written as a function of ac as

a = τ
ac
2

(r⊕
r

)
[r̂ + (r̂ · n̂) n̂] (6)

where τ ∈ {0, 1} is a switching parameter, which accounts for the possibility of turning either on (τ = 1)
or off (τ = 0) the E-sail electron gun, r̂ , r/r is the radial unit vector, and n̂ is the unit vector normal
to the E-sail nominal plane in the direction opposite to the Sun; see Fig. 1. The propulsive acceleration
magnitude a , ‖a‖ is a function of the pitch angle αn, defined as the angle between the directions of n̂ and
r̂; see Fig. 2. Recalling Eq. (6), the solar wind uncertainties affect the propulsive acceleration only through
ac, which, according to Eqs. (3) and (5), is a function of the solar wind dynamic pressure at the Sun-Earth
distance.

The usual deterministic approach for E-sail mission analysis consists of assuming p⊕ to be constant,
which implies that its value is independent of both the spacecraft position r and the time instant t. The
first assumption amounts to neglecting the variation of p⊕ with the heliocentric latitude which, according to
Refs. [26, 36], is consistent with the actual solar wind behavior, provided the orbital inclination is not high
or the spacecraft tracks a non-Keplerian orbit with constant latitude. However, the second assumption is
not realistic, as will be discussed in the next subsection.

2.1. Statistical model of solar wind dynamic pressure

The time fluctuations of p⊕ do not show any regularity, although a weak periodicity related to the solar
activity cycles may be identified. As such, the plasma dynamic pressure can be treated as a random variable,
in accordance with the discussion by Meyer-Vernet [37]. This conservative assumption is justified by the
fast and chaotic variations of p⊕, as reported by in-situ measurements, and amounts to take each value of
p⊕ as independent of the previous ones.
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Figure 1: E-sail conceptual scheme.
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Figure 2: Normalized E-sail propulsive acceleration magnitude a as a function of the sail pitch angle αn.

Accordingly, in the numerical simulations of Ref. [31] the distribution of p⊕ was modelled as a gamma
PDF, viz.

f(p⊕) =
k−k1

2

Γ(k1)
pk1−1

⊕ exp (−p⊕/k2) (7)

where f(p⊕)dp⊕ denotes the probability that the solar wind dynamic pressure at the Sun-Earth distance
ranges between p⊕ and p⊕ + dp⊕, and Γ(x) is the gamma function of the generic variable x. The parameters
k1 = 1.6437 and k2 = 1.2168 were chosen to fit the mean value and the standard deviation with the
experimental data.

However, Eq. (7) does not ensure an accurate matching with experimental measurements. This is better
appreciated with the aid of Fig. 3, which compares the gamma PDF with the histogram plot of the in-situ
measurements of p⊕ from January 1996 to September 2013 taken from the NASA Omniweb database1. In
particular, Fig. 3 confirms that the mean value of p⊕ is about p⊕ = 2 nPa, with a standard deviation of
1.56 nPa (note that in this work the bar symbol identifies either mean or nominal quantities), in accordance

1See https://omniweb.gsfc.nasa.gov/form/dx1.html. Retrieved on May 8, 2019.
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with the values of k1 and k2 enforced in Eq. (7). Nevertheless, the gamma PDF overestimates the probability
of having values of p⊕ smaller (or slightly greater) than p⊕, while the peak in the vicinity of p⊕ and the
values of the tail are underestimated; see the zoom of Fig. 3.
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Figure 3: Comparison between the histogram plot of p⊕ measurements from January 1996 to September 2013 (bars) with the
gamma PDF given by Eq. (7) (solid red line).

Based on the previous considerations, the statistical properties of p⊕ are now modelled with a more
accurate distribution, obtained by available data, which allows its PDF to be accurately reconstructed.

