
IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 1

Factual and Counterfactual Explanations
for Black-Box Decision Making

Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore Ruggieri, and Franco Turini

Abstract—The rise of sophisticated machine learning mod-

els has brought accurate but obscure decision systems, which

hide their logic, thus undermining transparency, trust, and the

adoption of AI in socially sensitive and safety-critical contexts.

We introduce a local rule-based explanation method providing

faithful explanations of the decision made by a black-box classi-

fier on a specific instance. The proposed method first learns an

interpretable, local classifier on a synthetic neighborhood of the

instance under investigation, generated by a genetic algorithm.

Then it derives from the interpretable classifier an explanation

consisting of a decision rule, explaining the factual reasons of

the decision, and a set of counterfactuals, suggesting the changes

in the instance features that would lead to a different outcome.

Experimental results show that the proposed method outperforms

existing approaches in terms of the quality of the explanations

and of the accuracy in mimicking the black-box.

Index Terms—Explainable AI, Interpretable Machine Learn-

ing, Open the Black Box, Explanation Rules, Counterfactuals

I. INTRODUCTION

Newspapers are full of commentaries about algorithms
taking critical decisions that heavily impact on our life and
society, from loan concession in bank systems to pedestrian
detection in self-driving cars. The worry is not only due to
the increasing automation of decision making, but mostly
to the fact that the algorithms are opaque and their logic
unexplained. The main cause of this lack of transparency
is that decision-making algorithms are generated often from
data through Machine learning (ML). ML allows building
predictive models that map user features into a decision,
obtained by generalizing from a dataset of examples. The
process of inferring a classification model from examples
cannot be easily controlled because the size of training data
and the complexity of the learned model are too big for
humans. The inability to obtain an explanation for a decision
is a profound drawback of learning from data, limiting social
acceptance and trust in its adoption in many sensitive contexts.

In this paper we address the problem of explaining the de-
cision outcome taken by an algorithm providing “meaningful
explanations of the logic involved” when automated decision
making takes place, as prescribed by the “right to explanation”
of the European General Data Protection Regulation. We
perform our research under some specific assumptions. First,
we assume that an explanation is interesting if it clarifies

Riccardo Guidotti and Fosca Giannotti are with ISTI CNR, Pisa, Italy. e-
mail: firstname.lastname@isti.cnr.it.

Anna Monreale, Dino Pedreschi, Salvatore Ruggieri and Franco Turini are
with University of Pisa, Italy . e-mail: firstname.lastname@unipi.it.

Manuscript received August ? , 2019; revised ?.

why a specific decision has been made, i.e., we aim for
local explanations, not general, global, descriptions of how
the overall system works [1], [2]. Second, we assume that the
explanations should be as close as possible to the language
of reasoning, which is formal logic. Thus, we assume the
user can understand elementary logic rules, but it should also
be considered that from logic rules it is easy to construct
narratives that are understood by users with diverse expertise.
Finally, we assume that the black-box decision system can
be queried as many times as necessary, to probe its decision
behavior to the scope of reconstructing its logic; this is
certainly the case in a legal argumentation in court, or in an
industrial setting. On the other hand, we make no assumptions
on the algorithms used in the obscure classifier: we aim at
an agnostic explanation method analyzing the input-output
behavior of the black-box, disregarding its internals [3].

We propose LORE, a LOcal Rule-based Explanation method
for tabular data. Given a black-box binary predictor b and a
specific instance x labeled with outcome y by b, we build a
simple, interpretable predictor by first generating a balanced
set of neighbor instances of the given x through an ad-hoc
genetic algorithm, and then extracting from such a set labelled
with b a decision tree classifier. A local explanation is then ex-
tracted from the obtained decision tree. The local explanation
is a pair composed by (i) a – factual – logic rule, corresponding
to the path in the tree that explains why x has been labeled
as y by b, and (ii) a set of counterfactual rules, explaining
which changes in x would invert the class y assigned by
b. For example, from the compas dataset we may have
the following explanation: the rule {age39, race=African–

American, recidivist=True}!HighRisk and the counterfac-
tuals {age>40} and {race=White–American}. Here, the
factual explanation is that the high risk of recidivism is
predicted for a black younger than 40 with prior recidivism;
the counterfactuals explain that a lower risk would be predicted
if the person were either older than 40 or white. The useful-
ness of the explanation depends on the stakeholder: it may
make sense to a judge that wants to understand and evaluate
the suggestion by the decision support system and possibly
discover that it biased against blacks.

The intuition behind our method, common to other local

approaches, such as LIME [3], and ANCHOR [4] is that the
decision boundary for the black-box can be arbitrarily complex
over the whole data space, but in the neighborhood of a data
point there is a high chance that the decision boundary is clear
and simple, hence amenable to be captured by an interpretable
model. These methods are named local because they focus
on the behavior of the black-box in the neighborhood of the



IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 2

specific instance x, without providing a single description
of the logic of the black-box for all possible instances. On
the other hand, global methods like [2], aims at retrieving
explanations for the whole logic of the model. The novelty
of our method is twofold. First, the high expressiveness of
the proposed explanation surpasses state-of-the-art methods
providing not only succinct evidence why an instance has been
assigned a specific label, but also counterfactuals suggesting
what should be different in the vicinity of the instance to
reverse the predicted outcome. In other words, our inferred
explanations are both factual and counterfactual, in line with
the cognitive psychology literature maintaining that counter-
factuals help people to reason on explanations that identify
cause-effect or reason-action relations between events [5], [6].
Similarly, [2] produces “balanced” explanations supporting
and opposing to a fact. Second, the local decision boundary
in the neighborhood of the instance to explain is explored
through a focused genetic algorithm, which produces high-
quality training data to learn the local decision tree.

