This is a pre-print of the paper

Bacciu, D, Di Rocco, M, Dragone, M, Gallicchio, C, Micheli, A, Saffiotti, A. An ambient intelligence
approach for learning in smart robotic environments. Computational Intelligence. 2019; 35: 1060- 1087.
https://doi.org/10.1111/coin.12233

Computational Intelligence, Volume 59, Number 000, 2010

An Ambient Intelligence Approach for Learning in Smart Robotic

Environments

DAVIDE BACCIU

Universita di Pisa, Italy
MAURIZIO DI Rocco
Orebro Universitet, Sweden
MAURO DRAGONE
Heriot-Watt University, Edinburgh, UK
CLAUDIO GALLICCHIO
Universita di Pisa, Italy
ALESSIO MICHELI
Universita di Pisa, Italy
ALESSANDRO SAFFIOTTI

Orebro Universitet, Sweden

Smart robotic environments combine traditional (ambient) sensing devices and mobile robots. This combina-
tion extends the type of applications that can be considered, reduces their complexity, and enhances the individual
values of the devices involved by enabling new services that cannot be performed by a single device. In order to
reduce the amount of preparation and pre-programming required for their deployment in real world applications,
it is important to make these systems self-learning, self-configuring, and self-adapting. The solution presented in
this paper is based upon a type of compositional adaptation where (possibly multiple) plans of actions are created
through planning and involve the activation of pre-existing capabilities. All the devices in the smart environment
participate in a pervasive learning infrastructure, which is exploited to recognize which plans of actions are most
suited to the current situation. The system is evaluated in experiments run in a real domestic environment, showing
its ability to pro-actively and smoothly adapt to subtle changes in the environment and in the habits and preferences

of their user(s).

Key words: Ambient Intelligence, Smart environment, Robotic Ecology, Adaptive Planning, Self-Adaptive

System, Recurrent Neural Networks.

© 2010 The Authors. Journal Compilation© 2010 Wiley Periodicals, Inc.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

1. INTRODUCTION

Smart environments augment our normal physical surroundings with embedded
computational devices to support the delivery of services to users, anytime and
anywhere. Endowing these ubiquitous devices with intelligent behaviour, and thus
creating intelligent environments, is termed Ambient Intelligence (Aml).

Robotics has embraced the Aml vision by moving away from the historical view
of monolithic control systems that run on specific computational units in charge
of their own "hard-wired’ hardware, to promote the integration of multiple robots
with larger, open distributed networks made up of different sensors, effectors, and
computational units. Notable examples of such an approach include work in network
robot systems (NRF, 2014; Akimoto and Hagita, 2006; Sanfeliu et al., 2008), sensor-
actuator networks (Dressler, 2006), ubiquitous robotics (Kim et al., 2004), and PEIS*
Ecologies (Saffiotti et al., 2008).

The role of robots in a smart environment is multi-faceted. From the user’s
perspective, the robots act as an intelligent user interface to the smart environment.
Even when combined with basic Human-Robot Interaction (HRI) capabilities and
simple mobile robots, such an approach can already enable a number of useful ser-
vices. From the robots’ perspective, being embodied in a smart environment brings a
number of advantages due to the augmentation of their interaction capabilities with

the sensors and actuators embedded within the smart environment, which then act as

LPEIS stands for Physically Embedded Intelligent Systems.

2 COMPUTATIONAL INTELLIGENCE

a service provider and a shared information space for both the human users and the
robots inhabiting them.

Smart robotic environments made out of heterogeneous devices need intelligent
decision making to decide which combination of these devices should cooperate,
and how, to achieve given tasks. Having multiple alternative means to accomplish
application goals when multiple courses of action are available is essential to increas-
ing the system’s robustness. However, we cannot expect application developers to
have to explicitly model all of these options, dependencies and preferences. Besides
adding a significant burden to the design effort, the inability of modeling other
(unforeseen at design time) information in the domain ultimately impacts on the
effort required to configure these systems for different and changing contexts.

In order to develop this type of smart environment, and to make them feasible
in a variety of applications and environments, we need to provide them with self-
adaptive properties. Rather than simply reacting to the failure of some of their com-
ponents, any real world solution should be able to improve the way they operate by
autonomously, pro-actively and smoothly adapting to a changing environment and to
different and evolving requirements. Without self-adaptive properties, building ap-
plications combining sensors, robots and other smart things will remain unfeasible,
as they would require costly pre-programming phases and continuous maintenance
and supervision at each new installation, when their environment is modified or when
they need to suit the changing preferences and habits of their users.

The novel solution described in this paper relies on a pervasive learning infras-
tructure. Sensing devices spread throughout the environment do not just provide

sensed data. Rather, all of the devices in the environment harness and share dis-

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

tributed learning mechanisms to extend the overall capabilities of the system and to
drive its continuous adaptation. Note how rather than learning to recognize complex
situations or how to perform complex sensing-acting strategies, our solution is based
upon a type of compositional adaptation where (possibly multiple) plans of actions
are created through planning and involve the activation of pre-existing capabilities
while the system learns to recognize which plans are most suited to the current
situation and/or to the preferences of the user.

The remainder of this paper is organized in the following manner: Section 3
introduces our solution for self-adaptive, smart robotic environment, while Section
4 reports an experimental case study performed in a smart-home scenario to test
how our solution can adapt to the characteristics of a changing environment and
to the personal preferences of the user. Finally, Section 5 concludes this paper and
discusses future research directions.

Preliminary ideas on the solution presented in this work have appeared in a
conference paper by Bacciu et al. (2014). The content of this work consistently ex-
tends such conference paper by describing a complete architecture for realizing self-
adaptive smart robotic environments, extending the original system by discussing the
result of the integration between planning, learning and performance self-assessment
monitoring components, and by providing a totally renewed experimental assess-
ment considering a larger set of case studies. Furthermore, all of the key phases
of our experiments are documented with supplemental video material, which is
attached to this paper. We also provide the link to the datasets we used to train our

learning system, which we now share with the community.

4 COMPUTATIONAL INTELLIGENCE
2. BACKGROUND AND RELATED WORK

The work described in this paper has been informed and advances previous work
in robotics, smart environments, and self-adaptive software architectures, as briefly
discussed in the following sections.

Robotics: The starting point of our work stands upon past solutions to the dy-
namic configuration of robotic ecologies, i.e. systems made out of heterogeneous
robotic devices that cooperate in the performance of possibly complex tasks. The
PEIS Ecology project (Saffiotti et al., 2008) has addressed the dynamic configuration
of a robotic ecology by modelling it explicitly as a search problem that can be
tackled with classical Al techniques. Such an approach relies on the existence of pre-
programmed domain knowledge, in the form of specific rules that a domain expert
has identified to express causal, temporal, resource and information dependencies
between the different components of the ecology, and how they should be used in
each situation. However, without learning abilities, such an approach suffers from
a number of limitations. Specifically: (i) it is often difficult or impossible for the
developer to craft the exact conditions under which a configuration would succeed;
(i1) if the configuration strategy is fixed it can neither adapt to potential variations of
different environments, nor take into account the experiences of the system. The
present paper is about adding learning capabilities to the self-configuration of a
robotic ecology.

ROBEL (for ”Robot Behavior Learning”) (Morisset and Ghallab, 2008) shares
many of the motivations of the system presented here. In ROBEL, a planner is

used to compose alternative plans (’’skills”) to perform a given task in the context

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

of selecting among alternative navigation modalities. The approach presented here
differs from ROBEL in several respects. Firstly, we are interested in learning the
adequacy of behavior at a fine-grain: our skills are not plans, but individual percep-
tion or actuation functions. We use a planner to select and combine these functions
according to their fitness into a suitable plan, and we re-plan if needed. Secondly,
our system supports the execution of several tasks (what we call general-purpose).
Finally, we apply our technique to the more general case of a pervasive robot system,
where context information for one robot may be provided by other robots or by
environmental sensors.

CogX (for “Cognitive Systems that Self-Understand and Self-Extend”) (M. Han-
heide et al, 2015) was a European project with the high level aim to develop a unified
theory of self-understanding and self-extension. The project was implemented and
demonstrated in a robot, that showed the ability to extend its own knowledge by
planning learning activities and carrying them out. While CogX shared some of the
motivation of the current work, its focus was on stand-alone robotic agents rather
than on distributed robotic ecologies.