2.2. Uncertainty Model

A generalized Polynomial Chaos (gPC) analysis [32] has been used to model the uncertainties related to
the solar wind dynamic pressure. The approach consists in a spectral projection of a random process R over
an orthogonal polynomial basis, which may be formally written as

R =

∞∑
j=0

λjΨj(ξ) (8)

where Ψj is the jth gPC polynomial basis and λj is its Galerkin’s projection coefficient. Moreover, ξ is an
M -dimensional random vector, defined in the parameter space Ω, which contains all of the uncertainties. In
this work M = 1 (i.e., the random variable is a scalar ξ), because the only uncertain variable is assumed to
be p⊕. For practical purposes the infinite sum in Eq. (8) is truncated at order P , so that the gPC expression
reduces to

R =

P∑
j=0

λjΨj(ξ) (9)

Each coefficient λj is obtained using the orthogonality property of the polynomial basis, which leads to

λj =
〈R,Ψj〉
〈Ψj ,Ψj〉

(10)

where 〈u, g〉 represents the inner product between the two generic functions u and g, that is

〈g, u〉 =

∫
Ω

u(ξ) g(ξ)w(ξ) dξ (11)
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In particular, the expansion (9) has been truncated at order P = 4, while each integral involved in the
methodology has been computed though a Gaussian quadrature formula using P + 1 = 5 points. Each
quadrature point defines a node at which the quantity of interest R must be sampled. As a result, the whole
response surface can be reconstructed by means of (P + 1) points only.

Returning to Eq. (11), it is worth noting that the two functions in the inner product are multiplied
by a weighting function w(ξ) associated to the orthogonal polynomial basis. A suitable polynomial family
is thus characterized by a weighting function similar to the PDF shape of the input uncertainty ξ. For
example, the set of generalized Laguerre polynomials is the typical choice when the input PDF is a gamma
function. However, when the PDF cannot be well-reproduced by any of the Askey-Wiener families (uniform,
gaussian, gamma, etc.), which are usually adopted in the gPC approach [32], an ad-hoc methodology must
be introduced to construct an orthogonal basis. To that end, the procedure herein described follows the
work of Margheri et al. [38]. Consider first the discrete PDF of the input uncertain parameter wk

wnorm
k =

wk∑nint

k=1 δint wk
(12)

where wnorm
k is the normalized PDF, such that its integral is 1, while δint and nint are the span and the number

of intervals, respectively. The bases Ψj(ξ) of the gPC are obtained with the Gram-Schmidt orthogonalization
procedure, recursively defined as

Ψj(ξ) = ξj −
j−1∑
k=0

〈ξj ,Ψk〉
〈Ψk,Ψk〉

Ψk(ξ) with Ψ0(ξ) = 1 (13)

where Ψj(ξ) denotes the basis of order j, which is then normalized dividing it by 〈Ψj ,Ψj〉0.5. The inner
products in Eq. (13) are computed as

〈f, u〉 =

nint∑
k=1

f(ξk)u(ξk)wnorm
k δint (14)

where ξk are the centers of each PDF interval. Because the previous polynomial family is not standard
in the gPC methodology, the nodes ξk and the weights hk of the Gaussian quadrature approach must be
recovered using the Christoffel-Darboux formula. The latter states that the P + 1 quadrature points are the
zeros of the polynomial ΨP+1(ξ), while the weights are calculated as

hk = −AP+2

AP+1

〈ΨP ,ΨP 〉
ΨP+2(ξk)Ψ′P+1(ξk)

= −AP+2

AP+1

1

ΨP+2(ξk)Ψ′P+1(ξk)
(15)

where the simplification is due to the polynomial normalization procedure, Aj is the coefficient of ξj in Ψj

and the prime symbol denotes a derivative.
The previously discussed procedure allows an artificial PDF of p⊕ to be reconstructed from experimental

measurements and to match all the statistical properties of experimental data. In this respect, Tab. 1
compares the statistical properties of the PDF based on experimental measurements and those of the gamma
PDF used in Ref. [31] with in-situ measurements reported in Fig. 3. It is clear that the statistical distribution
of experimental data is identical to the artificially-reconstructed refined PDF, so the histogram plot of Fig. 3
traces out both the distributions. Since the refined PDF matches the experimental data more accurately
than the gamma PDF, it is now used to perform stochastic simulations of an E-sail heliocentric trajectory
in a reference mission scenario in order to quantify its dispersion. In accordance with Ref. [31], the test
case refers to a Sun-facing E-sail with a nominal characteristic acceleration ac = 0.2 mm/s2, which departs
from a circular heliocentric parking orbit with radius r = r⊕. This situation is sketched in Fig. 4, where θ
is a polar angle measured counterclockwise from to the initial Sun-spacecraft line, and is consistent with a
spacecraft that leaves the Earth’s sphere of influence with zero hyperbolic excess velocity. In particular, a
Sun-facing case models an E-sail fixed attitude with respect to an orbital reference frame with αn ≡ 0, that
is, n̂ ≡ r̂; see Fig. 1.

