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Abstract

A Markov modulated Brownian motion(MMBM) is a substantial generalization of the classical Brow-

nian Motion and is obtained by allowing the Brownian parameters to be modulated by an underlying

Markov chain of environments. As in Brownian Motion, the stationary analysis of the MMBM becomes

easy once the distributions of the first passage time between levels are determined. Asmussen (Stochas-

tic Models, 1995) proved that such distributions can be obtained by solving a suitable quadratic matrix

equation (QME), while, more recently, Ahn and Ramaswami (Stochastic Models, 2017) derived the dis-

tributions from the solution of a suitable algebraic Riccati equation (NARE). In this paper we provide

an explicit algebraic relation between the QME and the NARE, based on a linearization of a matrix

polynomial. Moreover, we discuss the doubling algorithms such as the structure-preserving doubling al-

gorithm (SDA) and alternating-directional doubling algorithm (ADDA), with shifting technique, which

are used for finding the sought of the NARE.
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1 Introduction

A Markov modulated Brownian motion (MMBM), denoted by (F, J) = {(F (t), J(t), t ≥ 0}, is a generaliza-

tion of the classical Brownian motion. The phase process J of the MMBM is an irreducible continuous-time

Markov process with finite state space S = {1, · · · , n}, infinitesimal generator Q, and stationary probability

vector π. The level process F of the MMBM is defined as the following stochastic integral

F (t) = a+

∫ t

0

µJ(u)du+

∫ t

0

σJ(u)dB(u), a ≥ 0, (1)

where, µi are real numbers, σi ≥ 0 for all i ∈ S, and {B(·)} is a standard Brownian motion independent of

J . As defined above, the level process behaves like a Brownian motion, but its drift and diffusion parameters

change depending on the specific Markovian environmental state of J .

Since when Asmussen [6] and Rogers [22] introduced the MMBM, there have been many subsequent

research efforts, and the model has served as the theoretical basis for research in numerous academic fields

including queues, finance, and insurance risk theories. The stationary distribution of the one-sided reflection

of the MMBM can be represented by certain matrices of the first passage probabilities of the MMBM. But

these matrices cannot be obtained in closed forms unlike for the Brownian motion. Hence, it is necessary to

develop efficient numerical methods to compute the matrices.

In particular, in [6], the computation of the distribution is ultimately reduced to solving a quadratic

matrix equation (QME) of the form ∆σ2/2U
2 +∆µU +Q = 0, where µ = (µ1 · · · µn), σ = (σ1 · · · σn), and

Λ = diag{−[Q]ii, i ∈ S} and, throughout the paper, for a given vector v, ∆v denotes the diagonal matrix

with the elements of v on its diagonal. Several numerical methods have been suggested in the literature,

which are based on Cyclic Reduction [19], the eigendecomposition of a linearization [17], or more generally

a block diagonal decomposition [1]. More recently, Nguyen and Poloni [20] proposed an algorithm of our

special attention. It is an extension of the algorithm developed by Nguyen and Latouche [19] that is based

on the cyclic reduction method and designed for the MMBM with σ > 0. They proved the componentwise

accuracy and stability of their algorithm, and also demonstrated its superiority to other algorithms given in

[19, 17, 1] with numerical examples.
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As opposed to the previous research, Ahn and Ramaswami [5] proposed a new approach based on a

nonsymmetric algebraic Riccati equation (NARE) of the form AZ + ZB + ZCZ +D = 0, and showed that

the first-passage probabilities can be obtained by using the minimal nonnegative solution of the equation. To

the best of our knowledge, this is the first approach in the literature to analyze Markov modulated Brownian

motion using an NARE. One of the merits of this approach is that one can apply the doubling algorithms

such as the structure-preserving doubling algorithm (SDA, [14, 16]) and alternating-directional doubling

algorithm (ADDA, [18, 23]). These doubling algorithms quadratically converge except for the so-called null-

recurrent case [13, 15, 23]. Furthermore, one can use the so-called shift [13] technique to improve the speed

of convergence to be quadratic even for the null-recurrent case.

The contribution of this paper is twofold. From one hand we provide an algebraic connection between

the QME and the NARE, more specifically we show that the NARE can be obtained by means of a lin-

earization of a quadratic matrix polynomial associated with the QME. In this way, we provide an explicit

relation between the solutions of the two matrix equations, and a characterization of the solutions in terms

of location of the eigenvalues in the complex plane. On the other hand, we discuss the doubling algo-

rithms such as the structure-preserving doubling algorithm(SDA, [8]) and alternating-directional doubling

algorithm(ADDA, [16]) which are used for finding the minimal nonnegative solution of the NARE. These

algorithms are quadratically convergent except for the null-recurrent case of the MMBM. To improve the

speed of convergence of the doubling algorithms in the null recurrent case, we introduce a shifted NARE

by applying the shift technique, which was investigated by Guo, Iannazzo, and Meini [13]. We observe that

the convergence of the doubling algorithms is accelerated and also quadratic even in the null-recurrent case

when they are applied to the shifted NARE, as claimed by Guo, Iannazzo, and Meini. Numerical examples

show that the algorithm applying ADDA to the shifted NARE is superior to the other doubling algorithms

in comparison. This also holds when compared to Nguyen and Poloni’s quadratically convergent algorithm

[20] that is based on the quadratic matrix equation obtained by Asmussen.

The remainder of this paper is organized as follows. In Section 2 we recall some definitions and properties

of nonnegative matrices and matrix polynomials. In sections 3 and 4 we introduce the NARE in the MMBM

with σ > 0 and σ ≥ 0, respectively, investigate the spectral properties of the solutions and show the

relationship with the UQME. In section 5, we recall the doubling algorithms and apply the shift technique

in the null recurrent case. Numerical examples are given in Section 6. We provide concluding remarks in

Section 7.
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2 Preliminaries

In this section we recall some definitions and properties on nonnegative matrices and matrix polynomials.

2.1 Nonnegative matrices

We introduce some relevant definitions and notations. For any matrices A,B ∈ Rm×n, we write A ≥ B(A >

B) if [A]ij ≥ [A]ij([A]ij > [B]ij) for all i, j, where [A]ij denotes the (i, j)-th element of A. Given A ∈ Cm×n,

we denote by |A|, Re(A) and Im(A) the m × n real matrix matrix whose (i, j)-th entry is |[A]ij |, Re([A]ij)

and Im([A]ij), respectively.

The comparison matrix of A ∈ Cm×m is the matrix Â ∈ Rm×m such that

[Â]ij =

 Re([A]ii), if i = j

−|[A]ij |, if i 6= j.

A real square matrix A is called a Z-matrix if all its off-diagonal elements are non-positive. Any Z-matrix

A can be written as sI −B with B ≥ 0. A Z-matrix A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the

spectral radius; it is called a singular M -matrix if s = ρ(B) and a non-singular M -matrix if s > ρ(B).

2.2 Matrix polynomials

We refer the reader to the book [11] for a complete treatment on matrix polynomials.

Definition 1. A k×k matrix polynomial of degree ` is a polynomial in the form P (λ) =
∑`
j=0 λ

jAj, where

the Aj are k × k matrices. The roots of the polynomial p(λ) = det(P (λ)) are called eigenvalues of P (λ). If

p(λ) has degree m < `k, we say that P (λ) has `k −m eigenvalues at infinity.

Definition 2. The k`× k` matrix polynomial A− λB is a linerization of the k× k matrix polynomial P (λ)

if

A− λB = E(λ)

P (λ) 0

0 Ik(`−1)

F (λ),

where E(λ) and F (λ) are k`× k` matrix polynomials such that det(E(λ)), det(F (λ)) are different from zero

and independent of λ.

From the above definition, it follows that the finite eigenvalues of A− λB coincide with the finite eigen-

values of P (λ).
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Definition 3. Let P (λ) = λ`I +
∑`−1
j=0 λ

jAj be a k× k monic matrix polynomial. A pair of matrices (V, T ),

where V is k × k` and T is k`× k`, is called a standard pair for P (λ) if the following properties hold:

1. the matrix

W =



V

V T

...

V T `−1


is nonsingular;

2.
∑`−1
j=0AjV T

j + V T ` = 0.

With a k`× k matrix U defined as

U = W−1



0

0

...

I


,

the triple (V, T, U) is called a standard triple for P (λ).

We say that (T,U) is a left standard pair for P (λ) if (U ′, T ′) is a standard pair for P (λ)′. When needed

from the context, we will refer to a standard pair as to a right standard pair. Here, ′ is the transpose

operator.

The following result is Theorem 6.2 in [11]:

Theorem 1. Let P (λ) be a k × k monic matrix polynomial of degree ` and assume there exist matrices

V, T, U of sizes k × k`, k`× k`, k`× k, respectively, such that

P (λ)−1 = V (λI − T )−1U

for any λ such that det(λI − T ) 6= 0. Then (V, T, U) is a standard triple for P (λ).

3 The case of positive diffusion parameters

In this section, we assume that σi > 0 for all i ∈ S. First we recall some results relating the Laplace Stilties

transform of the first return time with the solution of a suitable algebraic Riccati equation. Secondly, we
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with complex transform variable s on the closed right half-plane.

3.1 NARE for the first-passage probability matrix

Referring to the MMBM model (F, J), let τ = inf{t > 0 : F (t) < 0} and define a transform matrix f̂(s, a)

such that for a ≥ 0 and a complex number s with non-negative real part

[f̂(s, a)]i,j = E[e−sτχ(J(τ) = j, τ <∞) | F (0) = a, J(0) = i], i, j ∈ S,

where χ(·) denotes the indicator function. Since starting at time 0 at a level a, during any small interval of

time, the Brownian motion visits a infinitely often with probability 1, f̂(s, 0) = I.

When a > 0, it is well-known in the literature that f̂(s, a) = eH(s)a for a n×n square matrix function H(s)

of s. Here, the exponential structure originates from the level crossing argument and the spatial homogeneity

of the process (F, J) in its levels. However, in general, it is impossible to get exact formula of H(s).

According to the results of [5], the matrix H(s) can be explicitly related to the solution of the NARE

A(s)X +XB(s) +XCX +D = 0, (2)

where, with ∆(s) = ∆−2
σ ∆µ + ∆−1

σ (2sI + 2Λ + ∆−2
σ ∆2

µ)1/2, Λ = diag{−[Q]i,i, i ∈ S},

A(s) = ∆−2
σ ∆µ −∆−1

σ (2sI + 2Λ + ∆−2
σ ∆2

µ)1/2,

B(s) = −∆(s), C = ∆−1
σ , D = 2∆−1

σ (Q+ Λ),

and set ∆ = ∆(0), A = A(0), B = B(0).