Smart Environments: Learning abilities have been already showcased in a num-
ber of initiatives developing adaptive smart environments and for specific learning
tasks. For instance, Q-learning (Watkins, 1989) or other adaptation policies based on
utility maximization have been used to learn to automate appliances, such as lights,
heating, and blinds (Rashidi, 2009; Tapia et al., 2004; Gallacher et al., 2013). Other
works have harnessed machine learning techniques focusing on recognising user’s
activities in order to provide context-aware services. These systems usually rely on

static sensors placed throughout the environment (Liming et al., 2012; Alam et al.,

6 COMPUTATIONAL INTELLIGENCE

2012; Zhang et al., 2012; Roggen et al., 2013; De et al., 2012), but can also address
more dynamic deployments, by including both static and wearable sensors (Kurz
etal., 2012). Jaeger (2010) proposes a centralized hybrid learning system for activity
recognition integrating a fuzzy rule-based system with probabilistic learning based
on Hidden Markov Models (HMMs) and Conditional Random Fields. Roggen et al.
(2013) puts forward an opportunistic approach where sensor devices self-organize to
achieve activity and context recognition through a modular, though still centralized,
learning system based on HMMs.

All these solutions apply a data-centric perspective, in which sensor nodes are
used for data collections and feature extraction while the actual learning machinery
is centralized on more capable computers. In addition, learning in these systems
focuses on activity recognition (assessing the state of the user) or goal deliberation
(deciding what the smart environment should do to assist its user), and often neglect
the sequential nature of the sensor data produced within the ecology. We are not
aware of any work that like ours defines a distributed and general-purpose learning
service that can be exploited to dynamically adapt a smart robotic system to its
environment and to inform it on how to best operate in a variety of tasks. In addition,
we consider a learning model that has been specifically designed to deal with time-
series data within the class of non-linear approaches, and which is more rarely
exploited in these contexts.

Self-Adaptive Software Architectures: The type of adaptation implemented in
our work is closely related to the MAPE-K (monitor, analyse, plan, execute, knowl-
edge) loop, which is the blueprint model widely used in the engineering of self-

adaptive software systems (Kephart and Chess, 2003a). In particular, as in our work,

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 7

compositional software adaptation relies on the ability for re-configuring the soft-
ware by exchanging some of its algorithms or components with other (pre-existing)
elements in the system to meet the current environment conditions (McKinley et al.,
2004). The vision of Autonomic Computing pushed forward by IBM in the last
decade also followed similar lines (Kephart and Chess, 2003b).

Work in this area provides useful and general principles to guide the design
of self-adaptive systems, such as computational reflection. However, this mainly
focuses on monitoring computational aspects, such as CPU usage and network band-
width. In contrast, the solution presented here exploits a dynamic component frame-
work to provide a uniform interface towards heterogeneous components, enabling
their dynamic configuration and monitoring their ability to satisfy actual functional

requirements.

3. APPROACH

3.1. Requirements and Key Assumptions

The inputs to the system described in this paper are high-level application goals
(represented in Fig. 1) corresponding to the invocation of services that need to be
provided to the user. These service goals can either be autonomously invoked or
explicitly activated by the users themselves (Dragone et al., 2015). For example,
through a human-machine interface the user may request the ecology to clean the
kitchen after she/he had her meal, or to vacuum at least once a day every room in the
home. Here we assume that the question of how application goals are first invoked is

resolved (with the help of one of the methods briefly outlined above), and we focus

8 COMPUTATIONAL INTELLIGENCE

on describing how the subsequent behaviour of the system can be finely tuned to
its environment and (changing) context and thus also improve its performance over
time.

The key to tackling these issues in our approach is to rely on general purpose
model descriptions of the devices in the smart environment and delegate fine-grained

and smooth adaptation of the system to data-driven learning approaches.

[Figure 1 about here.]

The following sections describes the different parts of our system architecture (

depicted in Fig. 1), and how they interact.

3.2. Configuration Planner

The central cognitive component at this level is a Configuration Planner in
charge of determining and monitoring the configurations and action strategies that
can be used to achieve application goals that are set for the smart environment as
a whole (e.g. ’clean the apartment’). By configuration we mean here a specific
choice of what software and hardware components are activated, and how they
are interconnected: namely, which data and control channels are established among
those component.

The plans generated by the configuration planner may require multiple compo-
nents to exchange information and pursue possibly dependent sub-tasks (e.g., ’clean
dining room’, ’clean kitchen’). The plan must specify which task must be performed
by which component and when. Furthermore, the decision to move a robot toward a

specific location will generally require the ability to track the position of the robot

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 9

during its movements: accordingly, the plan must specify which agent (e.g., a sensor
plus an interpretation routine) provides this information to the robot.

The type of configuration planning we use here was initially developed in the
context of PEIS Ecologies in (Lundh et al., 2008), but similar approaches were
proposed, e.g., by Tang and Parker (2005), by Vig and Adams (2006), and by S.
Coradeschi et al (2013).

The configuration planner is a constraint based planner (see Rocco et al. (2013)
for a more detailed technical description). It is grounded on the notion of state
variable, which models elements of the domain whose state in time is represented
by a symbol. State variables represent parts of the real world that are relevant for the
planner’s decision processes. These include the actuation and sensing capabilities
of the devices in the ecology, as well as physical features in the environment. For
instance, a state variable can represent the actions of a given robot, whose meaning-
ful states might be “navigating”, ”grasping” and “idle”. Another state variable can
represent the state of a given light which can be ”on”, ”off” or “broken”. Goals are
also represented through specific values of state variables. The possible evolution of
state variables in time are bound by temporal constraints, e.g., stating that navigation
must occur while the light is on, or that after navigation is completed the robot will

be located at the kitchen. We represent temporal constraints by an extension of Allen

Interval Algebra (Allen, 1984).

[Figure 2 about here.]

State variables and constraints are maintained in a constraint network. The con-

figuration planning process manipulates this network by incrementally adding vari-

10 COMPUTATIONAL INTELLIGENCE

ables and constraints, until the network contains a feasible plan that connects the
initial state to the goals. The resulting constraint network represents one or more
temporal evolutions of the state variables that guarantee the achievement of the
goals under nominal conditions. The configuration planner is itself composed of
several solvers which all manipulate the same shared constraint network. Each solver
takes into account a specific type of constraint, e.g., causal, topological, information,
temporal, or resource constraints. The solvers are orchestrated using a meta-CSP ap-
proach (Mansouri and Pecora, 2016). The conceptual structure of the configuration
planner is shown in Figure 2.

The configuration planner is an example of continuous planning (Dean and Well-
man, 1991). The planner operates in closed loop at a cycle of about 1 Hz, constantly
monitoring the execution and dynamically adapting to contingencies. At each cycle,
the constraint network in the planner is updated to account for the current state of the
ecology as well as goals newly posted to the planner, and the solvers are re-invoked
to update the plan if needed.

In the absence of previous experience, at each iteration the planner makes its
decisions according to pre-programmed preferences. However, the key to the adap-
tation of the system is to exploit learning solutions to (i) improve its ability to extract
meaning from noisy and imprecise sensed data in order to assess the status of the
environment and the application (context), and (ii) adapt its control strategies to
changing and evolving situations over time, from experience rather than by relying
on pre-programmed rules and static context descriptions.

To this end, our architecture adopts a learning system - whose coordination-level

components are realized by a Learning Gateway — to process time series of data

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

gathered by the sensors in the ecology as well as flows of information concerning
the ecology state. Its outputs are used to inform the planner about events concerning
the state of the environment and of the users, and also to predict the success/fail rate
in pursuing specific sub-goals and/or in using given devices and other components
in the ecology. The provided predictions are then exploited by the planner to alter its
planning strategies from the original hard-coded preferences to reflect the changing
environmental conditions or user preferences captured by the learning system, and
thus take informed decisions on which functional or action option is most appropriate

or likely to succeed at any given time.