Note that the nominal value of the characteristic acceleration corresponds to the (constant) value of ac
calculated through Eqs. (3) and (5) with p⊕ = p⊕. Such a value of ac could be obtained by a spacecraft
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in-situ data gamma PDF refined PDF
mean value [ nPa] 2.00 2.00 2.00
std. dev. [ nPa] 1.56 1.56 1.56

skewness 4.09 1.56 4.09
kurtosis 33.13 3.65 33.13

Table 1: Comparison between the statistical properties of in-situ measurements of p⊕ with those of the gamma PDF from
Ref. [31] and the refined PDF.
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Figure 4: Sketch of the test case scenario.
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Figure 5: Nominal trajectory of the test case scenario.

whose mass is m = 560 kg, propelled by an E-sail with N = 24 tethers, each one being L ' 8 km long, and
a nominal voltage V = 25 kV [39]. Figure 5 shows the spacecraft nominal trajectory for θ ∈ [0, 180] deg,
which would be tracked if p⊕ ≡ p⊕ (and, consequently, ac ≡ ac) during the whole flight time.

The previously described gPC procedure has been used to quantify the sensitivity of the spacecraft radial
coordinate to the solar wind dynamic pressure, in order to compare the results obtained by modeling p⊕

with the gamma PDF with those given by the refined statistical model. In this context, Fig. 6 shows the
approximate normalized PDF of r = r(θ) with θ ∈ [0, 180] deg, obtained both with the refined PDF and the
gamma PDF of Eq. (7). The darker lines denote more likely trajectories. Finally, Fig. 7 shows the estimated
PDFs of r(θ) for θ = {45, 90, 135, 180}deg obtained by evaluating p⊕ with the refined model (black line)
and the gamma PDF (red line). From both Figs. 6 and 7, it is evident that the trajectories associated with
high probabilities are more concentrated in the vicinity of the nominal trajectory of Fig. 5, when the refined
model is adopted. Note that the uncertainty on the spacecraft position is significant, even just after half a
revolution around the Sun.

The interpolated PDF can be integrated to get the refined Cumulative Density Function (CDF) of p⊕,
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Figure 6: Gamma PDF vs. refined PDF trajectory dispersion in the test case scenario.

which is compared in Fig. 8 with that obtained by the gamma distribution. The refined CDF data is used to
generate random values of p⊕ with a statistical distribution that matches that of experimental data. From a
practical point of view, the MATLAB built-in function rand is used to generate a random number between 0
and 1 (corresponding to a certain value of the CDF), which univocally identifies a point on the interpolated
CDF plot. The abscissa of this point identifies the randomly generated value of p⊕.

3. Case study

Previous simulations [31] have shown that an accurate trajectory tracking with an E-sail is possible,
provided that the spacecraft is equipped with a suitable control system. In the current analysis, the reference
control law proposed in Ref. [31] will be tested with the previously described statistical model of the solar
wind dynamic pressure. First, a brief review of the control law is given along with the simulation setup. For
each mission case, the total flight time T is divided into legs of 0.01 TU� = 0.58 days ' 14 hours, in analogy
with Ref. [31] and in accordance with in-situ measurements, which show significant fluctuations of solar wind
properties that take place even in a few hours. At the time instant ti, corresponding to the beginning of the
(i+1)th leg, a random value of the solar wind dynamic pressure at the Sun-Earth distance p⊕(ti) is generated
with the previous procedure, and is kept constant until the end of the leg. The spacecraft is assumed to be
equipped with a particle detector (or an accelerometer) capable of measuring the instantaneous value of the
local solar wind dynamic pressure p(t). The measured value of p(t) can be scaled to get p⊕(t) from

p⊕(t) = p(t)