More specifically, the following theorem, which can be found in Theorem 5.1 of Ahn and Ramaswami [5],

provides a basic result so that H(s) can be obtained from the minimal nonnegative solution of a NARE.

Theorem 2. Assume s ∈ R and s ≥ 0, and let X(s) = ∆σ(H(s) + ∆(s)). Then X(s) is the minimal

nonnegative solution of the NARE (2).

Especially when s = 0, letting H = H(0), we have f̂(0, a) = eHa and it contains first passage probabilities

such that [eHa]ij = P [τ <∞, J(τ) = j|F (0) = a, J(0) = i], i, j ∈ S. As for the exponent matrix H, we get

the following corollary.
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Corollary 1. Let X = ∆σ(H + ∆) with ∆ = ∆−2
σ ∆µ + ∆−1

σ (2Λ + ∆−2
σ ∆2

µ)1/2. Then, X is the minimal

nonnegative solution of the following Riccati equation

AZ + ZB + ZCZ +D = 0, (3)

where A = ∆−2
σ ∆µ −∆−1

σ (2Λ + ∆−2
σ ∆2

µ)1/2, B = −∆, C = ∆−1
σ , and D = 2∆−1

σ (Q+ Λ). 2

We note that the dual MMBM is an MMBM modulated by the time-reversed process Jd of J and its

drift and diffusion vectors are given as −µ and σ. Hence, NARE for Hd can be obtained by substituting µ

and Q with −µ and Qd = ∆−1
π Q′∆π in the corollary.

3.2 Properties of the NARE

Let 1 be the column vector of 1’s of appropriate dimension and let π the steady state vector of Q, i.e., the

vector π such that πQ = 0, π1 = 1.

In association with the NARE (2), we define

M(s) =

 −B(s) −C

−D −A(s)

 , Re(s) ≥ 0,

and use M to denote M(0). The comparison matrix for M(s) is

M̂(s) =

 −Re(B(s)) −C

−D −Re(A(s))

 .

Proposition 1. (a) When s ∈ R and s > 0, the matrix M(s) is an irreducible non-singular M -matrix. (b)

When s = 0, the matrix M is an irreducible singular M -matrix. In this case, the left and right eigenvectors

corresponding to the eigenvalue 0 are given as

u :=

 u1

u2

 =

 ∆−1Λπ′

0.5∆σπ
′

 and v :=

 v1

v2

 =

 1

∆∆σ1

 ,

which are unique up to a scalar multiple. (c) When s ∈ C with Re(s) ≥ 0 and s 6= 0, the comparison matrix

M̂(s) is an irreducible non-singular M -matrix.
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Proof. We note that A(s), B(s), and C are diagonal matrices. Furthermore, if s ∈ R, it holds that A(s) < 0,

B(s) < 0, C > 0, and D ≥ 0 for all s ≥ 0. Since Q is assumed to be an irreducible infinitesimal generator,

it is clear that M(s) is an irreducible M -matrix.

(a) Assume s > 0. The matrix −B(s) − C[−A(s)]−1D = 2∆−2
σ [−A(s)]−1(sI − Q) is invertible and has

nonnegative inverse because the diagonal matrix −A(s) and (sI − Q)−1 are both nonnegative. Hence, the

inverse of M(s) exists and is given as

 0 0

0 (−A(s))−1

+
1

2

 I

(−A(s))−1D

 (sI −Q)−1[−A(s)]∆2
σ

(
I C(−A(s))−1

)
,

which is nonnegative. Therefore, M(s) is a non-singular M -matrix [7].

(b) It is simple arithmetic to verify u′M = 0 and Mv = 0 and we omit the proofs. These equations

imply that M is a singular M -matrix. In this case, 0 is a simple eigenvalue by the Perron-Frobenius theory,

hence the corresponding eigenvectors are unique up to a scalar multiple.

(c) Observe that

−Re(B(s)) = Re(∆) = ∆−2
σ ∆µ + ∆−1

σ Re
(

(2sI + 2Λ + ∆−2
σ ∆2

µ)1/2
)
.

On the other hand, if x ∈ R is any positive number, then Re
(
(x+ s)1/2

)
> x1/2, therefore

−Re(B(s)) > ∆−2
σ ∆µ + ∆−1

σ (2Λ + ∆−2
σ ∆2

µ)1/2 = −B(0).

Similarly, we may show that −Re(A(s)) > −A(0). Since M(0) is a singular M-matrix, and since M̂(s) ≥

M(0), with strict inequality on the diagonal entries, and equality on the off diagonal entries, then M̂(s) is a

nonsingular M-matrix [7].

In association with the NARE (2), we define

L(s) =

 −B(s) −C

D A(s)

 (4)
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L(s) B(s) + CX(s) A(s) +X(s)C
C+ C− 0 C− 0 C− 0

s > 0 n n 0 n 0 n 0
s = 0, m > 0 (µ < 0) n− 1 n 1 n− 1 1 n 0
s = 0, m < 0 (µ > 0) n n− 1 1 n 0 n− 1 1
s = 0, m = 0 (µ = 0) n− 1 n− 1 2 n− 1 1 n− 1 1

Table 1: Number of eigenvalues in C+, C− and equal to 0 for the matrices L(s), B(s) + CX(s) and A(s) +
X(s)C.

and use L to denote L(0). From Theorem 2.1 of [8] we get

L̃(s) = K(s)−1L(s)K(s) =

−(B(s) + CX(s)) −C

0 A(s) +X(s)C

 , K(s) =

 I 0

X(s) I

 . (5)

In the case s = 0, define m = u′1v1 − u′2v2, where ui, vi, i = 1, 2, are given in Proposition 1. Through

simple arithmetic, we can show that

m = u′1v1 − u′2v2 = −
∑
i∈S

[π]i[µ]i.

Note that −m is the average drift of the MMBM (F, J). Here, [a]i denotes the i-th element of a vector a.

From the results of [8, Section 2.1.2] and from [18] we derive the following result that extends Theorem

2:

Theorem 3. Let s ∈ C have nonnegative real part. (a) When s ∈ R the NARE (2) has a minimal

nonnegative solution X(s). Moreover, X(s) is the unique solution such that σ(B(s) + CX(s)) ⊂ C− ∪ {0}

and σ(A(s) +X(s)C) ⊂ C− ∪ {0}. More specifically, according to the positivity of s and of m, when s = 0,

the eigenvalues of the above matrices are located as according to Table 1.

(b) When s ∈ C \R the NARE (2) has a unique solution X(s) such that |X(s)| ≤ X(0). Moreover, X(s)

is the unique solution such that σ(B(s) + CX(s)) ⊂ C− and σ(A(s) +X(s)C) ⊂ C−.

Proof. Part (a) follows from parts (a) and (b) of Proposition 1 and from the results of [8, Section 2.1.2].

Part (b) follows from Proposition 1 and from Theorem 3.1 of [18].

In the following, X(s) will denote the solution of the NARE (2) characterized by Theorem 3.

From Theorem 2 we obtain that H(s) = ∆−1
σ (X(s) −∆(s)), i.e., H(s) = B(s) + CX(s). Therefore the

eigenvalues of H(s) lie in the (closed) left half plane, according to Table 1.
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3.3 NARE and quadratic matrix polynomials

In this section, by using properties of matrix pencils and matrix polynomials, we explicitly relate the solutions

of the quadratic matrix equations

∆σ2/2Z
2 + ∆µZ +Q− sI = 0, (6a)

Z2∆σ2/2 + Z∆µ +Q− sI = 0, (6b)

for Re(s) ≥ 0, and the solution X(s) of the Riccati equation (2).

In particular, the solution of interest of (6) is the matrix having eigenvalues in the (closed) left half

complex plane, and such solution is used to compute the invariant density of the Markov-modulated Brownian

motion.

Define D1 = ∆−2
σ ∆µ, D2(s) = ∆−1

σ (2sI + 2Λ + ∆−2
σ ∆2

µ)1/2, so that A(s) = D1 − D2(s), B(s) =

−D1 −D2(s), and the matrix L(s) in (4) can be written as

L(s) =

 D1 +D2(s) −∆−1
σ

2∆−1
σ (Q+ Λ) D1 −D2(s)

 .

Theorem 4. The matrix pencil W (λ) = λI − L(s) can be factored as

W (λ) = E(λ)

P (λ) 0

0 I

F (λ), (7)

with

E(λ) =

 0 I

−I (λI − (D1 −D2(s))∆σ

 , F (λ) =

 ∆σ 0

λI − (D1 +D2(s)) ∆−1
σ


where P (λ) = λ2I − 2λ∆−2

σ ∆µ + 2∆−1
σ (Q − sI)∆−1

σ . Moreover, W (λ) is a linearization of the matrix

polynomial P (λ).

Proof. The factorization (7) of W (λ) can be proved by direct inspection: the right hand-side in (7) is equal
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to 0 I

−P (λ) (λI − (D1 −D2(s))∆σ


 ∆σ 0

λI − (D1 +D2(s)) ∆−1
σ

 =

λI − (D1 +D2(s)) ∆−1
σ

Q(λ) λI − (D1 −D2(s))


where

Q(λ) = −P (λ)∆σ + (λI − (D1 −D2(s)))∆σ(λI − (D1 +D2(s)).

Since D2
1−D2(s)2 = −2∆−2

σ (sI+Λ), we may easily conclude that Q(λ) = −2∆−1
σ (Q+Λ), so that (7) holds.

Since det(E(λ)) = det(F (λ)) = 1, then W (λ) is a linearization of the matrix polynomial P (λ).

The following result gives more insights between the solution X(s) of the NARE (2) and the solutions of

the matrix equations (6).

Theorem 5. The matrices R1(s) = B(s) + CX(s) and R2(s) = −∆σ(A(s) + X(s)C)∆−1
σ are solutions of

the quadratic matrix equations (6a) and (6b), respectively. Moreover, R1(s) is the solution of (6a) having

as eigenvalues the n rightmost eigenvalues of P (λ), while R2(s) is the solution of (6b) having as eigenvalues

the n rightmost eigenvalues of P (λ).