3.3. Learning System

The learning system realizes a distributed learning infrastructure, based on the
RUBICON Learning Layer by Bacciu et al. (2012), capable of addressing a large
variety of computational learning tasks concerning the on-line processing of streams
of sensor-data and system information to provide predictions regarding the ecology
state (e.g. event recognition). Specifically, it proposes a neural-motivated architec-
ture, where state-of-the-art recurrent neural networks (RNN) (Kolen and Kremer,
2001) are exploited as a computationally efficient means for implementing learning
functions on-board the units composing the ecology.

The learning system predictions are generated by a distributed neural compu-
tation between the learning models deployed on the ecology devices and that are
allowed to interact through a synaptic communication mechanism abstracting from
the details of the underlying network topology and transmission media. The RU-

BICON Learning Layer (Bacciu et al., 2012) provides mechanisms that allow con-

11

12 COMPUTATIONAL INTELLIGENCE

tinuous adaptation of the learned knowledge (i.e. the predictions) by incrementally
adding new learning tasks or by re-training existing ones based on the ecology needs,
by interacting with the components implementing the Performance Monitor func-
tions within the system. Moreover, it provides self-configuration and self-adaptation
mechanisms that allow the identification of relevant information sources for the
learning tasks, the automatic over-the-air deployment of learning modules on the
distributed ecology devices as well as to catering for nodes dynamically joining and
leaving the ecology.

Fig. 3 provides the high-level architecture of the learning system, highlighting
both the distributed learning components as well as the coordination and service level
entities of the system, responsible of the interaction with the Performance Monitor
and Configuration Planner components. At a first glance, the system comprises a
number of coordination level subsystems, running on the Learning Gateway, which
implement the learning system management and coordination functions, together
with bulkier mechanisms associated with the incremental acquisition of new learning
tasks. At this level, the Learning Gateway also realizes the interfacing with other
coordination level instances in the ecology. The Learning Network subsystem, on
the other hand, is a collection of software components implementing the learning
modules on the distributed nodes of the ecology and it ultimately computes the the
run-time predictions of the system. Such learning modules are the key service-level
machinery of the RUBICON Learning Layer and have been designed based on two

cornerstones, namely

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

e the need to deal with temporal noisy data, typically observed in ubiquitous robotic
scenarios, and
e the heterogeneity of the computational resources of the ecology devices, which

demands learning models capable of limited computational requirements.
[Figure 3 about here.]

Based on such considerations, the learning modules have been realized by means
of Leaky Integrator Echo State Networks (LI-ESNs) (Jaeger and Haas, 2004; Jaeger
et al., 2007), a recurrent neural model from the Reservoir Computing (RC) (Luko-
sevicius and Jaeger, 2009) framework, characterized by a good trade-off between
computational efficiency and ability to deal with noisy time-series data (Bacciu et al.,
2014). LI-ESNs are used to model discrete-time input-driven dynamical systems
and are composed of a non-linear recurrent part, called reservoir, which implements
the non-linear dynamical memory of the system through a state representation, and
of a (typically) linear feed-forward component, called readout, which exploits the

richness of the reservoir dynamics to linearly compute the output.
[Figure 4 about here.]

A graphical illustration of the LI-ESN architecture is provided in Fig. 4. Specifically,
in our implementation, at each time step ¢ the LI-ESN module receives in input a
vector containing the readings from a set sensors from the devices of the robotic
ecology, i.e. s(t) = [s1(t), so(t), ..., sn,, ()]} € RNmn, where each s;(t) denotes
a sensed information at time ¢ and NN;, is the total number of considered inputs.
Denoting the reservoir size (the number of reservoir’s neurons) by /V, ., the state of

the LI-ESN at time ¢, i.e. X,¢s(t) € RNres | is computed as a function of the input at

13

14 COMPUTATIONAL INTELLIGENCE

time ¢ and of network’s state at time ¢ — 1, according to the following state transition

equation:
Xres(t) - (1 - a)xres(t - 1) + afres(wins(t) + Wresxres(t - 1))7 (1)

where a € [0, 1] is the leaky parameter that governs the speed of the state dynamics
in reaction to the input, f,.s denotes the element-wise applied activation function of
the reservoir units (we use tanh), W, is the input-to-reservoir weight matrix and
W,..s is the recurrent reservoir weight matrix.

At each time step ¢ the readout computes the output of the LI-ESN network by means
of a linear combination of the elements in the state X, (). In our application, the LI-
ESN modules are used to predict a preference weight value for the planner, thereby,
denoting by v, (t) the prediction computed as output by the LI-ESN at time ¢, we

have:

yw(t) = WoutXres (t)a (2)

where w,,,; is the reservoir-to-readout weight vector.

The extreme efficiency of LI-ESN training, with respect to standard RNN, stems
from the fact that only the readout component requires a training process. In partic-
ular, the elements in w,,; in eq. 2, which represent the parameters of the readout,
are adjusted on a training set, typically by means of direct methods such as ridge
regression with regularization parameter \,. The parameters of the reservoir com-
ponent, i.e. the values in W, and W,., in eq. 1, are set according to the Echo
State Property (see Jaeger (2001); Yildiz et al. (2012)), by scaling the spectral radius
of its recurrent weight matrix (Lukosevicius and Jaeger, 2009) to a value that is

smaller than 1 (we used the typical value of 0.9). The key hyper-parameters of LI-

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

ESN networks considered here are: (i) the reservoir size N, (i.e. the dimension of
the state space), (ii) the leaky parameter a and (iii) the readout regularization \,., used
for ridge regression. Further information on the characteristics of the RC approach
can be found in the literature (Jaeger and Haas, 2004; Lukosevicius and Jaeger, 2009;
Gallicchio and Micheli, 2011).

The Learning Network realizes an adaptive environmental memory that embeds
knowledge within the LI-ESN learning modules distributed in the environment. At
run-time, the single LI-ESN processes device-local information, e.g. gathered by the
on-board sensors of a mote, and integrates this with remote inputs received from
other learning modules and delivered through the synaptic communication mech-
anism Bacciu et al. (2012). The learning module implementation (and associated
synaptic communication) is available as a NesC library Gay et al. (2003) for low-
power TinyOS-enabled WSN motes, and as a Java API for more powerful devices.

The predictions generated by the Learning Network through the distributed neu-
ral computation are collected by the coordination level component referred to as
LN (Learning Network) Interface in Fig. 3. This component provides an entry point
to the learning network subsystem, providing methods to interact with the learn-
ing modules and allowing abstraction from implementation and deployment details,
such as distribution. This interface also takes care of publishing the learning system
predictions to the other coordination-level components of the system, such as the
Configuration Planner.

The learning system provides a variety of mechanisms for continuous adap-
tation of the knowledge captured by the Learning Network. The Training Agent

component (deployed at coordination level on the Learning Gateway) manages the

15

16 COMPUTATIONAL INTELLIGENCE

learning phases of the system, handling the training information received from the
Performance Monitor instances of the ecology. In particular, it implements the more

computationally demanding processes of the system that include mechanisms for:

e Incremental Learning, allowing dynamic acquisition of new learning tasks at run-
time or retraining from scratch the existing ones by exploiting a mirrored copy
of the deployed learning models maintained by the Network Mirror component in
Fig. 3;

e Unsupervised Feature Selection, based on the Iterative Cross-correlation Filter
algorithm by Bacciu (2016), that allows automatic identification of those input
sources that are either redundant or provide irrelevant information;

e a model selection mechanism with integrated Supervised Feature Selection for
RC (Bacciu et al., 2015), allowing automatic selection of the best learning model
configuration and parameters and the determination of the most-predictive input

sources for a computational learning task.

These three mechanisms are integrated to provide the learning system with self-
configuration and self-adaptation capabilities. In particular, the end-to-end process

of training and deploying a new learning model can be summarized as follows:

(1) First, the feature selection mechanisms are used as a preliminary step of the
incremental learning chain to identify a compact set of predictive and non-
redundant input sources for the new task from the initial candidate superset of
sources provided by the Performance Monitor.

(2) The Training Agent exploits the model selection mechanism to identify the best-

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

performing configuration of the learning model that is trained using only the
input information identified by the feature selection process.

(3) The incremental learning functions are used to allocate the newly-trained learn-
ing model on the most adequate device of the ecology, using an allocation policy
that favours minimizing the communication effort required to bring all the learn-
ing model inputs to the hosting device.