(
r

r⊕

)2

(16)

The grid voltage is then adjusted as a function the instantaneous value of p⊕(ti). The rationale of the control
law is to maintain the characteristic acceleration ac as close as possible to its nominal value ac. Accordingly,
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Figure 7: PDFs of r = r(θ) with θ = {45, 90, 135, 180} deg obtained with refined model of p⊕ (black line) and gamma PDF
(red line).

the desired value of the grid voltage Vreq at ti is calculated as

Vreq(ti) , Vw +
mac

0.18N L
√
ε0 p⊕(ti)

≡ Vw +
(
V − Vw

) √ p⊕

p⊕(ti)
(17)

where V = 25 kV is taken as the nominal value of the E-sail grid voltage [39]. Note that the required grid
voltage Vreq depends only on the nominal grid voltage V and on the instantaneous value of the solar wind
dynamic pressure p⊕(ti) and, in particular, it is not an explicit function of other E-sail design characteristics,
such as the number of tethers N , nor their length L.
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The control law tries to adjust the grid voltage at the beginning of each leg, in such a way that V (ti) =
Vreq(ti). However, it is realistic to assume that the voltage cannot exceed a maximum value and that the
control system cannot instantaneously modify the grid voltage to reach the desired value. The first constraint
is implemented in the model by introducing a maximum value Vmax for the E-sail grid voltage. As long
as the second constraint is concerned, it is assumed that, at the beginning of each leg, the voltage cannot
be increased or decreased more than a given value Vst with respect to the previous leg. It is important
to remark that preliminary calculations estimate that the typical characteristic time for an E-sail grid
voltage adjustment is on the order of some minutes, thus very small when compared to the characteristic
times of orbital dynamics. However, since experimental data are still lacking, and in analogy with previous
studies [30, 31], this constraint has been conservatively included in the analysis. The two enforced constraints
are both captured by the inequalities

V (ti) ≤ Vmax (18)

|V (ti)− V (ti−1)| ≤ Vst (19)

To summarize, the control system adjusts the voltage V (ti) to the desired value Vreq(ti), calculated through
Eq. (17), while enforcing the constraints (18) and (19). If Vreq(ti) does not comply with those constraints, the
control system selects an admissible value V (ti) as close as possible to Vreq(ti). The whole control strategy is
summarized in the flow chart of Fig. 9. Note that the control strategy described by Eqs. (17)–(19) assumes
that the power consumption of the E-sail electron gun can be slightly adjusted. However, this hypothesis has
a limited impact on the spacecraft dynamics. Indeed, according to the orbital motion limited (OML) current
collection theory, the power consumption is proportional to the plasma number density and to V 3/2 [33, 40].
Therefore, if the power consumption is constrained to be constant, the grid voltage should be reduced when
the plasma density increases, resulting in a very small variation of the generated thrust with respect to the
previously described control law, and justifying the assumption. For an in-depth discussion of the control
strategy the reader is referred to Ref. [31]. Once the voltage V (ti) is chosen, Eqs. (1)-(2) are integrated until
the end of the (i+ 1)th leg, keeping the grid voltage and the plasma dynamic pressure constant, and using a
variable order Adams-Bashforth-Moulton solver scheme [41, 42] with absolute and relative errors of 10−12.
Then, the procedure is restarted, until the total flight time T is reached.

This simulation setup has been used to test the control law of Eq. (17) in three potential E-sail-based
mission scenarios. Different combinations of the pairs {Vmax, Vst} have been chosen and, for each combi-
nation, n = 100 numerical simulations have been completed. The effectiveness of the control law has been
evaluated by means of a dimensionless error ε, to be later defined. A comparison has been made between
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Figure 9: Flow chart of the grid voltage control law.

the results obtained when p⊕ has a PDF generated by the previous method (identified with subscript 1) and
those (subscript 2) obtained with a gamma PDF, the latter being the same as that adopted in Ref. [31].
Note that, in principle, discrepancies between the numerical simulations performed with the two different
PDFs could be related to the random generation of the values of p⊕. In order to understand whether the
different results are caused by random fluctuations or by a statistically relevant difference between the two
models, a T-score (TS) associated with the two samplings is defined as

