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Abstract—This paper addresses the problem of weighted sum-
rate maximization and mean squared error (MSE) minimiza-
tion for the multiple-input multiple-output interference channel.
Specifically, we consider a weighted minimum MSE architecture
where each receiver employs successive interference cancellation
(SIC) to separate the various received data streams and derive a
hybrid beamforming scheme, where the transmitters operate with
a number of radio frequency chains smaller than the number of
antennas, particularly suited for millimeter wave channels and
5G applications. To derive our proposed schemes, we first study
the relationship between sum-rate maximization and weighted
MSE minimization when using SIC receivers assuming fully
digital beamforming. Next, we consider the important – and, as it
turns out, highly non-trivial – case where the transmitters employ
hybrid digital/analog beamforming, developing a distributed joint
hybrid precoding and SIC-based combining algorithm. Moreover,
for practical implementation, we propose a signaling scheme
that utilizes a common broadcast channel and facilitates channel
state information acquisition assuming minimal assistance from
a central node such as a cellular base station. Numerical results
show that both proposed weighted MMSE-SIC schemes exhibits
great advantages with respect to their linear counterparts in
terms of complexity, feedback information, and performance.

Index Terms—MIMO, weighted MSE minimization, successive
interference cancellation, hybrid beamforming.

I. INTRODUCTION

Due to the rapid advancements in device technologies
and the growing interest in high bit-rate and highly reliable
communication services, wireless communication systems are
increasingly supporting advanced multiple antenna techniques,
including large scale antenna systems, high accuracy beam-
forming, spatial multiplexing and interference rejection com-
bining techniques. These schemes are designed to enable high
bit-rate services with high spectral and energy efficiency in in-
coverage and out-of-coverage situations in various spectrum
bands, including below 6 GHz and millimeter wave bands
[1]. Among the new high bit-rate services, an important role
is played by proximity services based on device-to-device
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(D2D) communications such as vehicle-to-vehicle communi-
cation and intelligent transportation systems applications [2,3].
For such services, multiple-input multiple-output (MIMO)
capabilities can be a valuable technology enabler, in particular
if the mobile stations (MSs) can leverage on such capabilities
with minimal or no infrastructure assistance. Indeed, one
of the key requirements on technologies enabling high bit-
rate intelligent transportation systems services is that they
should be reliable even outside cellular network coverage, and
should take advantage of network assistance by the cellular
infrastructure whenever it is available [4]–[6]. To this end,
there is a need for distributed resource allocation schemes
that are robust against topological changes and benefit from
the use of advanced MIMO precoding and combining schemes
at the MSs. In these situations, distributed resource allocation
must mainly cope with the problem of interference generated
by multiple MIMO transmit-receive pairs communicating in
the same or overlapping spectrum.

Recognizing the requirements imposed by high bit-rate and
capacity-demanding services, the problem of weighted sum-
rate maximization has been extensively researched in the
recent literature [7]-[12]. In particular, a key role is played
by the works [8], that addresses the problem of maximizing
the mutual information in MIMO broadcast channels, and
[9], that extends the previous work by maximizing a generic
utility function in the broad context of the MIMO interfering
broadcast channel. These two papers show that it is possible
to obtain a local maximum for the sum-rate by minimizing the
mean squared error (MSE) between the transmitted symbols
and the received decision variables, when the MSE is multi-
plied by a properly chosen set of weight coefficients. Despite
numerous other works in this area [13]–[16], most of the
research has focused on fully digital (FD) precoding and linear
receiver architectures. The reason for this choice is intuitive:
the authors of [8] have shown that, with some additional
processing at the transmitter, it is possible to force the MSE
matrix for each user to be diagonal thereby simplifying the
receiver architecture.

Nevertheless, there are clear advantages in exploiting the
knowledge that the receiver possesses about its intended
signal and separating the transmitted streams at the receiver
rather than at the transmitter. First, spatially separating the
various streams at the transmitter requires the knowledge
of the channel covariance matrices, which depend on the
cross-channel gains between each transmitter and each re-
ceiver [8]. While the acquisition of such information could
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be considered achievable at the BS, i.e., when considering
downlink scenarios as those considered in [8,9], it can be
extremely difficult in a distributed MIMO interference channel.
In contrast, separating the data streams at the receiver using
SIC requires the availability of the channel state informa-
tion (CSI) only of the direct channel, which can be easily
acquired by means of a dedicated control channel between
each transmitter-receiver pair. Moreover, separating the various
streams at the transmitter requires a FD precoding architecture
to guarantee maximum degree of flexibility in the precoding
matrices design. However, FD beamforming in large scale
antenna systems, as is the case of millimeter wave systems, is
expensive and power consuming, since it requires each antenna
to be connected with a dedicated radio frequency (RF) chain
and a digital-to-analog converter. As a consequence, recent
research efforts have been devoted to devising suboptimal but
low-complexity hybrid beamforming structures [10,17]–[27].

Hybrid digital-analog large-scale MIMO architectures [19]
allow to substantially reduce the number of RF chains and
analog-to-digital converters with limited performance penalty
in terms of spectral and energy efficiency and are of par-
ticular interest in mmWave systems [28]–[31]. For single
user systems, [17], [20] and [28] develop transmit precoding
and receiver combining that perform close to a fully digital
architecture. In particular, the results of [20] and [28] suggest
that for single user MIMO systems, an architecture based
on reduced number of RF chains can achieve similar sum-
rate performance as that of the fully digital architecture. The
single cell multiuser MIMO scenario is considered in [10],
which develops a hybrid digital and analog beamforming
scheme that can approach the performance of the fully digital
scheme while substantially reducing the number of RF chains.
More recently, a doubly massive multiuser MIMO scheme
employing a limited number of RF chains and hybrid digital
and analog beamforming architecture is considered in [21]. An
important contribution in this context is [32], which designs
a SIC-based detection for an analog receiver. This design can
be advantageously deployed at base stations employing large
antenna arrays operating with analog beamformers. These
results indicate an inherent trade-off between architecture
costs and complexity in terms of the number of RF chains
and the achieved spectral and energy efficiency. However,
the above referenced papers do not analyze the multiuser
MIMO interference channel where the hybrid precoders and
combiners at the multiple transmit-receive pairs must be tuned
jointly in order to achieve sum-rate optimality.

In this paper we first develop a novel FD beamforming
algorithm, indicated as weighted minimum mean squared error
(wMMSE)-SIC in the remainder of the paper. The wMMSE-
SIC scheme is designed to maximize the sum-rate for the
MIMO interference channel by minimizing the weighted MSE
when the receivers employ SIC to remove inter-stream inter-
ference, and exhibits some nice properties, which make this
scheme more attractive than the conventional linear wMMSE
algorithm. Next, exploiting the potential of the wMMSE-SIC
architecture, we develop a hybrid digital/analog precoding and
combining algorithm, which we will denote as wMMSE-SIC-
hybrid beamforming (HB).

Regarding the existing literature about hybrid beamforming
for the MIMO interference channel, the work in [22] studies
a similar problem to the one we address. They study sum-
rate maximization in a system where each Tx and Rx node
is equipped with multiple antennas and a hybrid MIMO
processor, but they only consider linear MMSE receivers.
The authors of [23] study the important problem of energy-
efficiency maximization for the MIMO interference channel
with hybrid beamforming but they also do not include in-
terference cancelation and only perform linear processing at
the receiver. A hybrid wMMSE-based precoding/combining
design is also presented in [24]. The proposed scheme is
shown to have advantages over two-stage hybrid precod-
ing schemes including zero forcing, MMSE and wMMSE
precoding/combining designs. However, also in this case, a
SIC receiver design and the corresponding iterative precod-
ing/combining algorithms are out of scope. Another set of
very recent works is [25]–[27], where the authors develop
hybrid schemes for the MIMO interference channel, but do
not address the MMSE-SIC receiver structure. Of particular
interest is the work in [29], where hybrid beamforming and
SIC are combined in a sub-connected architecture, where each
RF chain is connected to only a subset of antennas, to achieve
the performance of a fully connected architecture, where each
RF chain is connected to all antennas via phase shifters. Even
if the objective is different from the one we pursue here, this
work shows the potential of employing SIC algorithms in the
baseband of a hybrid architecture.