Proof. From (7) we deduce that, for any λ such that detP (λ) 6= 0,

 ∆σ 0

λI − (D1 +D2(s)) ∆−1
σ

W (λ)−1

 0 I

−I (λI − (D1 −D2(s))∆σ

 =

P (λ)−1 0

0 I

 ,
so that [

∆σ 0

]
W (λ)−1

 0

−I

 = P (λ)−1.

Hence, for Theorem 1, the triple (V,L(s), U), where V =

[
∆σ 0

]
and U =

 0

−I

, is a standard triple for

P (λ). Therefore, the pair (V,L(s)) is left standard pair, while the pair (L(s), U) is a right standard pair.

From the definition of standard pair and from the expression of P (λ), we obtain

V L(s)2 − 2∆−2
σ ∆µV L(s) + 2∆−1

σ (Q− sI)∆−1
σ V = 0, (8a)

L(s)2U − 2L(s)U∆−2
σ ∆µ + 2U∆−1

σ (Q− sI)∆−1
σ = 0. (8b)
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Therefore, multiplying (8a) on the right by K(s) and (8b) on the left by K(s)−1, where K(s) is defined in

(5), yields

V L̃(s)2 − 2∆−2
σ ∆µV L̃(s) + 2∆−1

σ (Q− sI)∆−1
σ V = 0, (9a)

L̃(s)2U − 2L̃(s)U∆−2
σ ∆µ + 2U∆−1

σ (Q− sI)∆−1
σ = 0, (9b)

since V K(s) = V and K(s)−1U = U . From the structure (5) of L̃(s), equations (9a) and (9b) imply that

∆σ(B(s) + CX(s))2 + 2∆−1
σ ∆µ(B(s) + CX(s)) + 2∆−1

σ (Q− sI) = 0,

(A(s) +X(s)C)2 − 2(A(s) +X(s)C)∆−2
σ ∆µ + 2∆−1

σ (Q− sI)∆−1
σ = 0.

From these two equalities we conclude that R1(s) and R2(s) solve the matrix equations (6a) and (6b),

respectively. The properties of the eigenvalues follow from Table 1 and from the fact that the eigenvalues of

P (λ) coincide with the eigenvalues of L(λ) for Theorem 4.

4 The case of nonnegative diffusion parameters

In this section, we discuss how to extend the results in Section 3 to the MMBM which include linear states,

of which the diffusion parameter σi can be zero.

4.1 NARE for the first passage probability matrix

Let J = {J(t), t ≥ 0} be a continuous time, irreducible Markov process; this Markov process will modulate

the environment in which the MMBM operates. We assume that the state space S of J is finite and

partitioned into certain subsets as S = Sb ∪ Su ∪ Sd ∪ S0. Furthermore, we assume that the infinitesimal

generator Q of the Markov process is block partitioned correspondingly as

Q = [Ql,m, l,m = b, u, d, 0] .

and has the partitioned stationary probability vector π = (πb πu πd π0) satisfying the equations πQ = 0

and π1 = 1. Associated with this Markov process, we define a level process {F (t) : t ≥ 0} through the

stochastic integral equation (1), where (i) σi > 0 for i ∈ Sb, and σi = 0 for i ∈ Su ∪ Sd ∪ S0; and (ii) µi > 0

for i ∈ Su, µi < 0 for i ∈ Sd, and µi = 0 for i ∈ S0.
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We let σ = (σb 0u 0d) and µ = (µb µu µd), where σb = (σi, i ∈ Sb), and the vectors µb, µu, and µd

to denote the row vectors composed of the drift coefficients µi of the MMBM provided for Sb, Su, and Sd

respectively. For later use, we define Σ = ∆σb
.

Referring to the MMBM models (F, J), let τ = inf{t > 0 : F (t) < 0} and define a transform matrix

f̂(s, a) such that for a ≥ 0 and a complex number s with non-negative real part

[f̂(s, a)]i,j = E[e−sτχ(J(τ) = j, τ <∞) | F (0) = a, J(0) = i], i, j ∈ S.

Then, for a > 0, the submatrix
(

[f̂(s, a)]i,j , i, j ∈ Sb ∪ Sd
)

= eH(s)a with H(s) being a |Sb +Sd|-dimensional

square matrix function of s.

For further description of H(s), we define D1 = Σ−2∆µb
, D2(s) = Σ−1(2sI + 2Λb + Σ−2∆2

µb
)1/2, and

Ql,m(s) = Ql,m +Ql,0(sI −Q0,0)−1Q0,m for l,m = b, u, d. (10)

Then, the matrix H(s) is related to the minimal nonnegative solution of the NARE

A(s)Z + ZB(s) + ZC(s)Z +D(s) = 0, (11)

where

A(s) =

 D1 −D2(s) 2Σ−1Qb,u(s)

0 ∆−1
µu

[Qu,u(s)− sI]

 , B(s) =

 −D1 −D2(s) 0

−∆−1
µd
Qd,b(s) −∆−1

µd
[Qd,d(s)− sI]

 ,

C(s) =

 Σ−1 0

0 −∆−1
µd
Qd,u(s)

 , D(s) =

 2Σ−1(Qb,b(s) + Λb) 2Σ−1Qb,d(s)

∆−1
µu
Qu,b(s) ∆−1

µu
Qu,d(s)

 .

We use A,B,C, and D to denote A(0), B(0), C(0), and D(0), respectively.

The following theorem, which can be found in Theorem 5.1 of Ahn and Ramaswami [5], provides basic

results on probabilistic meanings of the minimal nonnegative solution of the NARE (11), and also its relation

with H(s).

Theorem 6. Assume s ≥ 0 and let X(s) be the minimal nonnegative solution of the NARE (11). Then,
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(a) H(s) satisfies that H(s) = B(s) + C(s)X(s), and (b) for i ∈ Su and j ∈ Sb ∪ Sd,

[X(s)]i,j = E[e−sτχ(J(τ) = j, τ <∞) | F (0) = 0, J(0) = i].

Especially when s = 0, letting H = H(0), we have
(

[f̂(0, a)]i,j , i, j ∈ Sb ∪ Sd
)

= eHa, which contains first

passage probabilities such that [eHa]ij = P [τ < ∞, J(τ) = j|F (0) = a, J(0) = i] for i, j ∈ Sb ∪ Sd. In this

case, we get the following corollary.

Corollary 2. Let X = X(0). Then, (a) H satisfies that H = B +CX, and (b) for i ∈ Su and j ∈ Sb ∪ Sd,

[X]i,j = P [J(τ) = j, τ <∞ | F (0) = 0, J(0) = i].

4.2 Properties of the NARE

The matrix corresponding to the NARE (11) is

M(s) =

 −B(s) −C(s)

−D(s) −A(s)

 , Re(s) ≥ 0,

and M is used to denote M(0). The comparison matrix for M(s) is

M̂(s) =

 −Re(B(s)) −C

−D −Re(A(s))

 .

The proof of following proposition is similar to that of Proposition 1 and is omitted.

Proposition 2. (a) When s > 0, the matrix M(s) is an irreducible non-singular M -matrix. (b) When

s = 0, the matrix M = M(0) is an irreducible singular M -matrix. In this case, with

∆ = Σ−2∆µb
+ Σ−1(2Λb + Σ−2∆2

µb
)1/2,
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the left and right eigenvectors u and v corresponding to the eigenvalue 0 of M are given as

u :=

 u1

u2

 =



 ∆−1Λbπ
′
b

−∆µd
π′d


 0.5Σπ′b

∆µu
π′u




and v :=

 v1

v2

 =



 1b

1d


 ∆Σ1b

1u




,

which are unique up to a scalar multiple. Here, the notation 1k with k ∈ {b, u, d} is used to denote the

|Sk|-dimensional vector of 1’s. (c) When s ∈ C with Re(s) ≥ 0 and s 6= 0, the comparison matrix M̂(s) is

an irreducible non-singular M -matrix.

In association with the NARE (11), we define

L(s) =

 −B(s) −C(s)

D(s) A(s)


and use L to denote L(0). We also get from Theorem 2.1 of [8] that

L̃(s) = K(s)−1L(s)K(s) =

−(B(s) + C(s)X(s)) −C(s)

0 A(s) +X(s)C(s)

 , K(s) =

 I 0

X(s) I

 . (12)

In the case s = 0, define m = u′1v1 − u′2v2, where ui, vi, i = 1, 2, are given in Proposition 2. Through

simple arithmetic, we can also show that

m = u′1v1 − u′2v2 = −
∑
i∈S

[π]i[µ]i.

Note that −m is the average drift of the MMBM (F, J).

From the results of [8, Section 2.1.2] and from [18] we extend Theorem 6 and derive the following result,

of which the proof is similar to that of Theorem 3 and is omitted.

Theorem 7. Let s ∈ C have nonnegative real part. (a) When s ∈ R the NARE (11) has a minimal

nonnegative solution X(s). Moreover, X(s) is the unique solution such that σ(B(s) + CX(s)) ⊂ C− ∪ {0}

and σ(A(s) +X(s)C) ⊂ C− ∪ {0}. More specifically, according to the positivity of s and of m, when s = 0,
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L(s) B(s) + CX(s) A(s) +X(s)C
C+ C− 0 C− 0 C− 0

s > 0 nb + nd nb + nu 0 nb + nd 0 nb + nu 0
s = 0, m > 0 (µ < 0) nb + nd − 1 nb + nu 1 nb + nd − 1 1 nb + nu 0
s = 0, m < 0 (µ > 0) nb + nd nb + nu − 1 1 nb + nd 0 nb + nu − 1 1
s = 0, m = 0 (µ = 0) nb + nd − 1 nb + nu − 1 2 nb + nd − 1 1 nb + nu − 1 1

Table 2: Number of eigenvalues in C+, C− and equal to 0 for the matrices L(s), B(s) + CX(s) and A(s) +
X(s)C. Here, nb, nu, and nd denote the number of states in Sb, Su, and Sd, respectively.

the eigenvalues of the above matrices are located as according to Table 2.

(b) When s ∈ C \ R the NARE (11) has a unique solution X(s) such that |X(s)| ≤ X(0). Moreover,

X(s) is the unique solution such that σ(B(s) + CX(s)) ⊂ C− and σ(A(s) +X(s)C) ⊂ C−.