TS ,
|ε1 − ε2|√
σ2

1 + σ2
2

n

(20)

where ε1 (or ε2) is the mean value of the dimensionless error obtained with n simulations, while σ1 (or σ2)
equals the corresponding standard deviation. The TS quantifies the probability for the difference between two
samples (namely, the simulation outputs obtained with the gamma and the refined CDF), to be statistically
relevant and not caused by random fluctuations. In practice, the confidence level corresponding to a given
value of TS can be calculated from standard tables by recalling that the number of Degrees Of Freedom
(DOF) is, in this case, 2n − 2 = 198. Note that the calculation of TS with Eq. (20) assumes that the
distributions of all possible samplings of ε1 and ε2 are both Gaussian. Since the sample dimensions are large
(n = 100), this hypothesis is realistic. Finally, a sensitivity analysis focused on the length of the time leg is
performed, comparing the outputs of previously described simulations (where a time leg of about 14 hours
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is selected) with those obtained with a time leg of 6 hours or 1 day.

3.1. Case of heliostationary condition

The first mission case involves the maintenance of a heliostationary condition [7, 25, 43], that is, a mission
that enables the continuous observation of the Sun’s polar regions. Such a condition corresponds to when
the Sun’s gravitational pull equals the E-sail propulsive acceleration; see Fig. 10.

H
r

� �/
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a r r
�

�

2
r

�

Figure 10: Sketch of the heliostationary mission scenario.

To maintain such an (unstable) equilibrium condition, the required value of the nominal characteristic
acceleration ac is

ac =
µ�

r⊕ rH
(21)

where rH is the levitation distance. Note that the propulsive acceleration must continuously operate on
the spacecraft, that is τ ≡ 1. Clearly, in this application the assumption of spatially-independent p⊕ is
consistent, since the heliocentric latitude is fixed.

To get meaningful comparative results, the same mission scenario as that used in Ref. [31] has been
simulated, that is, a heliostationary condition with rH = 1 au. The latter requires a very high nominal
characteristic acceleration (ac = 5.93 mm/s2). The total simulated mission time is T = 0.25 years. Because
in this case only radial forces are acting on the spacecraft, ε is taken equal to the dimensionless radial error,
viz.

ε ,
|r − rH |
rH

(22)

Table 2 shows the comparison between the results of Ref. [31] (subscript 2) and those obtained with the
refined statistical model of p⊕ discussed here (subscript 1), for different combinations of the constraints
{Vmax, Vst}. The table reports the mean and maximum values of ε obtained with Eq. (22) and the values of
TS given by Eq. (20).

3.2. Artificial Lagrangian point maintenance

The second mission scenario here addressed is the generation of an artificial collinear Lagrange point
in the Sun-Earth gravitational field [9, 10]; see Fig. 11. This situation corresponds to a special case of
non-Keplerian orbit with zero displacement with respect to the ecliptic plane. Such a mission is useful
for solar observation purposes, and may be used to provide an early warning in case of solar events. The
concept is similar to that of ACE mission [27], which, since 1997, is covering a Halo orbit around L1 at an
Earth-spacecraft distance r⊕L1

' 0.01 au. The nominal heliocentric orbit requires the spacecraft to maintain
an equilibrium condition when subjected to the Sun’s and Earth’s gravitational attractions, the centrifugal
force, and the E-sail propulsive acceleration (τ ≡ 1). Assuming that the barycenter of the Sun-Earth system
coincides with the Sun’s center of mass, the equilibrium point is at a Sun-spacecraft distance rL given by

−µ�

r2
L

+
µ⊕

r2
⊕L1

+ ac

(
r⊕
rL

)
+
µ�

r3
⊕

rL = 0 (23)
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Vmax [ kV] Vst [ kV]
Refined CDF Gamma CDF TS
ε1 max(ε1) ε2 max(ε2) (198 DOF)