Moreover, to practically realize the proposed schemes in a
distributed manner and to fairly compare their performance,
we adapt the well known bi-directional training scheme ([33],
[34], [35]) to the proposed MIMO architecture. A thorough
comparison of the results for the proposed schemes shows how
they depend on the availability of reliable CSI at the receiver.

Note that the proposed architectures and associated signal-
ing schemes are applicable in a variety of typical 5G scenarios,
including D2D systems, where the resources allocated to D2D
communications are disjunct from those used for traditional
cellular communications, and systems that incorporate a mix-
ture of D2D pairs and cellular MSs communicating with their
respective serving base station (BS).

The main contributions of the present paper can be summa-
rized as follows:
• We show that the intimate relationship between weighted

MSE minimization and sum-rate maximization in MIMO
systems can be advantageously extended to the minimum
mean squared error (MMSE)-SIC case. Specifically, we
prove that if the receiver employs SIC, its MSE matrix is
diagonal, and, consequently, the optimal weight matrix in
the weighted MSE minimization problem also becomes
diagonal.

• We consider two different allocation schemes associated
with SIC reception: (i) optimal MMSE design with FD
beamforming; (ii) a near-optimal hybrid MMSE precod-
ing scheme. Both schemes can operate in a distributed
fashion with minimal assistance by a central entity that
can broadcast synchronization signals.

• We propose a practical implementation and signaling
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protocol for the proposed allocation schemes.
Both proposed schemes (wMMSE-SIC and wMMSE-SIC-

HB) are implemented as iterative algorithms, where each user
computes sequentially and autonomously its allocation, while
the system converges to a local maximum of the sum-rate.

The remainder of this paper is organized as follows. Section
II describes the system model and formulates the problem
of sum-rate maximization and weighted MSE minimization.
Next, Section IV develops a weighted MSE distributed iter-
ative allocation scheme for fully digital beamforming when
employing SIC at the receiver, while Section V considers
the hybrid digital/analogue precoding and combining case.
Section VI discusses implementation aspects including the
implementation differences of the proposed schemes. Section
VII presents numerical results and compares the performance
of the various schemes. Finally, conclusions are drawn in
Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless network with Nu transmit-receive
(tx-rx) pairs with MIMO links, where each transmitter is
equipped with L antennas and each receiver is equipped with
M antennas, and where the MIMO channels can be assumed
constant for the time horizon of radio resource allocation.
Let si = [si(1), si(2), . . . , si(R)]

T be the complex vector
collecting the R symbols of user i, with R ≤ min {M,L} and
Vi ∈ CL×R be the precoding matrix of the i-th (1 ≤ i ≤ Nu)
transmitter. The transmitted vector is

xi = Visi ∈ CL×1. (1)

The information symbols are assumed to be zero-mean inde-
pendent and identically distributed (i.i.d) random variables,
i.e., E

[
sis

H
i

]
= IR and E

[
sis

H
j

]
= 0R for i 6= j. The

received signal at the i-th receiver can be expressed as:

yi = Hi,ixi +
Nu∑
j=1
j 6=i

Hi,jxj + ni ∈ CM×1, (2)

where Hi,i ∈ CM×L is the channel matrix between the
transmitter and the receiver of the i-th pair, Hi,j ∈ CM×L
is the cross channel matrix between the transmitter of the
j-th pair and the receiver of the i-th pair and ni ∈ CM×1
denotes the additive white Gaussian noise with distribution
CN

(
0, σ2

i IM
)
. To recover the transmitted symbol vector si,

the signals collected by the M antennas of the i-th receiver
are combined employing the linear spatial filter Gi ∈ CR×M
to yield the decision variable vector

ŝi = GH
i yi. (3)

In the interference MIMO channel described above, the
achievable rate Ri = I (si; yi) for user i is computed according
to equation (4),

Ri(V) = log det
(
IR + VH

i HH
i,iJ̄
−1
i Hi,iVi

)
, (4)

where J̄i =
Nu∑

j=1,j 6=i
Hi,jVjV

H
j HH

i,j + σ2IM is the covari-

ance matrix of inter-user interference plus noise and V =
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Fig. 1. Fully digital (a) and hybrid digital-analog (b) beamforming archi-
tectures. The number of RF chains employed by the hybrid architecture is
reduced to NRF < T RF chains.

{V1,V2, . . . ,VNu
} is the set of the precoding matrices of

all the Nu users in the system. Our objective is to maximize
the weighted sum-rate of the system under a power constraint
for each user, that is:

max
V

Nu∑
i=1

αiRi(V)

subject to

tr
(
ViV

H
i

)
≤Pi i = 1, 2, . . . , Nu,

(5)

where the set of weights α = [α1, α2, . . . , αNu
] is chosen

to enforce a given degree of fairness [36], and a discussion
about the strategy with which it is selected is beyond the scope
of this work. Note that problem (5) is not convex, and it is
therefore difficult to solve.

III. BACKGROUND

A. Fully digital Weighted MSE Minimization for Linear Re-
ceivers

In the seminal paper by Shi et al. [9], the authors exploit
the close relationship between the signal-to-interference-plus-
noise ratio (SINR) and the MSE to find a local solution to
the max-rate problem (5). In detail, the paper shows that
by adding to the MSE minimization problem a new set of
variables that weights the MSE matrix, the spatial transmit
filters solution of the minimization problem are also the set
of transmit filters that maximize the sum-rate. Accordingly,
the set V? of precoding matrices that corresponds to a local
optimum point for the sum-rate maximization (5) are obtained
by solving the following wMMSE optimization problem:

min
V,W,G

Nu∑
i=1

αi (tr (WiEi (V,Gi))− log det (Wi))

subject to

tr
(
ViV

H
i

)
≤ Pi i = 1, 2, . . . , Nu,

(6)

where Wi � 0 is the matrix of weights for the MSE
of user i, while W = {W1,W2, . . . ,WNu}, and G =
{G1,G2, . . . ,GNu} are the set of all weight matrices and
receive filter matrices in the system, respectively. Finally,
Ei (V,Gi) is the R×R MSE matrix computed for receiver i
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as

Ei (V,Gi) = E
{

(si − ŝi) (si − ŝi)
H
}

=
(
IR −GH

i Hi,iVi

) (
IR −GH

i Hi,iVi

)H
+ GH

i J̄iGi.
(7)

Although problem (6) is still not convex, when two of the
three sets of variables are fixed, it is convex in the remaining
set of variables. Accordingly, the weighted MSE minimization
can be performed by adopting a block coordinate descent [37]
strategy that iteratively optimizes one of the three sets of
variables at a time to find a local optimum. At convergence,
the receive filter G?

i is

G?
i = J−1i Hi,iV

?
i , (8)

where Ji =
Nu∑
j=1

Hi,jV
?
jV

?H
j HH

i,j + σ2IM = J̄i +

Hi,iV
?
iV

?H
i HH

i,i is the covariance matrix of the received
signal at receiver i. The weight matrix W?

i is

W?
i = Ei (V?,G?

i )
−1
, (9)

and the precoder filter V?
i ∈ V? is

V?
i = αi (Ki + µ?i IL)

−1
HH
i,iG

?
iW

?
i , (10)

where Ki =
Nu∑
j=1

αjH
H
j,iG

?
jW

?
jG

?H
j Hj,i and the Lagrange

multiplier µ?i is chosen so that the power constraint in (6) for
user i is met.