In the following, X(s) will denote the solution of the NARE (11) characterized by Theorem 7.

From Theorem 6 we obtain that H(s) = B(s) +CX(s), hence the eigenvalues of H(s) lie in the (closed)

left half plane, according to Table 2.

4.3 NARE and quadratic matrix polynomials

In this section, by using properties of matrix pencils and matrix polynomials, we explicitly relate the solutions

of the quadratic matrix equations given in Nguyen and Poloni [20] and the solution X(s) of the NARE (11).

Let Qr(s) be the block-partitioned matrix composed of the submatrices Ql,m(s) in (10) such that Qr(s) =

[Ql,m(s), l,m = b, d, u]. We define κs(λ) = λ2∆r
σ2/2 − λ∆r

µ + Qr(s) − sI with ∆r
σ2/2 = diag{∆2

σb
/2,0,0}

and ∆r
µ = diag{∆µb

,∆µd
,∆µu

}, and denote κ0(λ) simply by κ(λ). We note that the (i, j)-th element of

the matrix exponential etκ(λ) has the following probabilistic meaning(see Proposition 5.1 of Asmussen[6]):

[
etκ(λ)

]
ij

= E
[
e−λF0(t)χ(J0(t) = j)|F0(0) = 0, J0(0) = i

]
,

where (F0, J0) is the process to be obtained from (F, J) by cutting off the period where J stays in S0.

We let matrix polynomial P (λ) = diag{2Σ−2,−∆−1
µd
,−∆−1

µu
}κs(λ). Then P (λ) can be represented as

P (z) = λ2A2 + λA1 +A0, where

A2 = diag{Ib,0d,0u}, A1 = diag{−2Σ−2∆µb
, Id, Iu} and A0 = diag{2Σ−2,−∆−1

µd
,−∆−1

µu
} (Qr(s)− sI) . (13)

The following theorem shows the relation between the solutions of our NARE and the quadratic matrix
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equation in Nguyen and Poloni[20].

Theorem 8. Let X(s) be the minimal nonnegative solution of the NARE (11) and define

V1 =


Ib 0

0 Id

Xub(s) Xud(s)

 and U2 =

2Σ−1 0 −Xbd(s)∆
−1
µd

0 ∆−1
µu

−Xud(s)∆
−1
µd

 (14)

Then, matrix B(s) + C(s)X(s) is a solution of the following quadratic equation

∆r
σ2/2V1Z

2 + ∆r
µV1Z + (Qr(s)− sI)V1 = 0.

Furthermore, the matrix −(A(s) +X(s)C(s)) is a solution of the following quadratic equation

Z2U2∆σ2/2 + ZU2∆µ + U2(Q(s)− sI) = 0.

For the proof of the theorem, we introduce the following two lemmas, of which the proofs are deffered to

Appendix. Recall the matrix L(s) in (12) and define a corresponding matrix pencil W (λ) = λI −L(s). The

following lemma shows a result on the linearization of P (λ).

Lemma 1. The matrix pencil W (λ) can be factored as

W (λ) = η(λ)

P (λ) 0

0 Ib

 ζ(λ), (15)

where

η(λ) =



0 0 0 Ib

0 Id 0 0

−Σ 0 0 Σ[λI − (D1 −D2(s))]

0 0 Iu 0


and ζ(λ) =



Ib 0 0 0

0 Id 0 0

0 0 0 Iu

λI − (D1 +D2(s)) 0 Σ−1 0


Moreover, W (λ) is a linearization of the matrix polynomial κs(λ).
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Lemma 2. (a) Define matrices U and V such that

V =


Ib 0 0 0

0 Id 0 0

0 0 0 Iu

 and U =



0b 0 0

0 Id 0

−Σ 0 0

0 0 Iu


.

Then, it holds that V (λI − L(s))−1U = P (λ)−1.

(b) Matrix
[

V
V L(s)

]
is a full-column-rank matrix and [ U L(s)U ] is a full-row-rank matrix.

(c) The following quadratic equations hold:

0 = A0V +A1V L(s) +A2V L(s)2 and 0 = UA0 + L(s)UA1 + L(s)2UA2. (16)

Proof. (Proof of Theorem 8) The equations in (16) can be rewritten as

∆r
σ2/2V L(s)2 −∆r

µV L(s) + (Qr(s)− sI)V = 0, (17a)

L(s)2U∗∆r
σ2/2 − L(s)U∗∆r

µ + U∗(Qr(s)− sI) = 0. (17b)

with U∗ = U diag{2Σ−2,−∆−1
µd
,−∆−1

µu
}. We recall that

L̃(s) = K(s)−1L(s)K(s) =

−(B(s) + C(s)X(s)) −C(s)

0 A(s) +X(s)C(s)

 , K(s) =

 I 0

X(s) I

 ,
where X(s) is the minimal nonnegative solution of the NARE (11). Therefore, multiplying (17a) on the

right by K(s) and (17b) on the left by K(s)−1 yields

∆r
σ2/2Ṽ L̃(s)2 −∆r

µṼ L̃(s) + (Qr(s)− sI)Ṽ = 0, (18a)

L̃(s)2Ũ∆r
σ2/2 − L̃(s)Ũ∆r

µ + Ũ(Qr(s)− sI) = 0, (18b)
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where

Ṽ = V K(s) =


Ib 0 0 0

0 Id 0 0

Xub(s) Xud(s) 0 Iu

 , Ũ = K(s)−1U∗ =



0 0 0

0 −∆−1
µd

0

−2Σ−1 Xbd(s)∆
−1
µd

0

0 Xud(s)∆
−1
µd

−∆−1
µu


.

Letting R1(s) = B(s)+C(s)X(s) and R2(s) = −(A(s)+X(s)C(s)), from the structure of L̃(s), equations

(18a) and (18b) imply that

∆r
σ2/2V1R1(s)2 + ∆r

µV1R1(s) + (Qr(s)− sI)V1 = 0,

R2(s)2U2∆σ2/2 +R2(s)U2∆µ + U2(Q(s)− sI) = 0,

which completes the proof.

5 Doubling algorithms

5.1 Structure-preserving doubling algorithm

We introduce the dual NARE of (2) given as

B(s)Z + ZA(s) + ZDZ + C = 0, s ≥ 0, (19)

and denote by Y (s) its minimal nonnegative solution.

The SDA presented in [16] is given in Table 3.

SDA for an NARE AZ + ZB + ZCZ +D = 0
1. Choose γ ≥ max{−[A]ii,−[B]ii, i ∈ S} and set(

E0 G0

H0 F0

)
=

(
γI −B −C
−D γI −A

)−1(
γI +B C
D γI −A

)
2. Ek+1 = Ek(I −GkHk)−1Ek; Fk+1 = Fk(I −HkGk)−1Fk;

Gk+1 = Gk + Ek(I −GkHk)−1GkFk; Hk+1 = Hk + Fk(I −HkGk)−1HkEk;
3. Z = H∞;

Table 3: Structure-preserving doubling algorithm

With these matrices, we define Cayley transforms Rγ(s) = (R(s) + γI)−1(R(s) − γI) and Sγ(s) =
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(S(s) + γI)−1(S(s) − γI) of R(s) = −B(s) − CX(s) and S(s) = −A(s) − DY (s). Since M(s) is a non-

singular M -matrix by Proposition 1, using the results in Section 4 of [13], it follows that ρ(Rγ(s)) < 1,

ρ(Sγ(s)) < 1, and

lim sup
k→∞

2k
√
||Hk −X(s)|| ≤ ρ(Rγ(s))ρ(Sγ(s)) < 1.

Hence the SDA for the NARE (2) has quadratic convergence and it is efficient enough for computation of

H(s) for all s > 0.

However when s = 0, which is of our main interest, quadratic convergence of the SDA is not always

guaranteed because M is an irreducible singular matrix. Hereafter, we only consider the case with s = 0.

For the non-negative solutions X of the NARE (3) and Y of the NARE (19) with s = 0, we let Rγ and

Sγ denote the Cayley transform of R = −B − CX and S = −A−DY , that is,

Rγ = (R+ γI)−1(R− γI) and Sγ = (S + γI)−1(S − γI).

The following result can be found in Theorem 4.1 of [13].

Theorem 9. Note that {Hk}, {Ek}, and {Fk} denote the matrices in the k-th iteration of the SDA (Table

3).

(a) If m > 0 (positive recurrent case), then ρ(Rγ) = 1 and ρ(Sγ) < 1. Furthermore, {Hk} converges to X

quadratically with

lim sup
k→∞

2k
√
||Hk −X|| ≤ ρ(Sγ),

{Fk} converges to 0 quadratically with lim supk→∞
2k
√
||Fk|| ≤ ρ(Sγ), and {Ek} is bounded. The notation

||A|| denotes the maximum of the absolute values of the elements in a matrix A.

(b) If m < 0 (transient case), then ρ(Rγ) < 1 and ρ(Sγ) = 1. Furthermore, {Hk} converges to X quadrati-

cally with

lim sup
k→∞

2k
√
||Hk −X|| ≤ ρ(Rγ),

{Ek} converges to 0 quadratically with lim supk→∞
2k
√
||Ek|| ≤ ρ(Rγ), and {Fk} is bounded.

(c) If m = 0 (null recurrent case), then ρ(Rγ) = 1 and ρ(Sγ) = 1. In this case, {Hk} converges to X and
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{Ek}, {Fk} are bounded.

5.1.1 Alternating-directional doubling algorithm

The ADDA algorithm for NARE, which was developed by Wang, Wang, and Li [23], can be considered to be

an extension of the SDA. It differs from the SDA only in its initial setup that build E0, F0, G0, and H0. We

use Êk, Ĝk, Ĥk, and F̂k with k ≥ 0 to denote the matrices in the k-th iteration of the ADDA. For the setup,

we adopt initialization suggested by Poloni and Reis [21] that unifies initializations for doubling algorithms.

We let

0 ≤ α ≤ αopt := [max{−[A]ii}]−1
and 0 ≤ β ≤ βopt := [max{−[B]ii}]−1

, max{α, β} 6= 0,

then the matrix [Ê0 Ĝ0; Ĥ0 F̂0] is determined as

 Ê0 Ĝ0

Ĥ0 F̂0

 =

 I − αB −βC

−αD I − βA


−1 I + βB αC

βD I − αA

 . (20)

The following is given in Theorem 3.1 of [24].