40

1 2.305 14.873 1.699 14.418 3.630
5 1.501 12.515 1.227 11.227 2.271
10 0.708 10.545 1.138 9.807 4.174
40 0.556 4.180 2.655 14.266 27.019

60

1 2.409 15.049 1.758 24.986 3.822
5 1.668 12.939 1.086 13.377 4.531
10 0.948 11.159 1.141 12.767 1.573
60 0.057 1.018 0.763 5.428 20.883

80

1 2.507 19.247 1.854 14.915 3.514
5 1.637 14.094 1.320 12.933 2.357
10 0.809 9.243 0.907 8.377 1.151
80 0.031 0.738 0.348 2.906 12.214

no control 2.327 18.499 3.868 25.381 7.379

Table 2: Results for ε of the heliostationary mission simulations.
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Figure 11: Sketch of the artificial Lagrangian point mission scenario.

where µ⊕ is the Earth’s gravitational parameter. Since in this case the spacecraft always lies on the ecliptic
plane, the hypothesis of constant heliocentric latitude is satisfied.

The test case is similar to that of Ref. [31], and involves an E-sail-based spacecraft initially placed at
r = rL with an orbital period of 1 year, in such a way that the Sun, the spacecraft, and the Earth are
constantly aligned; see Fig. 11. The E-sail nominal characteristic acceleration is ac = 1 mm/s2, and the
equilibrium radius, given by Eq. (23), is rL = 0.9436 au. Such a value could guarantee a warning time
of about 5.5 hours, whereas that of ACE mission amounts to about 1 hour. The simulated flight time is
T = 10 years.

In this case, the most important requirement is the maintenance of the correct radial distance, whereas a
misalignment with the Earth could be tolerated. Therefore, and in analogy with Ref. [31], the dimensionless
error is defined as

ε ,
|r − rL|
rL

(24)

The resulting mean and maximum values of ε, provided by Eq. (24), are listed in Tab. 3, along with the
T-scores calculated with Eq. (20), for each different combination of the constraints {Vmax, Vst}.
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Vmax [ kV] Vst [ kV]
Refined CDF Gamma CDF TS
ε1 max(ε1) ε2 max(ε2) (198 DOF)

40

1 2.411 13.337 2.418 14.660 0.082
5 1.783 10.356 1.781 11.863 0.034
10 1.328 8.691 1.526 8.385 4.000
40 1.053 3.240 1.774 8.044 34.617

60

1 2.351 13.125 2.483 16.001 1.375
5 1.931 10.657 2.199 14.218 3.180
10 1.399 6.164 1.821 11.480 7.087
60 0.878 2.154 1.131 4.143 101.242

80

1 2.471 14.526 2.399 16.306 0.717
5 1.801 10.086 1.994 14.941 2.827
10 1.482 9.147 1.850 11.519 5.760
80 0.757 1.737 1.008 3.119 21.024

no control 2.263 14.906 2.899 8.071 6.364

Table 3: Results for ε of the artificial Lagrangian point maintenance simulations.

3.3. Displaced non-Keplerian orbit

The last mission case is a circular heliocentric Displaced Non-Keplerian Orbit (DNKO). The orbital plane
of a DNKO does not include the primary’s center of mass [44, 45], therefore such orbit is to be maintained
with a continuous propulsive acceleration (τ ≡ 1) that balances the Sun’s gravitational attraction and the
centrifugal force; see Fig. 12.

Confining the study to circular DNKOs, these orbits are univocally defined by three parameters, that is,
{ρ, ψ, ωK} where ρ is the distance between the spacecraft and the projection of O on the orbital plane, ψ
is the elevation angle from the ecliptic plane to the position vector r, and ωK ,

√
µ�/r3 is the reference

angular velocity. The equations required for orbital maintenance are [7]