B. Hybrid Weighted MSE Minimization

In the previous section we have considered a FD system,
where there are as many RF chains as antennas. In a hybrid
beamforming system, such as the one shown in Fig. 1, the
number NRF of RF chains is smaller than the number T of
active antennas and greater or equal to the number of data
streams per user R, i.e., R ≤ NRF < T . In particular, in our
case we consider a fully-connected architecture, where each
RF chain is connected to all antennas via phase shifters. As for
the FD case, our objective is to design a system that maximizes
the sum-rate with a fixed power constraint by minimizing the
weighted MMSE.

In the following, to avoid confusion we use three dif-
ferent terms for hybrid spatial processing: we use the term
beamformer, designated by the notation B(HB), when we
consider a generic hybrid spatial filter regardless that it is
employed at the transmit or at the receive side, we use the
term precoder, designated by the notation V(HB), for the
hybrid processing at the transmitter and the term combiner,
designated by the notation G(HB), for the hybrid spatial filter
at the receiver. The generic hybrid beamformer for the i-th
pair B

(HB)
i is a T × R matrix, and, consistently with the

notation previously adopted, it is T = L for the precoder and
T = M for the combiner. Following an approach frequently
proposed in the literature (see for example [21] and the
references therein), the hybrid beamforming matrix can be
decomposed into the product of an outer T × NRF ana-
log matrix B

(AB)
i =

[
b
(AB)
i (1),b

(AB)
i (2), . . . ,b

(AB)
i (NRF )

]

and an inner NRF × R digital matrix B
(DB)
i =[

b
(DB)
i (1),b

(DB)
i (2), . . . ,b

(DB)
i (R)

]
B

(HB)
i = B

(AB)
i B

(DB)
i . (11)

The elements of the outer matrix B
(AB)
i must respect a

constant-modulus constraint, so that its entries can be modeled
as phase shifters that can be implemented directly at RF, i.e.

B
(AB)
i ∈ AT,NRF

, (12)

where AT,NRF
is the set of all T × NRF matrices whose

elements have amplitude equal to 1.
In this case, the original wMMSE problem (6) needs to be

formulated by taking into account the decomposition Vi =

V
(AB)
i V

(DB)
i and Wi = W

(AB)
i W

(DB)
i with the two new

sets of constraints V
(AB)
i ∈ AL,NRF

and W
(AB)
i ∈ AM,NRF

.

IV. FULLY DIGITAL WEIGHTED MSE MINIMIZATION AND
WEIGHTED SUM-RATE MAXIMIZATION FOR NON-LINEAR

RECEIVERS

A. Weighted MSE Minimization for Non-Linear Receivers

While the sum-rate maximization problem (5) does not
depend on any particular receiver architecture, the authors in
[8] have shown that by exploiting the knowledge of some
feedback information at the transmitter, it is possible to
greatly simplify the receiver and to separate the spatial streams
arriving at each user by adopting a simple linear strategy.
Alternatively, here we aim to derive a wMMSE algorithm
based on SIC receivers, in which CSI knowledge available
at the receiver is exploited to cancel the data of the streams
already detected: in this case, the self interference for the rth
data stream is limited to the contribution of the data streams
with indexes (r + 1) to R and ỹi(k), the received signal for
data stream k (k = 1, 2 . . . , R) after cancellation, becomes:

ỹi(r) = yi −
r−1∑
l=1

Hi,ivi(l)si(l)

= Hi,ivi(r)si(r) +

R∑
l=r+1

Hi,ivi(l)si(l)

+

Nu∑
j=1
j 6=i

R∑
l=1

Hi,jvj(l)sj(l) + ni.

(13)

Note that the usage of this equation is valid when we consider
the mutual information as the parameter of interest, that is
when assuming that transmitting at Shannon rate allows to
achieve zero error probability by employing very efficient
transmission schemes (e.g., turbo or LDPC codes).

In the remainder of the paper, we will denote this approach
with wMMSE-SIC, and a tilde will be placed over the letters
denoting the variables related to this algorithm. This is to
distinguish them from the linear receiver counterpart, indicated
as wMMSE. As in the case of (6), the wMMSE-SIC problem,
even if not convex, can be solved following an iterative block
coordinate descent method.
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1) Receive filter design: Having fixed the values of the
transmit precoder in Ṽ , the receiver filter g̃i(r) that minimizes
the MSE, Es,n

{
|si(r)− g̃Hi (r)ỹi(r)|2

}
, is computed locally

as
g̃i(r) = J̃i(r)

−1Hi,iṽi(r), (14)

where J̃i(r) = Ji −
r−1∑
l=1

Hi,iṽi(l)ṽ
H
i (l)HH

i,i is the covariance

matrix of the received SIC signal ỹi(r). Hence, the transmitted
symbol si(r) can be estimated as:

ŝi(r) =g̃i(r)
H ỹi(r) = g̃i(r)

Hyi−

−
r−1∑
l=1

g̃i(r)
HHi,ivi(l)si(l)

(15)

2) Weighting matrices computation: In the block coordinate
descent algorithm, after having computed all the spatial filters
in G̃, one evaluates the weighting matrices in W̃ . Employing
a non-linear SIC strategy at the receiver i has an important
consequence on the structure of the MSE matrix Ei

(
Ṽ, G̃i

)
and thereby on the optimal weight matrix. Accordingly, we
state the following lemma, which turns out to be useful in
proving an important theorem.

Lemma 1. If receiver i employs a SIC strategy, the MSE
matrix Ei

(
Ṽ, G̃i

)
is diagonal.

Proof: The generic term off the main diagonal of
Ei

(
Ṽ, G̃i

)
is computed as

E
{(
si(p)− ŝi(p)

)(
si(m)− ŝi(m)

)∗}
=

= E {si(p)s∗i (m)} − E {si(p)ŝ∗i (m)} − E {ŝi(p)s∗i (m)}
+E {ŝi(p)ŝ∗i (m)} , (16)

with m 6= p and 1 ≤ m, p ≤ R. First of all, since the symbols
are zero-mean i.i.d. variables, it is

E {si(p)s∗i (m)} =

{
1 if p = m
0 otherwise. (17)

Hence, the first term in the right hand side of (16) is null.
Moreover, it is not restrictive to assume that m > p, and in
this case it is

E{si(p)ŝ∗i (m)} = E {si(p)s∗i (m)} ṽHi (m)HH
i,ig̃i(m)

+

R∑
l=m+1

ṽHi (l)HH
i,ig̃i(m)E {si(p)s∗i (l)}

+

Nu∑
j=1
j 6=i

R∑
l=1

ṽHj (l)HH
i,j g̃i(m)E

{
si(p)s

∗
j (l)
}

+ E
{
si(p)n

H
i

}
g̃i(m) = 0.

(18)

For the two remaining terms in (16), it is

E {ŝi(p)s∗i (m)} = g̃Hi (p)Hi,iṽi(m), (19)

and

E {ŝi(p)ŝ∗i (m)} = g̃Hi (p)J̃i(m)g̃i(m) = g̃Hi (p)Hi,iṽi(m),
(20)

where the last equality has been obtained by replacing g̃i(m)
with the expression in (14). Combining the results of (19) and
(20) yields E

{(
si(p)− ŝi(p)

)(
si(m)− ŝi(m)

)∗}
= 0.

The m-th element of the main diagonal of the MSE matrix,
which we denote with a slight abuse of notation as ẽi(m), is
computed as

ẽi(m) = E
{(
si(m)− ŝi(m)

)(
si(m)− ŝi(m)

)∗}
= 1− g̃Hi (m)Hi,iṽi(m).