(4) Finally, the Training Agent deploys the newly trained learning module on the
target device using over-the-air communication and appropriately sets up the
associated synaptic communication (e.g. to feed the learning module inputs and

to transfer its predictions).

3.4. Performance Monitor

The final piece of the system in Fig. 1 is the Performance Monitor, that me-
diates the interaction between the Configuration Planner and the Learning Gate-
way. Specifically, the responsibility of the monitor is to collect and analyse the
performance of the ecology and its components, and to trigger the re-training of
the learning system whenever this fails to be satisfactory or deteriorates in a way to
suggest that the planner needs to adapt its configuration and/or action strategy. To
this end, the monitor maintains a set of performance maps, each corresponding to
an aspect of interest for the ecology. For instance, a navigation performance map
is maintained to collect information on the performance of the navigation goals
executed within the system. For the purpose of this work’s applications, the gran-
ularity of the map can be limited to the rooms composing the indoor environment

where the system is deployed, i.e. the navigation map is topological and maintains

17

18 COMPUTATIONAL INTELLIGENCE

information on the performance of all navigation tasks ending in each room of
the apartment. Different maps can be maintained for different components (e.g.,
a different localization systems) in order to monitor their performance at a finer
granularity.

Our monitor component is implemented using the Self-OSGi framework (Drag-
one et al., 2012), a Java based tool designed to supervise component-based systems.
Specifically, we have used Self-OSGi to implement monitoring components (man-
agers) to monitor the most important sub-systems of the ROS navigation stack. These

include:

e NavigationManager: this monitor supervises the instantiation of any sub-systems
necessary to perform map-based navigation. It also exports a PEIS interface to
accept navigation goals that are forwarded to the underlying ROS system in order
to instruct the robot to move to given positions. Once a navigation goal is received
and forwarded to the navigation stack, the monitor subscribes to the ROS action
feedback reporting the estimated progress of the robot on its way to its current

target, and publishes the feedback in PEIS, for the benefit of high-level controllers.

e LocalisationMonitor this monitor supervises localisation functions. Available im-
plementations include the standard particle filter included (implemented with lo-
calisation sub-systems included in the standard ROS navigations stack, which uses
a particle filter to track the pose of a robot against a known map, or a localisa-
tion component exploiting an RFID reader mounted on the robot navigating over

an RFID-equipped floor). In addition, it estimates the quality of the localization

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 19

provided by these sub-systems, and publishes the quality estimate on the PEIS

tuplespace.

Finally, our monitoring system includes a Logging service to configure, start and
stop the logging of raw-sensor data but also higher-level information, such as the
robots’ estimated locations. The resulting logs are recorded as sequences of time-

stamped tuples into a relational database.

4. EXPERIMENTS

4.1. Experimentation Goal

We tested the approach outlined in the previous section in a practical application
comprising a home environment where a simple mobile robot operates in support
of a user. The goal of the experiments is to show the capabilities of the system
in adapting to both changes in the characteristics of the environment and to user
personal preferences. In particular, we assess the ability of the system in identifying
performance issues and dynamically deploying a learning task to address them,
autonomously selecting relevant information sources and handling learning module
training and deployment.

Two experimental case studies have been designed to exercise system self-adaptation?.
The first task, referred to as Entrance Mirror, concerns an ambient alteration inducing
disturbances to the laser-based localization system of the mobile robot when navi-

gating in certain areas of the flat. The second task, referred to as Kitchen Cleaning,

2Datasets can be downloaded here: http://pages.di.unipi.it/bacciu/angendatasets/(files will be uploaded to a public repository

before paper publication).

20 COMPUTATIONAL INTELLIGENCE

concerns the adaptation to a user’s preference of not sharing the kitchen with a
cleaning robot. In both case studies, the system is confronted with a recurrent failure
or performance degradation when pursuing an ecology goal (e.g. navigation or house
cleaning), that is induced by un-modelled aspects of the tasks. We show how the self-
adaptation abilities of the system allow it to change its execution strategies to avoid

those action plans that produce failure or performance degradation.

4.2. Experimental Setup

The experimental scenario has been realized in the Angen research and inno-
vation apartment,® which is part of the Angen senior residence facility in the city
of Orebro, Sweden. It comprises a real-world flat sensorized by an RFID floor, a
Turtlebot (www.turtlebot.com) mobile robot with range-finder localization and a
Wireless Sensor Network (WSN) with six mote-class devices from the TelosB family
(Crossbow, 2011). The robot performs actions in support to the user’s daily activities
which entail navigating between different rooms, as depicted in Fig. 5(a). The WSN
motes are distributed in the kitchen and across the living room and entrance, as
detailed in Fig.5(b) where the term M/; is used to denote the i-th mote. Each device
monitors the environment via light (L), temperature (T), humidity (H) transducers
and passive infrared (P) presence sensors, for a total of 24 sensor streams being
collected at a 2Hz rate. The snapshots of the mote locations in Fig. 5(b) show that
some devices are in a position allowing the presence sensors to be triggered by both
the robot and user motion, e.g. M3 and M;g, while others are triggered solely by user

presence, e.g. M.

Shttp://angeninnovation.se

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 21

[Figure 5 about here.]

The system implemented in the testbed deploys the following software compo-
nents: (i) a version of the TinyOS Learning Network API (implementing synaptic
communication and learning functions for the WSN motes), and (ii) an embedded
WSN control component for the purpose of node management and for training data
collection. A gateway device, connected to the WSN sink through a serial interface,
has been deployed to run instances of the Learning Gateway API as well as of com-
ponents of the Control Layer including the whole agent monitoring suite described
in the previous section. Communication between each monitor components and the
localization and navigation sub-systems running on the robot rely on the robotic
operating system, by exploiting the integration between the agent system and ROS,
implemented over ROSJava (Kohler and Conley, 2011).

The experiments explore how the learning system responds when provided with
different initial sets of information sources. To this end, we consider a set of candi-
date inputs that include all information sources available, i.e. the 24 sensor streams
from the motes and the robot position and pose (x, y coordinates and orientation 6).
Figure 6 shows a snapshot of the data for the Entrance Mirror experiment which
clearly highlights the considerable amounts of irrelevant/noisy input features out of
which the system has to automatically identify relevant predictors for the preference
weight. In this respect, we also assess the contribution of the feature selection mech-
anisms made available by the learning system (see Section 3.3), by confronting the
predictive performance when using all the 27 available features (global configura-

tion) with respect to using the attribute identified by feature selection (global feature

22 COMPUTATIONAL INTELLIGENCE

selection configuration). In addition, we consider two configurations, referred to as
local and global ad-hoc, using expert knowledge concerning the most relevant input
sources for the two tasks. The former uses only selected information from a single
mote whose transducers capture the most relevant (i.e. predictive) information for
the task: e.g., mote M3 in Fig. 5(b), for the Kitchen Cleaning task, as its presence
sensor is triggered by both the robot and the user entering the kitchen. The global ad-
hoc configuration integrates selected information from multiple (task-relevant) sen-
sors. Each input configuration has undergone an automated hold-out model selection
procedure exploring RC hyper-parameters to seek the best module configuration.
Specifically, the system is configured to train and validate LI-ESN modules with
reservoir size N,.s in {10, 50, 100, 300, 500}, leaky parameter « in {0.1,0.5, 1} and
readout regularization A, in {1000, 100, 10, 1,0,0.1,0.01,0.001}. Test sets for the
experiments have been generated by holding out =~ 30% of the data collected by the
Performance Monitor component, while the remaining ~ 70% serves for training

and validation purposes.

[Figure 6 about here.]

4.3. Entrance Mirror Experiment

4.3.1. Goal and Setup. The goal of the first experiment is to test the ability
of our system to autonomously adapt to modifications to the environment affecting
the performance of one of the localization sub-systems available to the robot. In
particular, we consider how an environment characteristics unforeseen at design
time can introduce a degradation in the ecology ability in pursuing navigation goals.