α = arctan

[
(ω/ωK)2 tanψ

1 + tan2 ψ − (ω/ωK)2

]
(25)

ac =
2µ� cosψ

r⊕ ρ
√

1 + 3 cos2 αn

∣∣∣∣1− (ω/ωK)2

1 + tan2 ψ

∣∣∣∣
√

1 +
tan2 ψ

[(1 + tan2 ψ)/(ω/ωK)2 − 1)]2
(26)

where α is the angle between the radial unit vector r̂ and the propulsive acceleration vector a; see Fig. 12.
According to the thrust model discussed in Ref. [21], the maximum value of α that can be generated by an
E-sail is about 19.47 deg, which represents a constraint for physically feasible DNKOs. The test case involves
an E-sail in a circular DNKO with ρ = 0.99 au, ψ = 0.57 deg, and ωK = 2π rad/year, corresponding to a
spacecraft that levitates above the ecliptic plane at 99% of the Sun-Earth distance, with the same orbital
period as the Earth. For the sake of simplicity, the Earth’s orbital eccentricity is here neglected, and so is
its gravitational attraction, since the spacecraft is always far outside the planetary sphere of influence. Note
that a circular DNKO complies with the hypothesis of constant heliocentric latitude. The required nominal
characteristic acceleration is ac = 0.2349 mm/s2, given by Eq. (26).

In a DNKO mission scenario, it is important that the spacecraft be capable of tracking the nominal
trajectory without significant deviations in any of the three spatial dimensions. To capture this requirement,
the dimensionless error is defined as

ε , d/ρ (27)

where d is the distance between the nominal vectorial position of the spacecraft along its orbit and its actual
vectorial position calculated with an orbital propagator. The situation is illustrated in Fig. 13. In analogy
with the previous mission cases, the results in terms of ε (given by Eq. (27)) and the values of TS (see
Eq. (20)) are reported in Tab. 4.
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3.4. Result analysis and discussion

The results reported in Tabs. 2–4 all share some common trends. First, the uncontrolled dynamics of
an E-sail-based spacecraft cannot be accurately predicted, but the mean error obtained with the refined
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Vmax [ kV] Vst [ kV]
Refined CDF Gamma CDF TS
ε1 max(ε1) ε2 max(ε2) (198 DOF)

40

1 2.039 6.139 1.092 5.582 20.948
5 1.221 4.047 0.454 2.424 23.773
10 0.456 2.072 0.768 2.951 10.440
40 0.410 1.293 2.120 5.394 83.412

60

1 2.014 6.655 1.080 4.800 17.876
5 1.252 4.210 0.811 3.998 9.241
10 0.648 2.472 0.526 3.007 3.814
60 0.050 0.273 0.627 2.294 49.497

80

1 2.014 6.378 1.115 4.861 17.659
5 1.275 4.385 0.812 3.913 11.126
10 0.635 2.283 0.566 2.880 2.095
80 0.018 0.167 0.261 0.949 34.745

no control 1.797 6.408 2.727 8.437 14.756

Table 4: Results for ε of the DNKO maintenance simulations.

CFD is slightly smaller than that with a gamma CFD in all of the analyzed cases. Such a difference is
statistically relevant (see the TS column) with a confidence level greater than 99.9%, corresponding to a TS
of about 3.34. This behavior confirms the result of the gPC simulations, which have shown that more likely
trajectories are concentrated around the nominal one, as previously noted.

When the constraints are tight (i.e., both Vmax and Vst are small), the estimated performance of the grid
voltage control law with the refined PDF is slightly worse in comparison with the results of Ref. [31], but in
some cases the TS is too small to ensure that these differences are statistically relevant. Indeed, a value of
TS smaller than 0.68 implies that the differences between the dimensionless errors are statistically relevant
with a probability below 50%. The only exception is the DNKO case, where the discrepancies between the
two models seem to be more relevant, possibly due to the different definition of the dimensionless error ε,
see Eq. (27). In this case, the performance worsening is probably due to the fact that occasional high values
of p⊕ may occur in the refined model, which cannot be suitably counteracted by the control system when
Vst is too small, thus significantly deviating the spacecraft from its nominal trajectory.