(21)

We are now in the position of proving the following
theorem.

Theorem 2. The optimal weight matrix for problem (6) when
the receiver implements a SIC strategy is diagonal.

Proof: Following a block coordinate descent update
method, the matrix that minimizes the weighted MSE is

W̃i = E−1i

(
Ṽ, G̃i

)
. (22)

In Lemma 1 we have shown that with a SIC receive architec-
ture Ei

(
Ṽ, G̃i

)
is diagonal. Since the inverse of a diagonal

matrix is diagonal, W̃i is diagonal.
Note that, just like the MMSE receive filters (14), the

matrix W̃i can be computed at receiver i by means of local
estimation, as it will be discussed in Section VI.

3) Spatial precoder design: Let us now denote by w̃i(r)
the r-th element of the main diagonal of W̃i. Since the MSE
matrix Ei

(
Ṽ, G̃i

)
depends on the value of the precoding

matrices, once the receive filters are fixed, we can rearrange the
terms in the objective function in (6) so that the optimization
problem can be solved as Nu different independent problems.
The precoding problem for user i is formulated as

min
Ṽi

R∑
r=1

[
αiw̃i(r)

∣∣1− g̃i(r)
HHi,iṽi(r)

∣∣2
+ṽi(r)

HK̃i(r)ṽi(r)
]

subject to
R∑
r=1

ṽi(r)
H ṽi(r) ≤ Pi.

(23)

where K̃i(r) = Ki − αi
R∑

l=r+1

w̃i(l)H
H
i,ig̃i(l)g̃

H
i (l)Hi,i. The

constrained minimization in (23) can be solved by employing
standard convex methods so that the optimal precoding vectors
for user i are given by

ṽi(r) = αiw̃i(r)
(

˜̄Ki(r) + µiIL

)−1
HH
i,ig̃i(r), (24)

and ˜̄Ki(r) = K̃i(r)− αiw̃i(r)HH
i,ig̃i(r)g̃

H
i (r)Hi,i.The value

of the Lagrangian variable µi is chosen to satisfy the power
budget constraint and can be determined numerically by means
of the bisection method [38].

The weighted MSE is reduced at each iteration of the
proposed wMMSE-SIC iterative procedure, thus guaranteeing
robust convergence to a quasi-optimal solution. The procedure
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implementing the iterative block descent method is summa-
rized in Algorithm 1, where an apex (q), displaying the
specific iteration counter, is added to each variable.

Algorithm 1: Iterative wMMSE-SIC
1 Initialize:
2 Generate an initial precoding matrix Ṽ

(0)
i , for i = 1, . . . , Nu, such

that the power constraint are met;
3 Set an arbitrarily small value for ε;
4 q ← 1, ∆← 1;
5 while ∆ > ε do
6 for i = 1, . . . , Nu do
7 for r = 1, . . . , R do
8 Cancel the interference of beams with index

1, 2, . . . , r − 1;
9 Compute g̃

(q)
i (r) as in (14) employing Ṽ(q−1) ;

10 Compute ẽ(q)i (r) as in (21) employing ṽ
(q−1)
i and g̃

(q)
i ;

11 Compute w̃(q)
i (r) = 1/ẽ

(q)
i (r);

12 Having updated the values of G̃ and W̃
13 for i = 1, . . . , Nu do
14 for r = 1, . . . , R do
15 Compute ṽ

(q)
i (r) (r = 1, . . . , R) as in (24);

16 ∆← maxi‖Ṽ
(q)
i − Ṽ

(q−1)
i ‖;

17 q ← q + 1

B. Weighted Sum-Rate Maximization

We can now state an important property of the proposed
iterative wMMSE-SIC algorithm.

Theorem 3. The wMMSE-SIC algorithm converges to a local
optimum of the weighted sum-rate (5).

Proof: Taking into account the diagonal structure of W̃
and that w̃i(r) = 1/ẽi(r) yields

tr
(

W̃iẼi

(
Ṽ, G̃i

)
︸ ︷︷ ︸

IR

)
−log det

(
W̃i

)
= R−

R∑
r=1

log

(
1

ẽi(r)

)
,

(25)
so that at convergence the wMMSE optimization (6) with
respect to the precoder filters is tantamount to

max
Ṽ

Nu∑
i=1

αi

R∑
r=1

log (1 + γ̃i(r))

subject to
R∑
r=1

ṽHi (r)ṽi(r) ≤ Pi i = 1, 2, . . . , Nu,

(26)

where the received SINR γ̃i(r) is

γ̃i(r) =

∣∣g̃Hi (r)Hi,iṽi(r)
∣∣2

gHi (r)˜̄Ji(r)g̃i(r)
, (27)

where ˜̄Ji(r) = J̃i(r) −Hi,iṽi(r)ṽi(r)
HHH

i,i and the equiva-
lence 1/ẽi(r) = 1 + γ̃i(r) is proven in Appendix A.

Hence, we need to prove that a local optimum for (26) is
also a local optimum for (5). It is known [39] that MMSE
spatial filtering is information lossless: the mutual information

between the transmitted symbol s and the received vector y
does not change after multiplication with the MMSE spatial
filter g, i.e., I (s; y) = I

(
s; gHy

)
. Moreover, applying the

mutual information chain rule to the i-th term of (5) yields:

I (si; yi) = I (si(1); yi) + I (si(2); yi|si(1)) + . . .

+ I (si(R); yi|si(1), si(2), ..., si(R− 1)) . (28)

Exploiting the conditioning on the symbols
si(1), si(2), . . . , si(r− 1), the rth term of the expansion (28)
can be rewritten as

I (si(r); yi|si(1), si(2), . . . , si(r − 1)) =

= I
(
si(r); ỹi(r)

)
= I
(
si(r); g̃

H
i (r)ỹi(r)

)
= log(1 + γ̃i(r)),

(29)

where the first equivalence is due to the fact that we
have taken advantage of the conditioning on the symbols
si(1), si(2), . . . , si(r − 1) to cancel the self interference cre-
ated by those symbols; the second equivalence exploits the
information lossless property of MMSE filtering, and the third
equivalence follows from the definition of mutual information.

Thus, maximizing the metric
R∑
r=1

log (1 + γ̃i(r)) is equivalent

to maximizing I (si; yi), and the equivalence of problems (5)
and (26) is proven.

A direct consequence of Theorem 3 is the equivalence of
the solution of wMMSE-SIC and linear wMMSE, which we
highlight in the following corollary.

Corollary 4. Any V?
i outcome of the wMMSE algorithm,

is also a solution of the wMMSE-SIC optimization and vice
versa.

Proof: For the sake of consistency, we just show that
V?
i is a local optimum for the wMMSE-SIC algorithm, since

proving the vice versa is then straightforward. By contradic-
tion we assume that V?

i does not find a local minimum of the
wMMSE when the SIC receiver is implemented at the receiver.
In this case, initializing Algorithm 1 with Ṽ

(0)
i = V?

i would
lead to a solution Ṽ?

i in the proximity of V?
i which would

yield a smaller wMMSE and, consequently, a higher mutual
information, which contradicts the hypothesis since V?

i is a
local optimum for the mutual information.

Thus, while the sets of matricesW,G and W̃, G̃ are different
for a given local minimum of the wMMSE, the set of spatial
precoders are the same for the wMMSE and wMMSE-SIC
algorithms.