Then, we show how the adaptation mechanisms can be used to revise the background

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 23

knowledge imbued in the planner before deployment to cope with the unforeseen
environment aspect, hence avoiding recurrent failures and performance degradation.
We consider a robot that can track its position either by exploiting the stan-
dard Adaptive Monte Carlo Localization (AMCL) algorithm included in the ROS
navigation stack by using data captured by its on-board RGBD Kinect camera ??
(kin), or by using an RFID reader to detect the RFID tags placed under the floor of
the apartment. While the second localization system is less expensive, in terms of
energy consumption and of resource computation needed, it is also less precise. For
this reason, the system is configured with factory preference weights that favor the
use of AMCL localization in default conditions (e.g. in absence of device faults).
The experiment concerns the introduction of an ambient alteration obtained by
positioning a large mirror close to the apartment entrance, depicted as a rectangle
on the map in Fig. 5(a). The presence of the mirror inhibits the effectiveness of
the Kinect device when the robot navigates along certain paths, as the structured
infra-red light emitted by that sensor is reflected by the mirror (see the snapshot in
Fig.7). In particular, the Kinect is affected in certain curved trajectories facing the
mirror (dotted red arrow in Fig. 5(a)), while other straight trajectories will generally
not be affected by the the mirror (continuous green arrow in Fig. 5(a)). When the
robot moves along the curved trajectories, the AMCL algorithm is confused since
the corridor suddenly appears to have a large opening where none was previously
recorded in the map of the environment (see Fig. 8 for an example of perturbed

localisation).

[Figure 7 about here.]

24 COMPUTATIONAL INTELLIGENCE

[Figure 8 about here.]

As a result of this ambient alteration, we expect a quality degradation of the
AMCL pose when performing navigation tasks involving trajectories facing the mir-
ror. Despite such performance degradation, a non-adaptive system would keep using
the AMCL localization coherently with the preference weight encoded at factory
time which, however, is no longer consistent with the new ambient conditions. On the
other hand, we expect an adaptive system to identify, over time, such degradation and
to learn to pro-actively downgrade preference towards AMCL when the distorting
conditions occur. Figure 9 shows the fixed preference weights of a non-adaptive sys-
tem for RFID and AMCL localization compared with predicted preference weights
for AMCL under two conditions, one in which a the localization system will be
likely to incur in a disturbance and one without. One can clearly see how using
a predictive approach, would allow steering of the preference towards RFID-based
localization only in those situations in which this is actually more robust than AMCL

localization.

[Figure 9 about here.]

4.3.2. Experiment Description. We have instructed the robot with a series of
tasks causing it to move along both curved and straight trajectories, simulating robot
daily activities to accelerate data collection over a short period of time. The mon-
itoring system described in the previous section has been used to collect evidence
of the performance of the robot’s localization system on the single trajectories. The
quality of the actual trajectory performed by the robot using the localization system

has been assessed in terms of oscillation of the magnitude of the instantaneous robot

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

speed with respect to the average speed on the trajectory. The underlying intuition
is that a well functioning service robot in a home environment will move smoothly
without considerable speed jumps. More formally, the navigation performance w; at

time ¢ 1s
wy = exp (— (T, — p)?) 3)

where 41 is the average magnitude of the speed on the full trajectory. The term v; is

recursively defined as
Uy = max{U;_1, v} 4

where v; is the magnitude of velocity at time ¢ and Eq. (4) ensures a monotonically
decreasing performance measure in (3).

The monitoring component records all relevant status information during task
execution (i.e all WSN sensors and robot positioning data), it assesses the quality
of navigation using (4) and updates the aggregated statistics for the performance
map associated with the navigation task. For this experiment, it has autonomously
collected 65 example trajectories (with data sampled at 2Hz). Figure 10 plots the w;,
value for the single trajectories as a function of time, each trajectory being repre-
sented by a different line: note how mirror influence results in the majority of the
curved trajectories having target values ending under 0.5, that is the threshold for

deeming navigation performance satisfactory.
[Figure 10 about here.]

The example data collected by the monitoring component is fed to the distributed

learning system so that it can learn to predict the quality of AMCL navigation under

25

26 COMPUTATIONAL INTELLIGENCE

the effect of the unmodeled disturbance (i.e. the mirror). The distributed learning sys-
tem is thus supplied with the 65 sequences of 24 transducers readings and 3 measure-
ments concerning robot location and pose values, as well as the corresponding target
values in Fig. 7. Upon reception of such data, the Learning Layer autonomously

deploys a new learning task by

(1) identifying what input information is worth using from the superset provided by
the

(2) training and validating the learning module;

(3) deploying the final preference weight predictor as well as the supporting synap-
tic

To provide a baseline performance for feature selection and to assess the effect

of distribution we have also tested alternative configurations of the input data, as

described in Section 4.2.

4.3.3. Results. Table 1 shows the detail of the learning model inputs for the var-
ious configurations: the global feature selection configuration reports the outcome
of the feature selection process. Note how this mechanism is able to automatically
identify a compact subset of input sources (i.e. 6) from the initial set of 27 features
provided by the supervisor component. This subset is coherent with the ground
truth configuration global ad-hoc that is based on expert knowledge on the input
sources actually relevant for the task (e.g. based on mote location in Fig. 5), showing
the self-configuration capabilities of the system as it pertains to the autonomous

identification of data sources for dynamically acquired learning tasks.

[Table 1 about here.]

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 27

Each input configuration has been assessed through the automated model se-
lection procedure available in the system and exploring the RC hyper-parameters
values in Section 4.2 to seek the best learning module configuration. Figure 11
shows the Mean Absolute test Error (MAE) achieved by the LI-ESN as a function
of the reservoir size (averaged on 10 reservoir guesses). The beneficial effect of
feature selection is evident, since considering all available streams of information
(i.e. the global configuration) inevitably leads to poorer performances as the size of
the reservoir increases. This is due to the fact that larger learning models are more
prone to fit irrelevant and noisy information arising from non-significant inputs for
the task, e.g. light and humidity readings, resulting in a reduction of the quality of
the learned predictor. On the other hand, the input configuration identified by the
feature filtering phase yields comparable results to input configurations based on
ad-hoc expert knowledge. Note how, for this particular task, using only information
local to a single, but very relevant for the task, WSN device is sufficient to achieve a

performance that is basically equivalent to that of the global ad-hoc configuration.

[Figure 11 about here.]

A deeper look at the ground truth weights in Fig. 10 highlights the noisy nature of
the target function, where some straight trajectories which are not influenced by the
mirror show, nevertheless, poor navigation performances. On the other hand, a few
curved trajectories do not seem to be influenced by mirror presence, showing target
values stably over 0.5. This defines a very challenging learning task where the appro-
priate satisfaction weight is not readily predicted. Despite such conflicting target in-

formation, the learning system achieves a good predictive performance that enables

28 COMPUTATIONAL INTELLIGENCE

the control components to take more informed choices concerning which navigation
system to use. In particular, if considering the predicted preference weights (in place
of the hard-coded AMCL weight) to determine which navigation system to use,
the control system would have increased the number of Entrance navigation tasks
completed successfully by a 20%, effectively avoiding the disruption introduced by
the unmodeled mirror presence on specific trajectories and which is documented on

the video* snapshots in Fig. 12.

[Figure 12 about here.]

4.4. Kitchen Cleaning Experiment

4.4.1. Goal and Setup. The second experiment tests the ability of our system
to autonomously adapt to un-modeled user preferences. We have considered a sce-
nario where a user prefers not to have the cleaning robot (simulated by a Turtlebot
platform) operating in the kitchen while he is in the same room (the same approach
can be generalized to further rooms in the flat). Without the ability to identify such
preferences and adapt the plans of the ecology accordingly, the system will keep
sending the robot to clean the kitchen also when the user is present, resulting in the
user being bothered by the system and in a number of failures of the cleaning task due
to the abortion forced by the user. We show how the system is capable of identifying
such a user preference from the aborted cleaning tasks and to learn an associated
preference weight that provides the planner with a context-aware indication of when
to avoid sending the robot to clean the room.

4Videos can be downloaded here: http://pages.di.unipi.it/bacciu/entrance_task/ (files will be up-

loaded to a public repository before paper publication).