However, the most important results are those associated with high values of {Vmax, Vst}, especially
those with Vst = Vmax, which essentially imply a removal of the constraint on Vst. This condition is fairly
realistic, since, as already stated, preliminary calculations suggest that the constraint on the voltage variation
quickness could possibly be relaxed or removed. Firstly, note that the combinations with large values of Vmax

and Vst are the only ones that allow the nominal trajectory to be tracked with a satisfying accuracy, as it was
already noted in Ref. [31]. Moreover, in each case, the performance of the control system increases when the
refined model of p⊕ is implemented, with a confidence level greater than 99.5%. This result is probably due
to a larger positive asymmetry of the refined PDF compared to the gamma PDF, which implies that high
(or very high) values of p⊕ are not as unlikely as they were in the simulations discussed in Ref. [31], whereas
values smaller then p⊕ are less probable; see Fig. 3. From a practical point of view, very small values of p⊕

should be counterbalanced by large values of the grid voltage, which could violate the saturation constraint
expressed by Vmax. On the other hand, the occasional generation of very high values of p⊕ can be balanced
by quickly reducing the grid voltage towards Vw, see Eq. (5), and this can be done (almost) instantaneously
when the constraint on Vst is removed (or relaxed). This aspect could explain the better performance of the
grid voltage control law obtained with the refined statistical model, when a large value of Vst is assumed.

3.5. Time-leg sensitivity analysis

In order to evaluate whether the choice of the time leg significantly influences the previously listed results,
the numerical simulations of orbital maintenance in the three analyzed scenarios have been repeated with
different lengths of the time leg. Table 5 compares the most promising outputs given by the previously
discussed simulations with those obtained by maintaining the same values of the constraints Vmax and Vst,
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but setting a time leg of 6 hours or 1 day. Note that the performance of the control law are not significantly
affected by the choice of the time leg, in particular when a large value of Vst is assumed.

Vmax [ kV] Vst [ kV]
0.58 days 6 hours 1 day

ε1 max(ε1) ε1 max(ε1) ε1 max(ε1)

Hel

40 40 0.556 4.180 0.508 3.030 0.507 5.187
60 60 0.057 1.018 0.061 0.515 0.102 2.285
80 10 0.809 9.243 0.683 6.264 0.912 11.831
80 80 0.031 0.738 0.024 0.419 0.030 1.725

Lag

40 40 1.053 3.240 1.052 2.428 1.074 4.638
60 60 0.878 2.154 0.885 1.732 0.879 2.245
80 10 1.482 9.147 1.242 5.553 1.665 11.730
80 80 0.757 1.737 0.783 1.584 0.732 1.922

DNKO

40 40 0.410 1.293 0.421 1.493 0.421 1.485
60 60 0.050 0.273 0.051 0.497 0.051 0.369
80 10 0.635 2.283 0.638 3.372 0.630 3.323
80 80 0.018 0.167 0.016 0.232 0.014 0.203

Table 5: Time leg sensitivity analysis for the three analyzed mission scenario (Hel = heliostationary position, Lag = artificial
Lagrangian point).

4. Conclusions

The impact of solar wind property fluctuations on the capability of an Electric Solar Wind Sail-based
spacecraft to track a nominal trajectory has been preliminarily estimated. The analysis exploits a refined
statistical model of the solar wind plasma dynamic pressure, based on a Probability Density Function
reconstructed from in-situ experimental measurements, for improving the recent results available in the
literature.

Numerical simulations have shown that the spacecraft dynamics is substantially affected and a suitable
control system is therefore required to counterbalance the environmental fluctuations in a possible mission
scenario. The proposed control law reduces that problem by adjusting the grid voltage as a function of
the instantaneous value of the local solar wind dynamic pressure. The control law has been tested in three
mission scenarios, and the results have been compared with those obtained by modeling the dynamic pressure
with a classical gamma probability density function. A negligible performance worsening has been registered
when the saturation voltage is small and the capability of quickly responding to environmental fluctuations
is limited. However, when large saturation voltage and quick voltage variations are possible, the control
system performance with the refined statistical model has shown a relevant improvement compared to that
estimated with a gamma probability density function. This represents an interesting outcome, as it implies
that a high performance control system could enable an Electric Solar Wind Sail-based spacecraft to track
a nominal trajectory with a good accuracy level. Further developments of the analysis presented in this
work could include the temporal correlation in the statistical model of the solar wind dynamic pressure,
thus removing the assumption that its instantaneous value is unaffected by the previous ones.
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