A close inspection of the proposed wMMSE-SIC iterative
procedure shows that the weighted sum-rate increases at
any iteration of the algorithm. Henceforth, the wMMSE-SIC
scheme can be seen as a strategic game with simultaneous
updates among all tx-rx pairs, where the instructions in lines
9, 11 and 15 of Algorithm 1 correspond to the actions of
a generic player i and the set of strategies is given by the
precoding vectors Ṽi. In particular, in a similar way to [40],
the proposed approach can be categorized as a potential game
with better response dynamics, where the potential function is
represented by the system weighted sum-rate. Potential games
possess important properties that relate the local optima of the
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potential function to the Nash equilibrium points of the game
[41]. Specifically, the set of Nash equilibria corresponds to the
set of local optima of the potential function, i.e., the proposed
approach is guaranteed to converge to a local optimum of the
system sum-rate.

C. Comparison of Linear wMMSE and wMMSE-SIC

One of the main results of wMMSE-SIC is that the MSE
matrix is diagonalized with a great simplification of the
computational burden. Nevertheless, as pointed out in [8], also
in the case of linear wMMSE, for any set of optimal transmit
filters it is possible to generate a diagonalizing set which has
the same rate-tuple. In fact, replacing in (7) the value of Gi

found in (8), yields

Ei (V,Gi) = IR −VH
i HH

i,iJ
−1
i Hi,iVi, (30)

so that, by simple algebraic manipulation, it is possible to
show that

Ei (V,Gi)
−1

= IR + VH
i HH

i,iJ̄
−1
i Hi,iVi, (31)

and the rate for user i in (4) can be computed as Ri (V) =

log det
(
Ei (V,Gi)

−1
)

. Thus, after having found the optimal
set of precoder filters V?, one can can compute the eigenvalue
decomposition

AiΛiA
H
i = V?H

i HH
i,iJ̄
−1
i Hi,iV

?
i (32)

and employ the precoder matrix V?
iAi, which yields the same

rate of V?
i , to diagonalize the MSE matrix. Even if both

techniques are able to diagonalize the MSE matrix, there are
important differences between the two schemes due to the fact
that the MSE matrix for wMMSE-SIC is inherently diagonal.
Furthermore, a few remarks are in order.
• Computational complexity. By avoiding the inversion of

the full weight matrix W̃i, wMMSE-SIC reduces the
overall computational burden at each transmitter. Alter-
natively, if one wants to skip the inversion of Wi for
linear wMMSE, he needs to perform the eigenvalue de-
composition in (32), which has an even larger complexity.
Moreover, if one does not perform diagonalization at the
transmitter, the wMMSE receiver is affected by strong
inter-stream interference, which requires very complex
receiver design.

• Amount of feedback information. As we will see in Sec-
tion VI-F, the eigenvalue decomposition in (32) requires
a larger exchange of feedback information than MMSE-
SIC.

• Flexibility. Because of the diagonal characteristic of the
MSE matrix, the SIC architecture is less affected by the
choice of suboptimal precoding and receive matrices such
as those employed in the case of hybrid beamforming
with a reduced number of RF chains, as it will be shown
in the next Section.

V. HYBRID WEIGHTED MSE MINIMIZATION FOR
NON-LINEAR RECEIVERS

Designing a HB transceiver architecture to maximize the
sum-rate in the interference channel is complicated by the

additional decomposition rule (11) and non-convex constraints
(12) for the analog beamforming matrices. With these sets of
new constraints, the wMMSE problem is

min
V,W,G

Nu∑
i=1

αi (tr (WiEi (V,Gi)) − log det (Wi))

subject to

tr
(
ViV

H
i

)
≤ Pi i = 1, 2, . . . , Nu,

Vi = V
(AB)
i V

(DB)
i i = 1, 2, . . . , Nu,

Gi = G
(AB)
i G

(DB)
i i = 1, 2, . . . , Nu,

V
(AB)
i ∈ AL,NRF

i = 1, 2, . . . , Nu,

G
(AB)
i ∈ AM,NRF

i = 1, 2, . . . , Nu.

(33)

Most of the literature on hybrid beamforming focuses on the
single-user case or on multi-user scenarios in the millimeter
wave channel with some very specific assumptions so that it
is possible to find the HB matrices that provably maximize
the sum-rate. Unfortunately, such approaches do not work for
the interference channel and here we follow another, heuristic
and iterative, line of reasoning.

We solve (33) in threes steps: 1) first we solve one iteration
of the FD problem (6) to find the beamforming full digital
T × R matrix B

(FD)
i ; 2) we design the T × NRF analog

beamforming matrix B
(AB)
i by finding a decomposition that

minimizes the mean square error with B(FD); and 3) we find
the NRF ×R digital beamforming matrix B

(DB)
i .

A. Analog Beamforming Matrix

The design of B
(AB)
i leverages on the knowledge of the

desired fully digital beamforming matrix B
(FD)
i : rather than

trying to solve directly the nonconvex problem (33), we find
the T×NRF matrix B

(AB)
i and the NRF ×R matrix P whose

product minimizes the mean square error with the FD matrix

B
(AB)
i = arg min

B
(AB)
i ∈AT,NRF

,P

‖B(FD)
i −B

(AB)
i P‖2 (34)

Problem (34) is still nonconvex but, following the algorithm
proposed in [20], a suboptimal solution can be found using
a block coordinate descent strategy. The algorithm is iterative
and we indicate with Pk and Qk ∈ AT,NRF

the two matrices
at iteration k, respectively. At each iteration we first solve
problem (34) with respect to P having fixed Q and then with
respect to Q having fixed P. Thus, given B

(FD)
i and Qk, the

decomposition at iteration k + 1 is found as

P(k+1) =
(
Q(k)HQ(k)

)−1
Q(k)B(FD)

Q(k+1) = ΠA

(
B(FD)P(k+1)H

(
P(k+1)P(k+1)H

)−1)
(35)

where ΠA (Q) is the (unique) Euclidean projection of Q
on the set A of matrices with unitary envelope elements,
which can easily be obtained by element-wise scaling. At
convergence the Q matrix is the analog beamformer B

(AB)
i .
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B. Digital Beamforming Matrix

The matrices solution of the decomposition in (34) satisfy
the nonconvex constraints of (33) and yield a good approxima-
tion of B(FD) but P not necessarily is the digital beamforming
matrix that minimize the weighted MSE under the original
power constraints. Thus, after having found the matrix B

(AB)
i ,

the matrix B
(DB)
i is obtained by minimizing the wMMSE over

the equivalent channel Hi,iB
(AB)
i .

The digital precoding matrix Ṽ
(DB)
i is obtained solving

min
Ṽ

(DB)
i

R∑
r=1

[
αiw̃i(r)

∣∣∣1− g̃i(r)
HHi,iB

(AB)
i ṽ

(DB)
i (r)

∣∣∣2
+ ṽ

(DB)
i (r)H(B

(AB)
i )H ˜̄Ki(r)B

(AB)
i ṽ

(DB)
i (r)

]
subject to

(B
(AB)
i )H

R∑
r=1

ṽ
(DB)
i (r)H ṽi(r)B

(AB)
i ≤ Pi.

(36)
Similarly to (23), the constrained minimization in (36) can be
solved by employing standard convex methods to obtain:

ṽ
(DB)
i (r) =αiw̃i(r)

[
(B

(AB)
i )H

(
K̃i(r) + µiIL

)
B

(AB)
i

]−1
× (B

(AB)
i )HHH

i,ig̃i(r),
(37)

where the value of the Lagrangian variable µi allows to satisfy
the power budget constraint.

As for the digital combining matrix G̃
(DB)
i , elaborating

from (14), we get:

g̃
(DB)
i (r) =

(
(B

(AB)
i )H J̃i(r)B

(AB)
i

)−1
(B

(AB)
i )HHi,iṽi(r).

(38)
The procedure for finding the hybrid beamforming matrices,
denoted by wMMSE-SIC-HB, is described in detail in Al-
gorithm 2 for a single iteration q of Algorithm 1. We have
added the apex (q) to keep track of the outer iteration number,
elsewhere we have omitted it for notation clarity .