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 29

4.4.2. Experiment Description. We have instructed the robot with a series of
cleaning tasks in the kitchen to accelerate the time-span of daily data collection. For
the sake of simplicity, it has been assumed that the robot was always located in the
living room when the kitchen cleaning goal was posted, but the approach can be
generalized to have the origin in any room of the flat. The stereotypical navigation
performed by the robot is shown as a dashed blue arrow in Fig. 5(a). We have run
a total of 50 tests in which we have also instructed a human volunteer to simulate

daily presence in the flat, by requiring him to

(1) be somewhere outside of the kitchen for the entire length of the test, so that the
robot was left undisturbed to move to the kitchen and clean it;

(2) be and remain in the kitchen for the whole test;

(3) be in the kitchen at the beginning of the test but leave and move to another room
afterward, before or just after the robot entered in the kitchen;

(4) be somewhere else outside the kitchen (e.g. hall, bedroom, bathroom) and walk

into the kitchen at some point of the test.

The monitoring system has been used as in the previous section to collect infor-
mation from all the flat sensors and the robot’s pose and orientation. Performance
assessment, in this task, is associated with the successful completion of the cleaning
duties by the robot and can hence be related with goal achievement.

We assume that the robot can complete its duties if the user is not in the kitchen,
whereas, when the user is in the kitchen it prevents the robot from completing its
goal by some form of user-system interaction mechanism (e.g a simple one would

use a robot bumper to provide a negative feedback for the action). For the sake

30 COMPUTATIONAL INTELLIGENCE

of this experiment, user feedback has been added at post processing, by adding
a negative feedback (i.e. a 0 target preference) whenever the robot attempted to
clean the kitchen while the user was already in the room or whenever he entered
the kitchen while the robot was cleaning. We provided a positive feedback (i.e. a

target preference equal to 1) in all the other cases.

4.4.3. Results. The learning system has been tested using the input configu-
rations summarized in Table 2: again, the global feature selection configuration
reports the outcome of the feature selection process on all the 27 available inputs.
It can be noted how this mechanism enforces the self-configuration capabilities of
the distributed learning system by reducing the number on final inputs to 6 very
significant information sources. Such an ability is essential in a resource constrained
scenario, where fewer inputs means less information to be transferred over-the-air
and less complexity in the final learning model (thus less costly memory finger-
prints). In particular, based on the sensors’ location in Fig. 5, it is clear that the PIR
sensors detected as relevant by the feature selection mechanisms are all those that are
triggered by either user or robot movements in the flat. Notably, the feature selection
mechanism also filters out the y-position of the robot and its orientation, which is
coherent with the fact that the robot moves, essentially, on horizontal trajectories

along the z-axis.
[Table 2 about here.]

The test MAE of the models selected by the validation procedure is shown in
Fig. 13: the positive effect of considering only relevant input information to predict

the preference weight is quite neat, with the configuration using all available infor-

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

mation experiencing a clear performance decrease (i.e. an increase in the test error)
as the size of the reservoir increases. Conversely, the feature selection configura-
tion achieves an identical performance to the ad-hoc configuration exploiting expert
knowledge: see also the results for the model-selected configurations in Table 3. The
integration of information captured by different WSN motes is essential to ensure
a good prediction quality, with the ad-hoc configuration using information from a
single mote considerably under-achieving with respect to a distributed approach (see

the low performance values of the local configuration in Table 3).
[Table 3 about here.]

Finally, the results in Fig. 13 also suggest that a learning module with a small
reservoir of only 50 units already presents a good predictive performance. This
aspect is key for actual learning model deployment, as a LI-ESN with a 50-unit
reservoir has a memory fingerprint that makes it suitable for being embedded also in
the ecology nodes with lowest computational capabilities, such as the WSN motes.
In this respect, and also to assess the full self-adaptation pipeline of our system,
we have tested the actual deployment of the 50-unit learning module resulting from
the feature selection configuration. Figure 14 shows snapshots of the video demo?®
documenting how the ESN predictions are used by the control system to dynamically
adapt the scheduling of the mobile robot task to comply with the user preferences
and to its presence pattern in the kitchen. For instance, it shows the Configuration

Planner having learned to dynamically avoid or defer the kitchen cleaning task when

5Demo video can be downloaded here: http://pages.di.unipi.it/bacciu/kitchen_task/(files will be

uploaded to a public repository before paper publication).

31

32 COMPUTATIONAL INTELLIGENCE

the user is stably detected in the kitchen by the presence sensors, e.g. rescheduling

the robot activities to execute an alternative navigation in the meanwhile.

[Figure 13 about here.]

[Figure 14 about here.]

5. CONCLUSION AND FUTURE WORK

We have presented an Ambient Intelligence approach for self-adaptive robotic
ecologies and described a series of experiments that we have carried out to evaluate
its effectiveness in real application settings. Our solution is able to monitor the
performances and the outcomes of its own actions and to exploit a pervasive learning
service to learn that there are (previously unknown) dependencies between certain
sensor inputs and the suitability of certain plans of actions and system configurations
out of a set of suitable options to achieve its goals.

One of the key aspect of the proposed approach is the fact that it provides an
effective means to integrate a-priori available knowledge concerning the application,
the environment and the systems, encoded in the rules and constraints of the config-
uration planner, with the adaptation capabilities of a sub-symbolic memory, imple-
mented by the distributed learning system. In this respect, the distributed learning
system acts as an interpreter and bridge between the noisy contextual information
gathered through the ambient sensors, and the higher order functions of the ecology
in the planner, by relaying on the simple concept of learning adaptive action and
plan preference weights. Our system also allows embedding in the environment the

contextual knowledge acquired by the ecology, by deploying the components of the

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 33

learning system on the distributed nodes of the ecology, even on very low power
ones such as tiny mote devices within a 802.15.4 wireless sensor network.

We have described an instantiation of our system on a real-world ambient in-
telligence scenario. Our solution uses a number of performance-monitoring com-
ponents and integrates them with a configuration planner and with an agent-based
logging and monitoring framework. The resulting system can autonomously provide
teaching signals to the learning service, and exploit its predictions to smoothly and
autonomously adapt to user’s preferences and changing environments. This is a very
important improvement over the use of hard-coded strategies. Compared to existing
works and specific examples of robot’s learning and learning for smart environments,
our approach represents a novel solution for (i) the way it can be applied as a general
purpose learning service, and (ii) for its seamless exploitation of both robots’ on-
board and ambient sensors. In terms of existing work, our approach also explicitly
tackles the timeseries nature of the data that is typically involved in the ambient
sensing, by proposing an approach founding on recurrent neural networks in place
of typical approaches in literature which rely on learning models for static, flat data.
Our results show that these ESN neural models can be used to provide efficient and
modular recurrent neural network models tailored to the very low-computational
capacity of the cheap sensor mote used in robotic ecologies.

Overall, these advancements can greatly simplify design, customization and adap-
tation of smart robotic environments, and ultimately enhance the user acceptance of
this technology with systems constantly tailored to users’ needs. What makes our
solution a practical one, which limits the computational cost of our learning methods

and enables us to use fully automatic feature selection algorithms, is (i) the existence

34 COMPUTATIONAL INTELLIGENCE

of a finite set of pre-defined goals and control options, and (i1) the reduced number
of sensor sources included in current smart homes.

Future research should increase the scalability of these systems, and address the
challenging problem of coupling them with general purpose cognitive mechanisms
to drive efficient system’s exploration of control options. Further, we would like to
investigate the advantages of having a distributed learning system. In this respect,
we foresee two potentially impacting contributions: on the one hand, we expect the
ability to process and fuse information locally, close to where such data is generated
(e.g. directly on-board the wireless sensor motes), to allow reducing communication
effort and thus power consumption. On the other hand, since the system distributes
the knowledge acquired by the learning system across the environment, we would
like to assess how distributions impacts sharing of such learned knowledge between

agents (robots, actuators).

REFERENCES

Microsoft kinect for xbox. http://www.xbox.com/en-GB/kinect/.

AKIMOTO, T., and N. HAGITA. 2006. Introduction to a Network Robot System. In Intelligent Signal Processing
and Communications, 2006. ISPACS ’06. International Symposium on, pp. 91 —94.

ALAM, M.R., M.B.I. REAZ, and M.A. MOHD ALI. 2012. Speed: An inhabitant activity prediction algorithm
for smart homes. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on, 42(4):985-990. ISSN 1083-4427. .