Theorem 10. (a) For all k ≥ 0, Êk ≥ 0, F̂k ≥ 0, and they are uniformly bounded with respect to k.

(b) For all k ≥ 0, I − ĤkĜk and I − ĜkĤk are non-singular M -matrices.

(c) Let X denote the minimal nonnegative solution of the NARE (3), then 0 ≤ Ĥk ≤ Ĥk+1 ≤ X and

lim sup
k→∞

2k
√
||Ĥk −X|| ≤ ρ(Rβ,α)ρ(Sα,β), (21)

where Rβ,α = (βR− I)(αR+ I)−1 and Sα,β = (αS − I)(βS + I)−1. The optimal α and β that minimize the

right-hand sid of (21) are α = αopt and β = βopt.

Remark 1. (a) The SDA is a particular case of the ADDA. That is, if we let α = β = γ−1, then the ADDA

is equivalent to the SDA.

(b) In [23], it is shown that ρ(Rβ,α)ρ(Sα,β) < 1 if the original NARE is not in the null-recurrent case, other-

wise ρ(Rα,β)ρ(Sα,β) = 1. Furthermore, the upper-bound is less than that of the SDA, that is, ρ(Rβ,α)ρ(Sα,β) ≤

ρ(Rγ)ρ(Sγ) with γ = max{α−1, β−1}. Hence the ADDA converges faster than the SDA (Section 5 of [23]

and Section 3 of [24]).
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5.2 Shifted NARE for the MMBM with σ > 0

As for the null-recurrent case, it is known that the SDA and ADDA can show a linear convergence of rate 1/2

[13, 15]. In this section, we introduce a shift technique for improving the convergence rate, which is proposed

by Guo, Iannazzo, and Meini [13]. We note that the shift consists in performing a rank-one correction which

moves one zero eigenvalue to a suitable nonzero real number (see also [10]). For more details of this section,

we refer to [13] and [23].

We first assume m ≥ 0 which includes positive and null recurrent cases. We recall v′ = (v′1 v′2) =

[1′ 1′∆∆σ] > 0 and define p = (p′1 p′2)′ = (v′1)−11 so that p > 0 and p′v = 1. We note that p1 > 0 is a

sufficient condition for the results in the following theorems [13]. We define the new NARE

ÂZ + ZB̂ + ZĈZ + D̂ = 0 (22)

where, with a scalar η > 0,

Â = A+ ηv2p
′
2, B̂ = B − ηv1p

′
1, Ĉ = C − ηv1p

′
2, D̂ = D + ηv2p

′
1.

The following result can be found in Section 6.1 of [13].

Theorem 11. Assume m ≥ 0 and let Ĥk denote the Hk-matrix in the k-th iteration of the SDA when it is

applied to the shifted NARE (22). Then Ĥk approximates X which is the minimal nonnegative solution of

the NARE (3) and its convergence is quadratic with

lim sup
k→∞

2k
√
||Ĥk −X|| ≤ ρ(R̂γ)ρ(Ŝγ) < ρ(Rγ)ρ(Sγ) ≤ 1,

where R̂γ and R̂γ are the Cayley transform of R̂ = −B̂ − ĈX and Ŝ = −Â− D̂Ŷ with Ŷ being the minimal

solution of the dual NARE of (22).

Remark 2. (a) When m ≥ 0, ρ(R̂γ) < ρ(Rγ) = 1. See Section 6.1 of [13].

(b) When the ADDA is applied to the shifted NARE, the upper bound of the limit is ρ(R̂β,α)ρ(Ŝα,β) where

R̂β,α = (βR̂− I)(αR̂+ I)−1 and Ŝα,β = (αŜ − I)(βŜ + I)−1. It holds that ρ(R̂β,α)ρ(Ŝα,β) ≤ ρ(R̂γ)ρ(Ŝγ) <

ρ(Rγ)ρ(Sγ) ≤ 1 with γ = max{α−1, β−1}.

The transient case (m < 0) is easily reduced to the case of m > 0. It is shown in Lemma 5.1 of [13] that

the matrix X is the minimal nonnegative solution of the NARE (3) if and only if Z = X ′ is the minimal
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nonnegative solution of the equation B′Z + ZA′ + ZC ′Z + D′ = 0. Furthermore, this NARE is positive

recurrent if and only if the NARE (3) is transient. In this case, the corresponding shifted NARE is given as

ÂtZ + ZB̂t + ZĈtZ + D̂t = 0, where

Ât = B′ + ηυu11
′, B̂t = A′ − ηυu21

′, Ĉt = C ′ − ηυu21
′, D̂t = D′ + ηυu11

′ with υ = (u′1)−1.

For more details, we refer to Section 5 of [13].

5.3 Shifted NARE for the MMBM with σ ≥ 0

Let τ be the first passage time of the MMBM to level 0. As for the first passage probabilities, if we consider

a matrix of which the (i, j)-th element is P [τ < ∞, J(τ) = j|F (0) = a, J(0) = i] with i, j ∈ Sb ∪ Sd, then

the matrix is also represented as a matrix exponential form eHa. The exponent matrix H is (|Sb| + |Sd|)-

dimensional square matrix which forms a sub-stochastic generator, that is, its off-diagonal elements are

nonnegative, diagonal elements are negative, and its row sums are less than 0. The exponent matrix H is

also an important quantity for describing the stationary distribution of the MMBM as it is for the MMBM

with only positive diffusion coefficients. (See [6].)

The following result concerns how to compute H using NARE’s and is a corollary of Theorem 6.

Corollary 3. Define Qol.m = Ql,m(0) for l,m = b, u, d, and D2 = D2(s). Let X denote the minimal

nonnegative solution of the NARE

AZ + ZB + ZCZ +D = 0 (23)

where

A =

 D1 −D2 2Σ−1Qob,u

0 ∆−1
µu
Qou,u

 , B =

 −D1 −D2 0

−∆−1
µd
Qod,b −∆−1

µd
Qod,d

 ,

C =

 Σ−1 0

0 −∆−1
µd
Qod,u

 , D =

 2Σ−1(Qob,b + Λb) 2Σ−1Qob,d

∆−1
µu
Qou,b ∆−1

µu
Qou,d

 .

The matrix H satisfies H = B + CX. 2
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The M -matrix corresponding to the NARE (23) is

M =

 −B −C

−D −A

 .

We can also show that M is an irreducible singular M -matrix in a similar way as in the proof of Proposition

1, which is omitted here. For construction of the shifted NARE of (23), we define

p :=

 p1

p2

 =

 ν 1bd

ν 1bu

 with ν = 1/(v′1), (24)

where v is the eigenvector given in Proposition 2, 1′bd = (1′b 1′d), and 1′bu = (1′b 1′u).

To obtained the quadratic convergence of the doubling algorithms, we consider different NARE’s depend-

ing on the categories of the original NARE (23). When m ≤ 0, we use the shifted NARE of (23)

ÂZ + ZB̂ + ZĈZ + D̂ = 0 (25)

where

Â = A+ γv2p
′
2, B̂ = B − γv1p

′
1, Ĉ = C − γv1p

′
2, D̂ = D + γv2p

′
1.

As for the case m > 0, we consider the shifted NARE of the transposed NARE of (23), which is

ÂtZ + ZB̂t + ZĈtZ + D̂t = 0, (26)

where, with υ = (u′1)−1,

Ât = B′ + γυu11
′
bd, B̂t = A′ − γυu21

′
bu, Ĉt = C ′ − γυu21

′
bd, D̂t = D′ + γυu11

′
bu.

We note that, when X is the minimal nonnegative solution of the original NARE (23), the minimal nonneg-

ative solutions of the NARE (25) and (26) are equal to X and X ′, respectively. For more details, refer to

Section 5 of [13].
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6 Numerical study

In this section, we compare the following algorithms, applied to (2) with s = 0:

A1 : SDA applied to the original NARE ;

A2 : ADDA applied to the original NARE;

A3 : SDA applied to the shifted NARE;

A4 : ADDA applied to the shifted NARE;

NP2 : Nguyen and Poloni’s algorithm using GTH-like algorithm (Algorithm 3 in [20]).

For the numerical study, we used MATLAB(R2016a) running on a Windows 7 64 bit in DELL PowerEdge

R730 Server with Processor Intel Xeon E5-2620 v3 @ 2.40GHz and 64GB of main memory.

We consider two different examples for the cases of σ > 0 and σ ≥ 0, respectively, in which we can obtain

exact values of first-passage probabilities. To compare the performance of the algorithms, we consider the

cputime and iteration number necessary for the convergence of the algorithms when maximum matrix norm

and 10−12 are used for their stopping criterion. We also take into account the error, difference between the

computed and exact values of certain first-passage probability to be considered in each example.

6.1 Example for the case of σ > 0

For n = 10, 100, 1000, we let µ = µ1n and σ = σ1n with µ = 0, 1, 10 and σ = 1, 10. We determine the

values of the off-diagonal elements of Q using ceiling number of the uniform random numbers in (0, 100),

then diagonal elements are given so that the row sums of Q are to be 0. With this choice, for any Q, the

MMBM is simply an ordinary Brownian motion with drift parameter µ and diffusion parameter σ, whose

first passage probability is explicitly given as P (τ < ∞|B(0) = a) = exp(−a(µ + |µ|)/σ2). (See [9].) This

observation allows us to construct a set of problems for use in comparison of algorithms both with respect

to speed and accuracy. Note that we let a = 3 in this example.