Algorithm 2: Iterative hybrid beamforming of wMMSE-
SIC-HB

1 Initialize:
2 Compute B

(FD),(q)
i ;

3 Set an arbitrarily small value for ε;
4 k ← 0;
5 ∆← 1;
6 Generate an initial random analog beamforming matrix Q(0);
7 while ∆ > ε do
8 Compute P(k+1) and Q(k+1) as in (35);
9 ∆←

∥∥Q(k+1) −Q(k)
∥∥2;

10 k ← k + 1;

11 end;
12 B

(AB),(q)
i ← Q(k+1);

13 Compute B
(DB),(q)
i (using (37) for precoding and (38) for combining);

14 B
(HB),(q)
i ← B

(AB),(q)
i B

(DB),(q)
i ;

For the procedure described in Algorithm 2 some remarks
are in order:

• Complexity. Although solving (35) requires the iterative
inversion of the NRF × NRF matrices Q(k)HQ(k) and
P(k)P(k)H , the computational burden of these operations
is proportional to the number of active RF chains NRF ,
which is, in general, much smaller than the number of
antennas. The same reasoning applies also to (37) and
(38), which have a lower dimensionality with respect to
their FD counterparts (24) and (14). Thus, it is reasonable
to say that each iteration of the HB part of Algorithm 2,
i.e. lines 3-14, has a complexity at most comparable to
one FD iteration.

• Convergence. Theoretically, while problem (34) yields the
best hybrid decomposition B

(AB)(q)
i of the FD matrix

B
(FD)(q)
i in terms of MSE, it is not necessarily true that

the solution of (37) and (38) after plugging in B
(AB)(q)
i

will yield a lower wMMSE with respect to the wMMSE
computed at iteration (q − 1). Such an event, which is
extremely rare in our simulations, has the potential to
compromise the convergence of the coordinate descent
algorithm. In these circumstances, it is easy to show that
one can employ as analog beamformer B

(AB)(q−1)
i rather

than B
(AB)(q)
i and this chioice will lead in any case

to a reduction of the wMMSE so that the convergence
property of the algorithm is safeguarded.

• Comparison of linear wMMSE-HB and wMMSE-SIC-
HB. One of the effects of hybrid beamforming in the
wMMSE framework is the loss of performance due
to the extra constraints in the design of the analogue
beamforming matrix. To elaborate, consider the linear
wMMSE scheme with the diagonalization of the MSE
matrix at the transmitter. The precoding filter employs
the matrix Ai in (32), computed on the base of the
covariance matrix J̄i, to diagonalize the MSE matrix. As
the algorithm proceeds, as soon as the receivers change
their filters, J̄i changes as well and the MSE matrix is no
longer diagonal so that there is a model mismatch in the
computation of the weights in (9). In a fully digital system
with a large number of antennas, this model mismatch
has little effect as the the large number of degrees of
freedom available at the receiver side is such to greatly
attenuate the residual inter streaming correlation, thus
achieving a quasi-diagonal MSE matrix at each iteration.
On the contrary, in the presence of hybrid beamforming,
the effects of the reduced degrees of freedom is that the
MSE matrix looses it diagonal structure, and this affects
the final system performance. On the other hand, in the
wMMSE-SIC case, diagonalization of the MSE matrix is
obtained by construction, both in the fully digital and in
the hybrid beamforming schemes. Hence, as it will be
investigated in the Results section, wMMSE-SIC-HB is
less affected by the reduction of the degrees of freedom
of hybrid beamforming and outperforms linear wMMSE-
HB.
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VI. DISTRIBUTED IMPLEMENTATION OF THE PROPOSED
ALLOCATION SCHEMES

In this section we propose a training scheme designed
for the implementation of our wMMSE algorithms, so that
each user can compute independently its own precoding and
combining filters in a distributed manner. We consider a bi-
directional training approach where blocks of pilots are alter-
nately transmitted in the forward direction (from transmitters
to receivers), and in the reverse direction (from receivers to
transmitters). We assume that the system operates in time
division duplexing mode so that it can exploit channel reci-
procity between the transmitter and the intended receiver. In
detail, the channel matrix between the receiver of the j-th
pair (acting as a transmitter) and the transmitter of the i-th
pair (acting as as a receiver), denoted by H′i,j , is equal to
the transpose of the channel matrix between the same nodes
when the transmitters and receivers roles are inverted i.e.,
H′i,j = H

T

j,i. Also, perfect synchronization among different
tx-rx pairs is assumed (e.g., with the assistance of the BS),
so that all the receivers/transmitters transmit their respective
pilot sequences at the same time instances.

Hence, the information needed for updating the precoding
vectors and the receive filters can be directly estimated from
the received pilot signals without requiring either the esti-
mation of the cross-channel matrixes Hj,i, with j 6= i, or
the exchange of additional information between the different
tx-rx pairs. The proposed bi-directional training scheme is
inspired by previous works reported in [33], [34] and [35].
However, the presence of multibeam transmissions with SIC
at the receivers leads to fundamental differences with respect
to the scheme proposed in these previous works.

Specifically, to facilitate the evaluation of the self-
interference partial covariance matrices, we assume that the
following pieces of control information is exchanged on two
separate control channels:

1) a dedicated control channel between each tx-rx pair
including user-specific reference symbols that allow for
the estimation of the direct channel matrices Hi,i. In this
regard, consecutive training can be used to monotonically
improve the channel estimates in one coherence block of
the channel, e.g., using iterative techniques. Hence, we
can reasonably assume that the direct channel matrices
Hi,i can be perfectly estimated, making SIC feasible.

2) a common control channel between each node and the
BS to exchange control information during the allocation
procedure.

The main implementation aspects of the proposed beamform-
ing and power control schemes include the pilot sequence
design and the signaling design at both the Rx and Tx sides.
Fig. 2 reports the signaling flow diagram of the proposed bi-
directional training approach, whose steps are detailed in the
following subsections.

A. Pilot Sequence

The pilot sequences are referred to as Ωi ∈ CR×S , with
elements ξi(r, t) representing the t-th symbol of the pilot
sequence used by the i-th tx-rx pair for the r-th stream, where

S denotes the number of symbols in each pilot sequence. The
chosen pilot sequences have unity norm and are orthogonal
between beams of the same transmitter. Orthogonality is, how-
ever, not fulfilled between different tx-rx pairs since it is not
realistic to assume to maintain a symbol level synchronization
among nodes. In this case, assuming that each node uses a
local scrambling code, the product ΩiΩ

H
j can be modelled as

a random matrix with elements taken from an i.i.d. zero-mean
distribution with variance S, i.e.,

E
{
ΩiΩ

H
j

}
=

{
SIR if i = j
0 otherwise (39)

B. Transmitted Pilot Signals: Receiver Side

To enable the computation of the precoder matrix at the
transmitter, every receiver at each iteration transmits a pilot
signal on the common control channel, which we denote by
X̃rx
i and is pre-computed as follows:

X̃rx
i =

[
Gi (Wi)

1/2
]∗

Ωi ∈ CM×S (40)

where Gi ∈ CM×R is a matrix with columns gi(r) and Wi

represent the MMSE weights, which, for the sake of notations
simplicity, encompass also the weights αi.

Being implemented at the receiver, the computation of the
receive MMSE matrix Gi does not take into account any
power constraint and Gi in certain cases can be extremely
large.

To circumvent this problem, it is necessary to scale the
signals X̃rx

i by a factor that curtails the power required by
the exchange of control information.

To this aim, we assume that all receivers evaluate a local
scaling factor and they communicate it to the BS. The BS, in
turn, takes the minimum of the received terms and informs
back all the receivers about the actual scaling factor to be
used. Hence, denoting by ρ the coordinated scaling factor,
we employ the pilot signal Xrx

i = ρX̃rx
i , as shown in Figure

2.