ALLEN, JAMES F. 1984. Towards a general theory of action and time. Artif. Intell., 23(2):123-154. ISSN
0004-3702. .

BAcciu, DAVIDE. 2016. Unsupervised feature selection for sensor time-series in pervasive computing applica-

tions. Neural Computing and Applications, 27(5):1077-1091.

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

Bacciu, D., P. BARSOCCHI, S. CHESSA, C. GALLICCHIO, and A. MICHELIL 2014. An experimental
characterization of reservoir computing in ambient assisted living applications. Neural Computing and
Applications, 24 (6):1451-1464. ISSN 0941-0643.

BAcclu, DAVIDE, FILIPPO BENEDETTI, and ALESSIO MICHELI. 2015. Esnigma: efficient feature selection
for echo state networks. In Proceedings of the European symposium on artificial neural networks,
computational intelligence and machine learning (ESANNI15), pp. 189-194.

BAcciu, D., S. CHESSA, C. GALLICCHIO, A. LENZI, A. MICHELI, and S. PELAGATTI. 2012. A general
purpose distributed learning model for robotic ecologies. In Robot Control, Volume 10, pp. 435-440.
BAcciu, D., M. D1 Rocco, C. GALLICCHIO, A. MICHELI, and A. SAFFIOTTI. 2014. Learning context-aware
mobile robot navigation in home environments. In Proc. of the 5th Int. Conf. on Information, Intelligence,

Systems and Applications (IISA 2014), IEEE, pp. 57-62.

CROSSBOW. 201 1. Datasheet of telosb.

DE, DEBRAJ, SHAOJIE TANG, WEN-ZHAN SONG, DIANE COOK, and SAJAL K. DAS. 2012. Activity-aware
sensor network in smart environments. Pervasive and Mobile Computing, 8(5):730 — 750. ISSN 1574-1192.

DEAN, T.L., and M.P. WELLMAN. 1991. Planning and control. Morgan Kaufmann Publishers Inc.

DRAGONE, M., S. ABDEL-NABY, D. SWORDS, G.M.P. O’HARE, and M. BROXVALL. 2012. A programming
framework for multi-agent coordination of robotic ecologies. In ProMAS 2012, pp. 72-89.

DRAGONE, MAURO, GIUSEPPE AMATO, DAVIDE BACCIU, STEFANO CHESSA, SONYA A. COLEMAN,
MAURIZIO D1 RoccO, CLAUDIO GALLICCHIO, CLAUDIO GENNARO, HECTOR LOZANO PEITEADO,
LIAM P. MAGUIRE, T. MARTIN MCGINNITY, ALESSIO MICHELI, GREGORY M. P. O’HARE, ARANTXA
RENTER{A, ALESSANDRO SAFFIOTTI, CLAUDIO VAIRO, and PHILIP J. VANCE. 2015. A cognitive robotic
ecology approach to self-configuring and evolving AAL systems. Eng. Appl. of Al, 45:269-280.

DRESSLER, F. 2006. Self-organization in autonomous sensor/actuator networks. In In Proc. of the Int Conf on
Architecture of Computing Systems.

GALLACHER, S.M., E. PAPADOPOULOU, N.K. TAYLOR, and M.H. WILLIAMS. 2013. Learning user prefer-
ences for adaptive pervasive environments: An incremental and temporal approach. ACM Transactions on
Autonomous and Adaptive Systems, 8(5).

GALLICCHIO, C., and A. MICHELI 2011. Architectural and markovian factors of echo state networks. Neural
Networks, 24(5):440-456.

GAY, DAVID, PHILIP LEVIS, ROBERT VON BEHREN, MATT WELSH, ERIC BREWER, and DAVID CULLER.

2003. The nesc language: A holistic approach to networked embedded systems. In Proceedings of the

35

36 COMPUTATIONAL INTELLIGENCE

ACM SIGPLAN 2003 conference on Programming language design and implementation, PLDI 03, ACM,
pp. 1-11.

JAEGER, H. 2001. The “echo state” approach to analysing and training recurrent neural networks. Technical
report, GMD - German National Research Institute for Computer Science.

JAEGER, H. 2010. Ksera project: Deliverable d4.1 learning & decision making algorithms in pervasive
environments. Technical report.

JAEGER, H., and H. HAAS. 2004. Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wirelesscommunication. Science, 304(5667):78-80.

JAEGER, H., M. LUKOSEVICIUS, D. POPOVICI, and U. SIEWERT. 2007. Optimization and applications of echo
state networks with leaky-integrator neurons. Neural Networks, 20(3):335-352.

KEPHART, J.O., and D.M. CHESS. 2003a. The vision of autonomic computing. Computer, 36(1):41-50. ISSN
0018-9162. .

KEPHART, JEFFREY O, and DAVID M CHESS. 2003b. The vision of autonomic computing. Computer, 36(1):41—
50.

KiM, JONG-HWAN, YONG-DUK KIM, and KANG-HEE LEE. 2004. The Third Generation of Robotics:
Ubiquitous Robot. In Proc of the 2nd Int Conf on Autonomous Robots and Agents.

KOHLER, DAMON, and KEN CONLEY. 2011. rosjava—an implementation of ros in pure java with android
support.

KOLEN, J.F., and S.C. KREMER editors. 2001. A Field Guide to Dynamical Recurrent Networks. IEEE Press.

KURZ, MARK, HLZL GEROLD, ALOIS FERSCHA, ALBERTO CALATRONI, DANIEL ROGGEN, GERHARD
TRSTER, HESAM SAGHA, RICARDO CHAVARRIAGA, JOS DEL R. MILLN, DAVID BANNACH, KAl
KUNZE, and PAUL LUKOWICZ. 2012. The OPPORTUNITY Framework and Data Processing Ecosystem
for Opportunistic Activity and Context Recognition. International Journal of Sensors, Wireless Communi-
cations and Control, 1(2):102—-125.

LIMING, C., C.D. NUGENT, and W. HUL 2012. A knowledge-driven approach to activity recognition in smart
homes. Knowledge and Data Engineering, IEEE Transactions on, 24(6):961-974. ISSN 1041-4347. .
LUKOSEVICIUS, M., and H. JAEGER. 2009. Reservoir computing approaches to recurrent neural network

training. Computer Science Review, 3(3):127 — 149. ISSN 1574-0137.
LUNDH, ROBERT, LARS KARLSSON, and ALESSANDRO SAFFIOTTI. 2008. Autonomous functional configura-

tion of a network robot system. Robot. Auton. Syst., 56(10):819-830. ISSN 0921-8890. .

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 37

M. HANHEIDE ET AL. 2015. Robot task planning and explanation in open and uncertain worlds. In Artificial
Intelligence. In press. DOI: http://dx.doi.org/10.1016/j.artint.2015.08.008.

MANSOURI, MASOUMEH, and FEDERICO PECORA. 2016. A robot sets a table: a case for hybrid reasoning with
different types of knowledge. Journal of Experimental & Theoretical Artificial Intelligence, 28(5):801-821.

MCKINLEY, PHILIP K., SEYED MASOUD SADJADI, ERIC P. KASTEN, and BETTY H. C. CHENG. 2004.
Composing adaptive software. Computer, 37(7):56-64.

MORISSET, BENOIT, and MALIK GHALLAB. 2008. Learning how to combine sensory-motor functions into a
robust behavior. Artificial Intelligence, 172(4):392-412.

NREF. 2014. Network robot forum. www.scat.or.jp/nrf/English/.

RASHIDI, P. 2009. The resident in the loop: Adapting the smart home to the user. IEEE Transactions on Systems,
Man, and Cybernetics journal, Part A., 39(5):949959.

Rocco, M. D1, F. PECORA, P. KUMAR, and A. SAFFIOTTI. 2013. Configuration planning with multiple
dynamic goals. In Proc. of AAAI Spring Symposium on Designing Intelligent Robots.

ROGGEN, DANIEL, KILIAN FORSTER, ALBERTO CALATRONI, and GERHARD TROSTER. 2013. The adARC
pattern analysis architecture for adaptive human activity recognition systems. Journal of Ambient Intelli-
gence and Humanized Computing, 4(2):169-186.

S. CORADESCHI ET AL. 2013. GiraffPlus: Combining social interaction and long term monitoring for promoting
independent living. In Proc of the 6th Int Conf on Human System Interaction, IEEE, pp. 578-585.