Table 4 contains the absolute error values, that is, the differences between the exact value(e−3(µ+|µ|)/σ2

)

of the first passage probability and its numerical values computed by the algorithms. To compare the speed

of the algorithms, we investigated the total number of iterations (Table 6) and also cpu-times (Table 5)

necessary for the algorithms to produce their values of the first passage probability.
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n -m σ A1 A2 A3 A4 NP2
10 0 1 2.7E-06 2.7E-06 3.0E-14 3.0E-14 5.1E-13

10 0 10 3.2E-07 3.2E-07 2.4E-14 2.4E-14 5.3E-14

10 1 1 4.3E-15 6.2E-15 4.8E-17 1.6E-15 2.2E-18

10 1 10 3.4E-12 2.1E-12 1.3E-14 6.1E-15 5.6E-16

10 10 1 5.5E-40 3.6E-39 5.3E-40 1.8E-40 5.5E-41

10 10 10 2.5E-13 1.1E-13 2.4E-14 7.5E-15 6.7E-16

100 0 1 NaN NaN 2.9E-14 2.9E-14 3.2E-12

100 0 10 7.6E-07 7.6E-07 1.3E-14 1.3E-14 1.6E-13

100 1 1 1.1E-15 3.7E-14 4.2E-16 1.6E-15 1.6E-16

100 1 10 4.1E-13 6.4E-13 3.0E-15 2.6E-15 4.4E-15

100 10 1 9.6E-41 2.1E-40 1.5E-40 6.2E-38 1.7E-40

100 10 10 5.4E-14 4.6E-14 3.3E-16 5.0E-15 1.6E-15

1000 0 1 2.6E-06 2.6E-06 3.1E-14 3.1E-14 9.9E-12

1000 0 10 NaN NaN 2.0E-15 2.0E-15 9.8E-13

1000 1 1 5.5E-15 4.0E-15 1.1E-16 6.9E-17 2.8E-16

1000 1 10 5.1E-12 1.1E-11 1.7E-15 3.2E-15 6.1E-15

1000 10 1 6.8E-40 8.7E-40 2.2E-40 3.4E-40 1.9E-40

1000 10 10 2.2E-14 6.6E-14 2.2E-15 1.1E-15 1.1E-15

Table 4: Comparison of error values.

n -m σ A1 A2 A3 A4 NP2
10 1 10 0.0E+00 0.0E+00 0.0E+00 4.7E-02 0.0E+00

10 10 1 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

10 10 10 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

100 0 1 1.3E+00 1.1E+00 1.3E-01 1.3E-01 3.0E+00

100 0 10 6.3E-01 6.9E-01 1.9E-01 4.7E-02 2.4E+00

100 1 1 1.1E-01 1.7E-01 1.7E-01 9.4E-02 4.7E-01

100 1 10 2.7E-01 2.7E-01 1.7E-01 1.6E-02 5.5E-01

100 10 1 9.4E-02 9.4E-02 9.4E-02 1.1E-01 4.2E-01

100 10 10 1.4E-01 1.7E-01 9.4E-02 9.4E-02 5.0E-01

1000 0 1 9.8E+01 9.2E+01 1.9E+01 1.9E+01 1.6E+03

1000 0 10 2.2E+02 2.2E+02 2.0E+01 1.9E+01 1.6E+03

1000 1 1 4.0E+01 4.0E+01 1.9E+01 2.0E+01 5.8E+02

1000 1 10 4.9E+01 4.7E+01 1.9E+01 1.9E+01 7.0E+02

1000 10 1 3.0E+01 2.9E+01 2.2E+01 2.3E+01 4.6E+02

1000 10 10 3.8E+01 3.9E+01 1.9E+01 2.0E+01 5.8E+02

Table 5: Comparison of cpu times.
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n -m σ A1 A2 A3 A4 NP2
10 0 1 28 28 6 6 48

10 0 10 28 28 5 5 48

10 1 1 9 9 5 5 11

10 1 10 12 12 5 5 14

10 10 1 6 6 5 5 8

10 10 10 9 9 5 5 11

100 0 1 71 71 5 5 47

100 0 10 28 28 5 5 48

100 1 1 11 11 5 5 13

100 1 10 14 14 5 5 16

100 10 1 8 8 5 5 9

100 10 10 11 11 5 5 13

1000 0 1 31 31 4 4 47

1000 0 10 74 74 4 4 47

1000 1 1 12 12 4 4 14

1000 1 10 15 15 4 4 17

1000 10 1 9 9 5 5 11

1000 10 10 12 12 4 4 14

Table 6: Comparison of iteration number.

6.2 Example for the case of σ ≥ 0

6.2.1 Asmussen’s example

In this section, we take an example, referring to Example 6.1 of Asmussen [6], where it is assumed for (F, J)

that S = {1, 2, 3} with Sb = {1}, Su = {2}, Sd = {3},

σ1 =

√
7

4
, µ1 =

3

2
, µ2 =

1

2
, µ3 = −1

2
and Q =


− 15

8
15
16

15
16

1 −1 0

1 0 −1

 .

The corresponding stationary probability vector is given as π = (8/23 15/46 15/46) and the first passage

probability f(x) = P [τ < ∞|J(0) = 1, F (0) = x] satisfies that f(x) = (3/4)e−x + (1/4)e−3x, which is to

be used as a target function to check the accuracy of the algorithms. (For f(x), refer to the matrix U in

Example 6.1 of Asmussen [6].)

To check our computations even more, we consider the MMBM (F, J) for which S = {1, · · · , n} with
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n = 3k, k = 10, 20, 50, 100, 500, 1000, σb =
√

7
41′k, µu = 3

21′k, µu = 1
21′k, µd = − 1

21′k, and

Q =


− 15

8 Ik
15
16kJk

15
16kJk

1
kJk −Ik 0k×k

1
kJk 0k×k −Ik

 ,

where Jk denotes the k-dimensional square matrix of 1’s. For example, when n(= 3k) = 6, Q is given as



− 15
8 0 15

32
15
32

15
32

15
32

0 − 15
8

15
32

15
32

15
32

15
32

0.5 0.5 −1 0 0 0

0.5 0.5 0 −1 0 0

0.5 0.5 0 0 −1 0

0.5 0.5 0 0 0 −1


.

Note that the level process in this model is stochastically equivalent to that of the original. All we have

done is to mask the exponential duration of the phase in states 1, 2, 3 into a equal mixture of k exponential

distributions with the same rate by adding k − 1 more phase to the model. Hence, both models have the

same first-passage time distributions. This gives us yet another computational check on the first passage

time distribution of the algorithms.

We also note that the value of −m, the average drift value of (F, J), is given as 12/23 for all k. To

investigate the effects of m, we consider another parameter d` = (23/12) × ` with ` > 0, which makes the

(−m)-value of (d` × F, J) be `. For the MMBM (d` × F, J) with τ` and H` being its first passage time to 0

and the H-matrix, it holds that for all ` and x

P [τ <∞|J(0) = 1, F (0) = x] = P [τ` <∞|J(0) = 1, d`F (0) = d`x]

= e1e
(d`x)H`1 = (3/4)e−x + (1/4)e−3x,

where e1 is a unit vector with appropriate dimension, in which its first element is 1 and the others are all

0. In this study, we consider the MMBM’s (d` × F, J) with ` = 0.0001, 0.001, 0.1, 5, 10, 20, and compute

P [τ` < ∞|J(0) = 1, d`F (0) = 3d`]. Note that the diffusion and drift vector of (d` × F, J) are given as d`σb

and d`µ.
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k(n = 3k) −m A1 A2 A3 A4 NP2
10 0 2.40E-08 2.40E-08 4.40E-16 4.40E-16 1.11E-15

10 0.0001 2.70E-16 2.40E-16 2.20E-16 2.10E-16 3.47E-17

10 0.001 2.70E-16 2.60E-16 2.40E-16 2.10E-16 2.78E-17

10 0.1 2.50E-16 2.70E-16 2.40E-16 2.20E-16 2.78E-17

10 5 2.80E-16 2.80E-16 2.60E-16 2.40E-16 9.71E-17

10 10 2.80E-16 2.80E-16 2.60E-16 2.40E-16 9.71E-17

10 20 2.80E-16 2.80E-16 2.60E-16 2.40E-16 9.71E-17

20 0 NaN NaN 0.00E+00 0.00E+00 2.00E-15

20 0.0001 3.30E-16 2.80E-17 6.90E-18 2.10E-17 3.19E-16

20 0.001 3.00E-16 3.50E-17 2.80E-17 6.90E-18 3.47E-16

20 0.1 3.30E-16 2.80E-17 6.90E-18 1.40E-17 3.61E-16

20 5 3.40E-16 2.80E-17 1.40E-17 6.90E-18 3.40E-16

20 10 3.40E-16 2.80E-17 1.40E-17 6.90E-18 3.40E-16

20 20 3.40E-16 2.80E-17 1.40E-17 6.90E-18 3.40E-16

50 0 NaN NaN 1.30E-15 1.30E-15 4.66E-15

50 0.0001 2.10E-16 2.80E-17 1.20E-16 2.80E-17 4.09E-16

50 0.001 2.40E-16 6.90E-17 1.50E-16 6.90E-17 4.16E-16

50 0.1 1.70E-16 2.80E-17 9.70E-17 1.40E-17 4.37E-16

50 5 2.10E-16 1.40E-17 1.10E-16 4.90E-17 4.44E-16

50 10 2.10E-16 1.40E-17 1.10E-16 4.90E-17 4.44E-16

50 20 2.10E-16 1.40E-17 1.10E-16 4.90E-17 4.44E-16

100 0 NaN NaN 3.70E-14 3.70E-14 2.64E-14

100 0.0001 1.20E-15 5.20E-16 1.00E-15 9.70E-16 2.37E-15

100 0.001 1.20E-15 5.10E-16 1.00E-15 9.20E-16 2.43E-15

100 0.1 1.10E-15 2.80E-16 1.00E-15 9.40E-16 2.47E-15

100 5 1.20E-15 4.60E-16 1.00E-15 9.90E-16 2.43E-15

100 10 1.20E-15 4.60E-16 1.00E-15 9.90E-16 2.43E-15

100 20 1.20E-15 4.60E-16 1.00E-15 9.90E-16 2.43E-15

500 0 NaN NaN 3.60E-14 3.60E-14 1.47E-14

500 0.0001 3.70E-16 4.60E-16 9.70E-17 5.60E-17 7.42E-16

500 0.001 4.00E-16 4.90E-16 9.70E-17 1.40E-17 1.11E-16

500 0.1 3.20E-16 4.20E-16 8.30E-17 2.80E-17 6.94E-16

500 5 3.60E-16 4.60E-16 4.20E-17 1.40E-17 4.72E-16

500 10 3.60E-16 4.60E-16 4.20E-17 1.40E-17 4.72E-16

500 20 3.60E-16 4.60E-16 4.20E-17 1.40E-17 4.72E-16

1000 0 4.10E-08 4.10E-08 5.40E-15 5.40E-15 3.62E-14

1000 0.0001 2.60E-15 2.50E-15 1.00E-15 8.00E-16 9.02E-16

1000 0.001 2.70E-15 2.60E-15 1.00E-15 9.80E-16 8.33E-16

1000 0.1 2.60E-15 2.50E-15 1.10E-15 1.00E-15 1.07E-15

1000 5 2.70E-15 2.50E-15 7.40E-16 1.00E-15 1.53E-15

1000 10 2.70E-15 2.50E-15 7.40E-16 1.00E-15 1.53E-15

1000 20 2.70E-15 2.50E-15 7.40E-16 1.00E-15 1.53E-15

Table 7: Comparison of error values.