C. Estimation of the Required Terms: Transmitter Side

The pilot signal received at the transmitters’ side are:

Ytx
i = ρHT

i,i

[
Gi (Wi)

1/2
]∗

Ωi+

+ ρ

Nu∑
j=1
j 6=i

HT
j,i

[
Gj (Wj)

1/2
]∗

Ωj + Ni ∈ CL×S .

(41)

Assuming perfect direct channel estimation and that the
receivers communicate the MMSE filters and the MMSE
weights to the intended transmitters on the dedicated control
channel, the transmitters can cancel the signal received from
the intended receivers obtaining:

Ŷtx
i = Ytx

i − ρHT
i,i

[
Gi (Wi)

1/2
]∗

Ωi =

= ρ

Nu∑
j=1
j 6=i

HT
j,i

[
Gj (Wj)

1/2
]∗

Ωj + Ni. (42)
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Fig. 2. Network assisted alternating bidirectional signaling to support the proposed distributed iterative schemes. The network (cellular base station) provides
synchronization signals and configures the mobile stations. Mobile stations then utilize channel reciprocity and dedicated control channels to collect the terms
that are necessary to configure the precoder and receiver matrices.

Employing Ŷtx
i the transmitters are able compute an estimate

of the transmitter covariance matrix aŝ̄Ki = 1
ρ2

(
1
S

[
Ŷtx
i

(
Ŷtx,q
i

)H]∗
− σ2

i IL

)
. (43)

Since the expectation of ̂̄Ki yields

EΩ,n

[ ̂̄Ki

]
=

Nu∑
j=1
j 6=i

HH
j,iGjWjG

H
j Hj,i = K̄i. (44)

̂̄Ki is an unbiased estimator of the covariance matrix K̄i

needed at the transmitters side to compute the precoder filters.
Exploiting the direct channel an estimate of the full covariance
matrix can be computed as

K̂i = ̂̄Ki + HH
i,iGiWiG

H
i Hi,i. (45)

As for the wMMSE-SIC and the hybrid schemes, it is worth
noting that estimates of the covariance matrixes K̃i(r) and
˜̄Ki(r) (r = 1, 2, . . . , R and i = 1, 2, . . . , Nu) can be easily
computed by exploiting K̂i and the knowledge of the direct
channel gains.

D. Transmitted Pilot Signals: Transmitters Side

The pilot signals transmitted from the transmitters to the
receivers at each iteration, denoted by X̃tx

i , are computed as
follows:

Xtx
i = ViΩi. (46)

E. Estimation of the Required Terms: Receivers Side

The pilot signal received at the receivers’ side are:

Yrx
i = Hi,iViΩi +

Nu∑
j=1
j 6=i

Hi,jVjΩj + Ni ∈ CM×S . (47)

Assuming perfect direct channel estimation, and assuming that
the transmitters communicate to the intended receivers the

precoding vectors vi(k), the receivers can cancel the signal
received from the intended transmitters thus obtaining:

Ŷrx
i = Yrx

i −Hi,iViΩi =

Nu∑
j=1
j 6=i

Hi,jVjΩj + Ni. (48)

The receivers are able to estimate the covariance matrix aŝ̄Ji = 1
S

[
Ŷrx
i

(
Ŷrx
i

)H]
. (49)

Replacing (48) in (49) and computing the expectation shows
that ̂̄Ji is an unbiased estimator of J̄i

EΩ,n

[̂̄Ji] =
Nu∑
j=1
j 6=i

Hi,jVjV
H
j HH

i,j + σ2
i IM = J̄i. (50)

Also at the receiver it is possible to exploit the knowledge of
the direct channel for computing an unbiased estimate of Ji

Ĵi = ̂̄Ji + Hi,iViV
H
i HH

i,i. (51)

In the presence of SIC, i.e.,in the wMMSE-SIC and wMMSE-
SIC-HB cases, ̂̄Ji and the knowledge of the direct channel can
be used to compute the various covariance matrices required
to compute the receive filters.

As a final step, the receivers must estimate the MMSE
weights Wi. In the wMMSE case, the receivers first estimate
the MMSE matrix Êi = I − VH

i HH
i,iĴ
−1
i Hi,iVi to obtain

Ŵi =
(
Êi

)−1
. In the presence of SIC, the receivers estimate

the SINRs γi(r) given in (27), and then exploit the equivalence
1/ẽi(r) = 1 + γ̃i(r) proven in Appendix A to get the weights
w̃i(l) = 1/ẽi(r).

F. Comparison of Linear wMMSE and wMMSE-SIC in terms
of feedback information

All through this section we have seen that the amount
of feedback required by linear wMMSE and the proposed
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Fig. 3. Sum-rate versus number of users, i.e., tx-rx pairs, with ideal estimation for SNR = 12 dB, R = 4, M = 8 (a), M = 20 (b) and M = 64 (c).

wMMSE-SIC schemes is the same. Nevertheless, this is valid
only for the standard linear wMMSE algorithm and does not
apply when one wants to diagonalize the MMSE matrix for
the linear wMMSE scheme. In fact, computing the eigenvalue
decomposition in (32) requires at the transmitter the explicit
knowledge of the precoding vectors of all users in the system.
This type of information is not possessed by the transmitters
and is not exchanged on any of the control channels and, ac-
cordingly, would require its own signaling, thereby noticeably
increasing the amount of exchanged information.

VII. NUMERICAL RESULTS

We consider a cellular system with a circular coverage
area of radius 500 m serving Nu = 1, 10, or 20 tx-rx pairs
deployed randomly in the coverage area. The algorithms’
performance are evaluated via Monte Carlo simulations, where
at each simulation instance the distance between the tx and
rx nodes of each pair is uniformly distributed in the interval
[Dmin, Dmax], with Dmin = 50 m and Dmax = 200 m.

The channel attenuation is due to path loss – proportional
to the distance between the transmitters and receivers –,
shadowing and fading. The path loss exponent is α = 4,
while shadowing is assumed log-normally distributed with
standard deviation σ = 8 dB. The transmitters and receivers
are assumed to have the same number of antennas, i.e.,
L = M , denoted by M in the following, and a fixed number
of NRF = 4 RF chains. The number of streams per use is
R = NRF . We use an uncorrelated fading channel model with
channel coefficients generated from the complex Gaussian
distribution CN (0, 1). The variance σ2

i of the additive zero-
mean Gaussian noise, which includes the interference from
the cellular network, and the maximum power budget Pi, are
assumed to be the same for all tx-rx pairs.

The performance measure of interest is the achieved system
sum-rate representing the sum of the bits per channel use
(bpcu) by each transmitter. Each point in the curves is obtained
by averaging over 1000 Monte Carlo drops, where at each
drop a new instance of nodes’ positions, as well as large
and small scale fading are generated.The signal-to-noise ratio
(SNR) of a specific simulation is obtained by properly setting
the maximum power budgets and the noise variance.

In all figures, we plot the performance of the FD wMMSE-
SIC (blue solid lines) and wMMSE (green dashed lines)
schemes together with the hybrid beamforming schemes
wMMSE-SIC-HB (black solid lines) and wMMSE-HB
schemes (red dashed lines). The wMMSE algorithm is im-
plemented employing the linear diagonalizing procedure de-
scribed in [8]. The wMMSE-HB scheme is implemented
considering the classical block coordinate descent approach
proposed in [20]. In this case, as discussed in Section V,
convergence of the wMMSE algorithm cannot be ensured
and hence we consider as final result the best total sum-rate
obtained after 100 iterations. Finally, to show the benefits of
the HB algorithm we propose, we also show the performance
of the wMMSE-SIC-HB scheme with hybrid beamforming
implemented following [20] (black dashed line).