SAFFIOTTI, A., M. BROXVALL, M. GRITTI, K. LEBLANC, R. LUNDH, and J. RASHID. 2008. The peis-ecology
project: Vision and results. In In Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS) - to appear, 2008. In: Proc. of the IROS-08 Workshop on Network Robot Systems.

SANFELIU, A., N. HAGITA, and A. SAFFIOTTI. 2008. Special issue on network robot systems. Robotics and
Autonomous Systems, 56(10):793-797.

TANG, FANG, and LYNNE E. PARKER. 2005. ASyMTRe: Automated synthesis of multi-robot task solutions
through software reconfiguration. In Proc. of the 2005 IEEE International Conference on Robotics and
Automation, ICRA 2005, pp. 1501-1508.

TAPIA, EM., SS. INTILLE, and K. LARSON. 2004. Activity recognition in the home using simple and ubiquitous
sensors. In Pervasive Computing, pp. 158-175.

VIG, LOVEKESH, and JULIE A ADAMS. 2006. Multi-robot coalition formation. Robotics, IEEE Transactions
on, 22(4):637-649.

WATKINS, C.J.C.H. 1989. Learning from delayed rewards. Ph. D. thesis, University of Cambridge, England.

38 COMPUTATIONAL INTELLIGENCE

YILDIZ, [.B., H. JAEGER, and S.J. KIEBEL. 2012. Re-visiting the echo state property. Neural networks, 35:1-9.
ZHANG, SHUAI, S.I. MCCLEAN, and B.W. SCOTNEY. 2012. Probabilistic learning from incomplete data for
recognition of activities of daily living in smart homes. Information Technology in Biomedicine, IEEE

Transactions on, 16(3):454-462. ISSN 1089-7771. .

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 39

Goals Configuration

Planner Action & Configuration

Predictions Instructions
Learning Performance

Gateway Monitor TcOordination level

Functional layer (sensing, actuating and learning components)

802.15.4 KNX 802. llbll
)))) d’))) W; | sne

e’

Heterogeneous frameworks (TinyOS, ROS) and networks (IEEE 802.15.4, KNX, 802.11b/g...)

FIGURE 1. Sketch of the system architecture illustrated in this section

40 COMPUTATIONAL INTELLIGENCE

Planning framework

CAUSAL DERENDENCY
REASONING || REASONING

SCHEDULING
(swne variabies)

System
{robots +
(resources) envirornment)

FEEDBACK

FIGURE 2. Schematic view of the configuration planner. The observed state and
the current goals are continuously injected in the shared constraint network. Several
solvers (yellow boxes) complete this network with a plan that connects the current
state to the goals.

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 41

FIGURE 3. Architecture of the distributed learning system highlighting interactions
with the Performance Monitor and Configuration Planner instances. The picture
shows the Learning Modules distributed on devices with different computational
capabilities (motes and PC icons). Relevant software agents hosted by the Learning
Gateway are represented as white boxes: the Training Agent interfaces with the
performance monitor and performs computationally intensive learning and self-
configuration routines with the support of a mirrored copy of the distributed learning
network (Network Mirror). The Control Agent component manages the whole learn-
ing system, while the LN interface collects and dispatches the predictions computed
by the distributed Learning Network.

42 COMPUTATIONAL INTELLIGENCE

Sensed input from Predicted preference

environmental devices weight value

input reservoir readout

FIGURE 4. Graphical illustration of the architecture of a LI-ESN learning module.
Streams of sensed input from environmental devices are processed by the reservoir
component, which provides a dynamical memory to the system. Predictions about
the preference weight values are computed by the readout part as output of the LI-
ESN. Only connections in red require to undergo a training process (see text).

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 43

(a) (b)

FIGURE 5. Map of the Angen senior residence flat (resulting from SLAM recon-
struction) with highlighted mobile robot navigation tasks (a) and location of the
WSN motes (b).

44 COMPUTATIONAL INTELLIGENCE

FIGURE 6. Example of sensor data grouped by sensor types (top 4 plots), trajectory
information (fifth subplot) and ground truth performance values (bottommost plot)
for the Entrance Mirror experiment.

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 45

FIGURE 7. Snapshot of the robot performing a navigation task towards the flat
entrance: on the bottom-right, note the mirror reflecting the Kinect laser.

46 COMPUTATIONAL INTELLIGENCE

. —

FIGURE 8. Localization estimating the path from the living-room to the entrance:
during the turn the localization estimate is coarser since a mirror influences the data
gathered by the Kinect sensor. Units are expressed in meters.

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

FIGURE 9. Fixed preference weights for the RFID and AMCL localization com-
pared with two examples of adaptive AMCL preference weights, under disturbance
conditions and without localization interference.

47

48 COMPUTATIONAL INTELLIGENCE

(@) (b)

FIGURE 10. Target functions for the straight (top) and curved (bottom) trajectories
of the Entrance Mirror task: the latter are influenced by the presence of the mirror,
while the former are not. Influence of the mirror is clear as the majority of the curved
trajectories have a target value ending under 0.5 (which is the threshold value for
determining if navigation is satisfactory).

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 49

on
"Loce

oM oot A M
Cotat ¢ ohrn sa b
Carw

0T R e) 00

FIGURE 11. Test set performance (as Mean Absolute Error) on the Entrance Mirror
task as a function of the number of reservoir neurons.

50 COMPUTATIONAL INTELLIGENCE

T

(b)

FIGURE 12. Frames from the accompanying videos of the online tests on the
Entrance Mirror experiment: (a) AMCL navigation is unaffected by the mirror when
the robot travels near the mirror arriving from the bedroom (straight trajectory); (b)
the robot arriving from the living room (curved trajectory) gets confused near the
mirror when navigating with the AMCL;

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

08 =
zo‘ - - “Liwe
| 1 2 e\ == Clohal Al How
- \ Cactel T emare yeecton
io, \ Ohctel
!o: \ —

51

FIGURE 13. Testset performance (as Mean Absolute Error) on the Kitchen task as a function of the number

of reservoir neurons.

52 COMPUTATIONAL INTELLIGENCE

,f g""'qu

FIGURE 14. Frames from the accompanying videos of the online tests on the
Kitchen Cleaning experiment: the robot stops on its way to the kitchen after the
user entered the room and waits until the user has left before proceeding with the
cleaning.

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS

TABLE 1. Input configuration for the Entrance Mirror experiment: input sources include robot x,y
coordinates and orientation #; for each WSN mote available transducers include L (light), T (temperature),
H (humidity), P (PIR).

Experimental Setting ESN input configuration

local robot: (x, y); Mg: P

global ad-hoc robot: (X, y); Ms, Mg: P

global feature selection robot: (x,y); My, Ms, M3, Mg: P

global robot: (X, y, 8); My — Mg: L, T,H, P

54 COMPUTATIONAL INTELLIGENCE

TABLE 2. Input configuration for the Kitchen Cleaning experiment: input sources include robot x,y
coordinates and orientation #; for each WSN mote available transducers include L (light), T (temperature),
H (humidity), P (PIR).

Experimental Setting ESN input configuration

local robot: (z, y); M3: P

global ad-hoc robot: (x, y); Ma, M3: P

global feature selection robot: x; My, Mo, M3, My, Ms5: P

global robot: (x, y, 6); M1 — Mg: L, T,H, P

AMBIENT INTELLIGENCE FOR LEARNING IN SMART ROBOTIC ENVIRONMENTS 55

TABLE 3.

Performance of the learning model configurations selected at model validation phase for the

Kitchen task. Performance is measured as MAE averaged over the 10 reservoir guesses; deviation is reported

within brackets.

Experimental Setting

Training MAE

Validation MAE

Test MAE

local

0.217101(+£0.006791

0.374327(+0.026519

0.203766(10.005922

global ad-hoc

0.004223(40.000426

0.095127(40.033478

0.013718(+0.001649

global feature selection

0.000723(40.000095

0.101096(=+0.034971

0.020300(+0.002820

global

(
(
(
0.040273(£0.001900

)
)
)
)

(
(
(
0.139266(+0.048193

)
)
)
)

(
(
(
0.498551(£0.021220

)
)
)
)