29



k(n = 3k) −m A1 A2 A3 A4 NP2
10 0 0.00E+00 3.10E-02 0.00E+00 0.00E+00 5.00E-01

10 0.0001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.72E-01

10 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.88E-01

10 0.1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.88E-01

10 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.38E-02

10 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.69E-02

10 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.09E-01

20 0 1.90E-01 1.90E-01 9.40E-02 0.00E+00 6.56E-01

20 0.0001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.69E-02

20 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.03E-01

20 0.1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.56E-01

20 5 0.00E+00 0.00E+00 9.40E-02 0.00E+00 2.19E-01

20 10 1.10E-01 0.00E+00 0.00E+00 0.00E+00 7.81E-02

20 20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.41E-01

50 0 9.40E-01 8.10E-01 1.60E-02 1.60E-02 5.41E+00

50 0.0001 1.10E-01 9.40E-02 1.60E-02 9.40E-02 1.06E+00

50 0.001 0.00E+00 9.40E-02 9.40E-02 1.60E-02 1.45E+00

50 0.1 0.00E+00 9.40E-02 1.70E-01 9.40E-02 1.16E+00

50 5 1.10E-01 1.70E-01 9.40E-02 1.60E-02 2.02E+00

50 10 9.40E-02 9.40E-02 1.60E-02 1.60E-02 1.06E+00

50 20 9.40E-02 9.40E-02 1.60E-02 1.30E-01 1.38E+00

100 0 3.20E+00 3.30E+00 3.60E-01 3.60E-01 3.70E+01

100 0.0001 3.80E-01 3.80E-01 2.70E-01 4.10E-01 8.13E+00

100 0.001 3.00E-01 5.20E-01 3.80E-01 3.90E-01 8.84E+00

100 0.1 3.80E-01 3.00E-01 3.30E-01 3.90E-01 9.22E+00

100 5 3.90E-01 3.80E-01 4.20E-01 3.60E-01 7.92E+00

100 10 4.10E-01 3.80E-01 3.40E-01 4.40E-01 8.23E+00

100 20 3.60E-01 3.80E-01 3.80E-01 4.20E-01 8.45E+00

500 0 1.90E+02 1.90E+02 3.70E+01 3.70E+01 2.47E+03

500 0.0001 2.10E+01 2.10E+01 3.40E+01 3.40E+01 5.69E+02

500 0.001 2.00E+01 2.00E+01 3.50E+01 3.40E+01 5.70E+02

500 0.1 2.10E+01 2.10E+01 3.40E+01 3.40E+01 5.73E+02

500 5 2.10E+01 2.10E+01 3.50E+01 3.50E+01 5.77E+02

500 10 2.10E+01 2.10E+01 3.40E+01 3.40E+01 5.77E+02

500 20 2.10E+01 2.00E+01 3.40E+01 3.40E+01 5.75E+02

1000 0 1.20E+03 1.20E+03 3.30E+02 3.20E+02 1.64E+04

1000 0.0001 1.40E+02 1.30E+02 3.10E+02 3.10E+02 3.81E+03

1000 0.001 1.40E+02 1.40E+02 3.10E+02 3.10E+02 3.82E+03

1000 0.1 1.40E+02 1.40E+02 3.10E+02 3.10E+02 3.82E+03

1000 5 1.40E+02 1.30E+02 3.10E+02 3.10E+02 3.81E+03

1000 10 1.40E+02 1.30E+02 3.10E+02 3.00E+02 3.81E+03

1000 20 1.40E+02 1.40E+02 3.10E+02 3.10E+02 3.81E+03

Table 8: Comparison of cpu times.
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k(n = 3k) −m A1 A2 A3 A4 NP2
10 0 30 30 5 5 66

10 0.0001 6 6 4 4 11

10 0.001 6 6 4 4 11

10 0.1 6 6 4 4 11

10 5 6 6 4 4 11

10 10 6 6 4 4 11

10 20 6 6 4 4 11

20 0 64 64 5 5 63

20 0.0001 6 6 4 4 11

20 0.001 6 6 4 4 11

20 0.1 6 6 4 4 11

20 5 6 6 4 4 11

20 10 6 6 4 4 11

20 20 6 6 4 4 11

50 0 61 61 5 5 59

50 0.0001 6 6 4 4 11

50 0.001 6 6 4 4 11

50 0.1 6 6 4 4 11

50 5 6 6 4 4 11

50 10 6 6 4 4 11

50 20 6 6 4 4 11

100 0 61 61 5 5 59

100 0.0001 6 6 4 4 11

100 0.001 6 6 4 4 11

100 0.1 6 6 4 4 11

100 5 6 6 4 4 11

100 10 6 6 4 4 11

100 20 6 6 4 4 11

500 0 61 61 5 5 61

500 0.0001 6 6 4 4 11

500 0.001 6 6 4 4 11

500 0.1 6 6 4 4 11

500 5 6 6 4 4 11

500 10 6 6 4 4 11

500 20 6 6 4 4 11

1000 0 60 60 5 5 57

1000 0.0001 6 6 4 4 11

1000 0.001 6 6 4 4 11

1000 0.1 6 6 4 4 11

1000 5 6 6 4 4 11

1000 10 6 6 4 4 11

1000 20 6 6 4 4 11

Table 9: Comparison of iteration numbers.
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For the case of m = 0, we used the MMBM (F0, J), of which all the parameters are same as (F, J) except

µb being given as 0k×1. We compute P [τ0 < ∞|J(0) = 1, F0(0) = 3] = e1e
3H01, which is equal to 1. Here,

τ0 and H0 denotes the first passage time to 0 and the H-matrix of (F0, J).

The numerical results are presented in Tables 7, 8, and 9.

6.2.2 Random example

In this example, we intend to check the effect of the variation of the drift and diffusion parameters on the

performance of the algorithms. We consider an MMBM of which the drift vector µ, diffusion vector σ, and

infinitesimal generator Q are given as µ = [ν + µ1′ − ν + µ1′ ν − ν], σ = [ζ ζ 0 0] and

Q =



Ξ Θ Θ Θ

Θ Ξ Θ Θ

Θ Θ Ξ Θ

Θ Θ Θ Ξ


.

We fix the sizes of ν and ζ at 50 so that Q is an 200×200 matrix. We determine the values of the off-diagonal

elements of Ξ and the elements of Θ using ceiling number of the uniform random numbers in (0, 100), then

diagonal elements of Ξ are given so that the row sums of Q are to be 0. We also use ceiling number of

the uniform random numbers in (0,K) and (0,
√
K) with K = 10, 50, 100, 200 to determine the values of ν

and ζ, respectively. Note that the average drift of this example is given as µ and we consider 0, 5, 10, 20 for

its values. For this example, it is impossible to get the exact value of the first passage probability. So we

consider the normalized residual(NRes), which is defined as

NRes =
||∆r

σ2/2V1H
2 + ∆r

µV1H +QrV1||1(
||∆r

σ2/2||1||V1||1||H||1 + ||∆r
µ||1||V1||1

)
||H||1 + ||Qr||1||V1||1

The numerical results are presented in Tables 10, 11, and 12.

7 Concluding Remarks

In this paper we have shown, by using linear algebra tools, an explicit algebraic relation between the QME

and the NARE that characterize MMBM. We have compared the performances of several existing algorithms

for computation of first-passage probabilities of the MMBM, among which the component-wise stable and
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K µ A1 A2 A3 A4 NP2
10 0 NaN NaN 2.53E-18 2.53E-18 3.50E-18

10 5 7.69E-19 7.69E-19 2.17E-18 2.17E-18 3.32E-18

10 10 6.81E-19 6.81E-19 1.43E-18 1.43E-18 3.18E-18

10 20 6.83E-19 6.83E-19 1.80E-18 1.80E-18 4.96E-18

50 0 1.37E-18 1.37E-18 1.04E-18 1.04E-18 6.98E-18

50 5 4.75E-19 4.75E-19 8.84E-19 8.84E-19 4.15E-18

50 10 9.01E-19 9.01E-19 1.74E-18 1.74E-18 5.90E-18

50 20 4.26E-19 4.26E-19 6.99E-19 6.99E-19 3.17E-18

100 0 1.79E-18 1.79E-18 2.21E-18 2.21E-18 1.46E-17

100 5 3.25E-19 3.25E-19 5.79E-19 5.79E-19 1.46E-18

100 10 2.25E-19 2.25E-19 8.22E-19 8.22E-19 2.37E-18

100 20 3.01E-19 3.01E-19 6.77E-19 6.77E-19 2.47E-18

200 0 NaN NaN 1.88E-18 1.88E-18 5.85E-18

200 5 1.80E-18 1.80E-18 3.07E-18 3.07E-18 1.47E-17

200 10 5.92E-19 5.92E-19 1.17E-18 1.17E-18 3.95E-18

200 20 2.61E-18 2.61E-18 3.37E-18 3.37E-18 2.84E-17

Table 10: Comparison of error values.