Fig. 3 plots the sum-rate as a function of the number of tx-
rx pairs Nu for a fixed SNR = 12 dB in the case of perfect
estimation of all parameters, i.e., assuming S =∞. The results
have been obtained for three different number of antennas:
M = 8 (a), M = 20 (b), and M = 64 (c). As remarked in
Sect. V, in the FD scenario the proposed wMMSE-SIC yields
similar performance to the wMMSE scheme, while in the HB
scenario the proposed wMMSE-SIC-HB clearly outperforms
the schemes based on the HB approach proposed in [20].
As expected, the hybrid beamforming schemes show inferior
sum-rate performance at all SNR values with respect to the
unconstrained fully digital ones. The amount of performance
loss mainly depends on the number of nodes, i.e., the amount
of interference, and, to a lesser extent, on the number of
antennas and on the SNR. The loss of beamforming accuracy
in the HB case makes more difficult to suppress other users’
interference, which leads to degraded performance. However,
such a performance degradation is compensated by the possi-
bility of increasing the number M of antennas at a very low
cost, maintaining the same number NRF of digital chains.
Notice that the wMMSE-SIC-HB scheme with M = 64
performs as the FD wMMSE scheme with M = 20.

Figs. 4-5 report the sum-rate achieved as a function of the
SNR for S =∞, M = 8 (a), M = 20 (b), M = 64 (c) number
of antennas, and for Nu = 10 and Nu = 20 tx-rx pairs,
respectively. Once again, linear wMMSE and wMMSE-SIC
have the same performance and the sum-rate of both schemes
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Fig. 4. Sum-rate versus SNR in the case of ideal estimation for Nu = 10, R = 4, M = 8 (a), M = 20 (b) and M = 64 (c).
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Fig. 5. Sum-rate versus SNR in the case of ideal estimation for Nu = 20, R = 4, M = 8 (a), M = 20 (b) and M = 64 (c).
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Fig. 6. Convergence behavior of wMMSE-SIC, wMMSE, wMMSE-SIC-HB and wMMSE-HB schemes for SNR = 12 dB, Nu = 20, R = 4, M = 8
(a), M = 20 (b) and M = 64 (c).

increases in the same manner as we increase the number of
antennas. On the other hand, the proposed wMMSE-SIC-HB
approach outperforms wMMSE-HB. These results are in line
with the remarks of Sect.V, and show that wMMSE-SIC tends
to have better performance than WMMSE when the degrees of
freedom are limited. Thus, SIC is more beneficial in the hybrid
scheme than in the FD scheme. It is worth noting that also
for this set of results hybrid beamforming schemes are able to
compensate the hardware limitations on the maximum number
of RF chains as the number of available antennas increases.

Fig. 6 reports the sum-rate versus the number of iterations

for all the proposed iterative schemes adopting the parameter
setting as in Fig. 3, in the case of Nu = 20. The sum-rates
are computed by averaging over 1000 simulation runs. Notice
that the number of required iterations is low for all schemes
and, in particular, at most 20 iterations are required. Although
not explicitly shown in these figures, a similar behavior is
observed with different SNR values and different Nu as well.

Fig. 7 plots the performance of the considered allocation
schemes as a function of the length S of the training sequence
for a fixed number of tx-rx pairs, namely Nu = 20 and for
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Fig. 7. Sum-rate versus versus the pilot sequences’ length obtained for 1000 independent channel realizations and for M = 8 (a), M = 20 (b), M = 64
(c), and SNR = 12 dB.

SNR = 12 dB. The reported sum-rates are collected after 20
iterations, i.e., in this case the number of iterations is fixed
without requiring convergence of the iterative procedures. In
the presence of channel variability, the training phase must be
limited to the minimum necessary, and 20 iterations have been
found to be sufficient to approach convergence in all cases.
Notice that for small S (short training sequence), all schemes
show poor performance because of two reasons. First, short
pilot sequences imply low pilot energy leading to poor SNR
for channel estimation. Second, too short pilot sequences lead
to losing orthogonality between tx-rx pairs, which is especially
harmful in the presence of a large number of tx-rx pairs in a
limited geographical area. However, the SIC strategy shows
higher robustness towards such impairments with respect
to wMMSE, thus confirming the validity of the proposed
approach. As an example, with S = 64, the wMMSE-SIC
schemes approach the case of perfect parameters’ estimation,
as can be seen by comparing the results in Fig. 7 with those
plotted in Fig. 3. On the contrary, the linear wMMSE schemes
require a much higher value of S.

VIII. CONCLUDING REMARKS

We presented three novel distributed allocation schemes
for the MIMO interference channel based on MMSE beam-
forming. To deal with inter-stream interference, all three
transmit schemes operate jointly with SIC reception, and result
in joint iterative transmit-receive schemes. In particular, we
first proposed an allocation scheme that aims at optimally
setting the transmitter precoding vectors in the case of fully
digital beamforming. Then, we proposed two hybrid schemes
designed to deal with a limited number of RF chains compared
to the number of antennas. Then, for practical implementation,
we proposed a signaling scheme that takes advantage of
the presence of a common broadcast channel and facilitates
CSI acquisition in a typical cellular scenario with minimal
infrastructure assistance. Numerical results demonstrate the
effectiveness of the proposed schemes both in terms of high
system spectral efficiency achievement and practical viability.
Moreover, although the two hybrid schemes incur higher inter-
stream interference than the fully digital scheme, they require a
low number of iterations and are robust against CSI errors and

could be of particular interest in millimeter wave applications.

APPENDIX A: EQUIVALENCE 1/ẽi(k) = 1 + γi(k)

Let us focus on user i and define, for the sake of notation
clarity, ri(m) = Hi,iṽi(m) and rj(m) = Hi,jṽj(m). We can
now rewrite (14) as

g̃i(k) =
(
Mi(k) + ri(k)rHi (k)

)−1
ri(k). (A.1)

where it is

Mi(k) =

 L∑
l=k+1

ri(l)r
H
i (l) +

Nu∑
j=1,j 6=i

L∑
l=1

rj(l)r
H
j (l) + σ2IL

 .

(A.2)
By applying the Woodbury matrix identity to (A.1), one
obtains

g̃i(k) = M−1
i (k)ri(k)−M−1

i (k)ri(k) ·

·
(
1 + rHi (k)M−1

i (k)ri(k)
)−1

rHi (k)M−1
i (k)ri(k) =

=

(
1− β(k)

1 + β(k)

)
M−1

i (k)ri(k)

=
1

1 + β(k)
M−1

i (k)ri(k).

(A.3)

where β(k) = rHi (k)M−1
i (k)ri(k). Thus, employing (A.3),

the useful part of the filtered signal g̃Hi (m)Hi,iṽi(m) can be
rewritten as

g̃Hi (k)ri(k) =
1

1 + β(k)
rHi (k)M−1

i (k)ri(k) =
β(k)

1 + β(k)
.

(A.4)
Since the received SINR γ̃i(k) is

γ̃i(k) =
|g̃Hi (k)ri(k)|2

g̃Hi (k)Mi(k)g̃i(k)
, (A.5)

we can replace g̃Hi (k)ri(k) in the numerator with the
expression found in (A.4) and, taking into account that
gHi (k)Mi(k)gi(k) = β(k)

(1+β(k))2 , one obtains

γ̃i(k) =
β2(k)

(1 + β(k))2
(1 + β(k))2

β(k)
= β(k). (A.6)
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Since from (21) it is

ẽi(m) = 1− g̃Hi (m)ri(m)

= 1− β(m)

1 + β(m)
=

1

1 + β(m)
,

(A.7)

one immediately finds that

1

ẽi(m)
= 1 + β(m) = 1 + γi(m). (A.8)
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