K µ A1 A2 A3 A4 NP2
10 0 2.22E+00 1.83E+00 5.31E-01 4.22E-01 1.38E+01

10 5 5.47E-01 4.53E-01 4.38E-01 4.53E-01 5.19E+00

10 10 5.78E-01 6.41E-01 5.78E-01 4.84E-01 5.31E+00

10 20 5.78E-01 5.31E-01 4.69E-01 4.06E-01 5.25E+00

50 0 1.00E+00 9.69E-01 5.47E-01 6.41E-01 1.30E+01

50 5 4.69E-01 5.47E-01 3.91E-01 4.84E-01 5.39E+00

50 10 4.69E-01 3.75E-01 3.75E-01 4.69E-01 5.03E+00

50 20 5.47E-01 3.75E-01 4.06E-01 3.91E-01 4.73E+00

100 0 1.02E+00 9.06E-01 3.44E-01 4.06E-01 1.41E+01

100 5 5.31E-01 5.94E-01 5.31E-01 5.16E-01 5.63E+00

100 10 5.47E-01 6.09E-01 4.69E-01 6.41E-01 5.84E+00

100 20 5.63E-01 5.94E-01 5.47E-01 5.94E-01 5.11E+00

200 0 1.95E+00 1.89E+00 3.13E-01 3.91E-01 1.35E+01

200 5 5.47E-01 5.16E-01 3.91E-01 2.97E-01 5.73E+00

200 10 6.09E-01 6.56E-01 5.31E-01 4.69E-01 5.45E+00

200 20 3.75E-01 5.63E-01 4.22E-01 3.44E-01 4.48E+00

Table 11: Comparison of cpu times.
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K µ A1 A2 A3 A4 NP2
10 0 66 66 13 13 62

10 5 17 17 13 13 22

10 10 16 16 13 13 21

10 20 15 15 13 13 20

50 0 33 33 13 13 63

50 5 18 18 14 14 23

50 10 17 17 13 13 21

50 20 17 17 14 14 22

100 0 33 33 12 12 63

100 5 19 19 15 15 24

100 10 19 19 15 15 24

100 20 18 18 14 14 22

200 0 65 65 13 13 63

200 5 17 17 12 12 22

200 10 18 18 14 14 23

200 20 15 15 11 11 19

Table 12: Comparison of iteration numbers.

quadratically convergent algorithm by Nguyen and Poloni [20] for solving the QME. In the null recurrent

case, SDA and ADDA applied to the original NARE are not satisfactory, since they don’t provide an accurate

approximation of the solution. Their performance is improved when a shift technique is applied. The Nguyen-

Poloni algorithm provides accurate results also in the null recurrent case, but the convergence is slower than

that of SDA and ADDA applied to the shifted equation.

In certain applications of MMBM, the corresponding NARE has large scale matrix coefficients, but the

most common structure of these matrices is sparsity, which refers to a matrix having a relatively large number

of zero coefficients [4]. It is reported in Chapter 6 of [8] that this kind of large-scale and sparsity problem

can be handled by applying Newton’s method. We will investigate this subject in our further studies.

8 Appendix: Proofs

8.1 Proof of Lemma 1

Let Er34 and Ec34 denote permutation matrices to be obtained by exchanging the 3rd and 4th rows, and the

3rd and 4th columns of the block-diagonal matrix diag{Ib, Id, Ib, Iu}, respectively. Note that Er34E
c
34 = I =
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Ec34E
r
34. Define P ∗(λ) = Er34 diag{P (λ), Ib}Ec34. Then P ∗(λ) is equal to



λ2Ib − λ
(
2Σ−2∆µb

)
+ 2Σ−2[Qbb(s)− sI] 2Σ−2Qbd(s) 0 2Σ−2Qbu(s)

−∆−1
µd
Qdb(s) λId −∆−1

µd
[Qd,d(s)− sI] 0 −∆−1

µd
Qdu(s)

0 0 Ib 0

−∆−1
µu
Qu,b(s) −∆−1

µu
Qud(s) 0 λIu −∆−1

µu
[Qu,u(s)− sI]


.

Note that the matrix W (λ) = λI − L(s) equals to


(
λI−(D1+D2(s)) 0

−∆−1
µd
Qd,b(s) λI−∆−1

µd
[Qd,d(s)−sI]

) (
Σ−1 0
0 −∆−1

µd
Qd,u(s)

)
(
−2Σ−1(Qb,b(s)+Λb) −2Σ−1Qb,d(s)

−∆−1
µu
Qu,b(s) −∆−1

µu
Qu,d(s)

) (
λI−(D1−D2(s)) −2Σ−1Qb,u(s)

0 λI−∆−1
µu

[Qu,u(s)−sI]

)
 . (27)

Define

η∗(λ) =

 (
0 0
0 Id

) (
Ib 0
0 0

)
(−Σ 0

0 0

) (
Σ[λI−(D1−D2(s))] 0

0 Iu

)
 , ζ∗(λ) =

 (
Ib 0
0 Id

)
0(

λI−(D1+D2(s)) 0
0 0

) (
Σ−1 0
0 Iu

)
.

 .

Then, with simple arithmetic, we can show that

η∗(λ)P ∗(λ) =


(

0 0
−∆−1

µd
Qd,b λI−∆−1

µd
[Qd,d(s)−sI]

) (
Ib 0

0 −∆−1
µd
Qd,u

)
(

ω1 −2Σ−1Qb,d(s)

−∆−1
µu
Qu,b(s) −∆−1

µu
Qu,d(s)

) (
Σ[λI−(D1−D2(s))] −2Σ−1Qb,u(s)

0 λI−∆−1
µu

[Qu,u(s)−sI]

)
 .

with ω1 = −2Σ−1
[
λ2Σ2/2− λ∆µb

+Qbb(s)− sI
]
. Using this, it is easy to check

η∗(λ)P ∗(λ)ζ∗(λ) =


(
λI−(D1+D2(s)) 0

−∆−1
µd
Qd,b λI−∆−1

µd
[Qd,d(s)−sI]

) (
Σ−1 0
0 −∆−1

µd
Qd,u

)
(

ω2 −2Σ−1Qb,d(s)

−∆−1
µu
Qu,b(s) −∆−1

µu
Qu,d(s)

) (
λI−(D1−D2(s)) −2Σ−1Qb,u(s)

0 λI−∆−1
µu

[Qu,u(s)−sI]

)
 .

with ω2 = −2Σ−1
[
λ2Σ2/2− λ∆µb

+Qbb(s)− sI
]

+ Σ[λI − (D1 −D2(s))][λI − (D1 +D2(s))]. Noting

ω2 = −λ2Σ + 2λΣ−1∆µb
− 2Σ−1Qb,b(s) + 2sΣ−1 + λ2Σ− 2λΣ−1∆µb

− 2Σ−1(sI + Λb)

= −2Σ−1(Qb,b(s) + Λb)

and then comparing with (27), we can observe that W (λ) = η∗(λ)P ∗(λ)ζ∗(λ). Furthermore, Using the
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permutation matrices, we can show that

W (λ) = η∗(λ)Ec34E
r
34P

∗(λ)Ec34E
r
34ζ
∗(λ) = η(λ) diag{P (λ), Ib} ζ(λ).

Since det(η(λ)) and det(ζ(λ)) are non-zero constants, that is, they do not depend on λ, W (λ) is a linearization

of the matrix polynomial κ(λ).

8.2 Proof of Lemma 2

(a) From (15), we deduce that, for any λ such that detP (λ) 6= 0, ζ(λ)(λI−L(s))−1η(λ) = diag{P (λ)−1, Ib},

that is,

[
Ib 0 0 0
0 Id 0 0
0 0 0 Iu

λI−(D1+D2(s)) 0 Σ−1 0

]
(λI − L(s))−1

[
0 0 0 Ib
0 Id 0 0
−Σ 0 0 Σ[λI−(D1−D2(s))]
0 0 Iu 0

]
=

P (λ)−1 0

0 Ib

 .
Therefore, it holds that V (λI − L(s))−1U = P (λ)−1.

(b) Define

Qrd+u =

 Qd,d Qd,u

Qu,d Qu,u

 , Λrd+u = diag
{
−[Qrd+u]ii, i ∈ Sd ∪ Su

}
,

and Q∗d+u =
[
diag{∆−1

µd
,−∆−1

µu
}(Qrd+u + Λrd+u)

]′
. Noting that P (λ) = λ2A2 + λA1 + A0 with A0, A1, A2

being defined in (13), we can observe that det [P (λ)] is a polynomial of degree (2|Sb|+ |Sd|+ |Su|) and that

P−1(λ) can be represented as

P−1(λ) = λ−1diag{0b, Id, Iu}+ λ−2diag{Ib,−Q∗d+u}+ λ−3Z1 + · · · ,

for some matrices Z1, Z2, · · · and for |λ| sufficiently large. Using complex integral for a circle Γ in the complex

plane having zeros of P (λ) in its interior,

1

2πi

∮
Γ

P−1(λ)dλ = diag{0b, Id, Iu} and
1

2πi

∮
Γ

λP−1(λ)dλ = diag{Ib,−Q∗d+u}. (28)
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But we may also choose Γ large enough so that

1

2πi

∮
Γ

λi(λI − L(s))−1dλ = L(s)i, i = 0, 1, 2, · · · . (29)

Noting that, for i, j = 0, 1, 2, · · · ,

V L(s)iL(s)jU = V L(s)i+jU = V
1

2πi

∮
Γ

λi+j(λI − L(s))−1dλU =
1

2πi

∮
Γ

λi+jP (λ)−1dλ

and Equation (28), we have

 V

V L(s)

[ U L(s)U

]
=

 1
2πi

∮
Γ
P (λ)−1dλ 1

2πi

∮
Γ
λP (λ)−1dλ

1
2πi

∮
Γ
λP (λ)−1dλ 1

2πi

∮
Γ
λ2P (λ)−1dλ

 =

 0b 0 0 Ib 0 0
0 Id 0 0 ∗ ∗
0 0 Iu 0 ∗ ∗
Ib 0 0
0 ∗ ∗
0 ∗ ∗

 .
From the structure of the last matrix, we can observe that its rank is greater than or equal to 2|Sb|+|Sd|+|Su|.

But the number of columns of
[

V
V L(s)

]
and the number of the rows of [ U L(s)U ] equal to 2|Sb|+ |Sd|+ |Su|.

Hence, the ranks of
[

V
V L(s)

]
and [ U L(s)U ] are equal to 2|Sb|+ |Sd|+ |Su|.

(c) Using (29), we can also observe that

0 =

[
1

2πi

∮
Γ

P (λ)P (λ)−1dλ
1

2πi

∮
Γ

λP (λ)P (λ)−1dλ

]
=

[
A0V +A1V L(s) +A2V L(s)2

]
[U L(s)U ] , and

0 =

 1
2πi

∮
Γ
P (λ)−1P (λ)dλ

1
2πi

∮
Γ
P (λ)−1P (λ)dλ

 =

 V

V L(s)

 [UA0 + L(s)UA1 + L(s)2UA2

]
.

Since
[

V
V L(s)

]
is a full-column-rank matrix and [ U L(s)U ] is a full-row-rank matrix, we have that

0 = A0V +A1V L(s) +A2V L(s)2 and 0 = UA0 + L(s)UA1 + L(s)2UA2,

which completes the proofs.
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