We propose extensive experiments to assess the goodness
of our explanation method with respect to existing linear, rule-
based, and counter-factual-based explanation approaches.

II. LOCAL RULE-BASED EXPLANATION METHOD

Given the black-box b, and an instance x in the feature space
X (m), we aim to solve the black-box outcome explanation

problem which consists in providing an explanation e for
the decision b(x) = y. We assume that some knowledge is
available about the feature space X (m), i.e., the empirical
distribution of the m features. Nothing is assumed about the
process of constructing the black-box b.

As a solution to the black-box outcome explanation problem
we propose LORE, a LOcal Rule-based Explanation method.
LORE learns an interpretable predictor c that reproduces and
accurately mimes the local behavior of b in the neighborhood
Z of x. The neighborhood Z is generated by LORE as part of
the explanation process through a genetic algorithm in order
to accurately explore the local decision boundary of b. The
synthetic instances in Z are then labeled using b, and this set
is used to train an interpretable local predictor c. LORE adopts
a decision tree as interpretable predictor c. Finally, a factual

and counter-factual explanation e for the decision b(x) = y
is derived from the structure of c. The explanation consists of
a decision rule r and a set of counterfactual rules �. Details
are discussed in the rest of this section.

A. Factual and Counter-Factual Explanation

We define an explanation e as a pair of objects: e = hr,�i,
where r = p ! y is a factual decision rule describing the
reason for the decision value y = b(x), while � is a set
of counterfactual rules, namely rules describing the minimal
number of changes in the feature values of x that would change
the decision of the predictor to y0 6= y. Given the instance

x = {(age=22), (job=clerk), (income=800 ), (car=no)},
we consider the following explanation for a loan request:

e = hr = {age25, job=clerk , income900}!deny ,

� = {({income>900}!grant),

({job=employer}!grant)}i

In a factual decision rule r of the form p ! y, the decision
y is the consequence of the rule, while the premise p is a
boolean condition on feature values. We assume that p is
a conjunction of split conditions of the form ai2[v(l)i , v(u)i ],
where ai is a feature and v(l)i , v(u)i are lower and upper bound
values in the domain of ai extended with ±1. An instance x
satisfies r, or r covers x, if the boolean condition p evaluates
to true for x, i.e., if the split conditions sc(x) is true for every
condition in p. The rule r in the example above is satisfied by
x = {(age=22), (job=clerk), (income=800 ), (car=no)}.
When the instance x for which we have to explain the decision
satisfies p, the rule p ! y represents a motivation for taking

the decision, i.e., p explains the fact why b returned y.
Consider now a set � of split conditions. We denote the up-

date of p by � as p[�]=�[{(a 2 [v(l)i , v(u)i ]) 2 p| @w(l)
i , w(u)

i .
(a2[w(l)

i , w(u)
i ])2�}. Intuitively, p[�] is the logical condition

p with ranges for attributes overwritten as stated in �, e.g.,
{age25, job=clerk}[age>25] is {age>25, job=clerk}. A
counterfactual rule for p is a rule of the form p[�] ! y0, for
y0 6=y. We call � a counterfactual. A counterfactual � describes
what features to change and how to change them to get an
outcome different from y. Continuing the example, changing
the income feature of x to any value >900 it will change the
predicted outcome from deny to grant . An expected property
of a consistent counterfactual rule p[�] ! y0 is that it should
be minimal with respect to x. Minimality is measured with
respect to the number of split conditions sc in p[�] not satis-
fied by x. We define nf (p[�], x)=|{sc2p[�]|¬sc(x)}|, where
nf (·, ·) stands for number of falsified split conditions. For
example, {income>900}!grant is a minimal counterfactual
with one condition falsified by x. In summary, a counterfactual
� is a (minimal) motivation for reversing the decision outcome.

B. Neighborhood Generation

The first step of LORE to extract an explanation e is the
neighborhood generation aiming to identify a set of instances
Z, with feature characteristics close to the ones of x, that is
able to reproduce the local decision behavior of the black-box
b. Since the objective is to learn a predictor, the neighborhood
should be flexible enough to include instances with both
decision values, namely Z = Z=[Z 6= where instances z 2 Z=

are such that b(z) = b(x), and instances z 2 Z 6= are such that
b(z) 6= b(x). We extract balanced subsets Z= and Z 6=, and
then put Z = Z= [ Z 6=. This task differs from approaches
to instance selection based on genetic algorithms [7]. In our
case, we cannot assume the availability of the training set
of b, or not even that b is a supervised ML predictor for
which a training set exists. Our task is instead similar to
instance generation in the field of active learning, including
evolutionary approaches [8]. We adopt an approach based



IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 3

parent 1 25 clerk 800 yes
parent 2 30 empl. 2k no

#
children 1 25 empl. 2k yes
children 2 30 clerk 2k no

Fig. 1. Crossover.

parent 25 clerk 800 yes
# #

children 27 clerk 1k yes

Fig. 2. Mutation.

Fig. 3. Black box decision: purple vs green. Starred instance x. Uniformly
random (1st ) and genetic generation (2nd ). Density of random (3rd ) and
genetic generation (4th ). The colour bar in the last two plots indicates the
density level (best view in color).

on a genetic algorithm which generates z 2 Z= [ Z 6= by
maximizing the following fitness functions:

fitness
x
=(z) = Ib(x)=b(z) + (1� d(x, z))� Ix=z

fitness
x
6=(z) = Ib(x) 6=b(z) + (1� d(x, z))� Ix=z

where d : X (m) ! [0, 1] is a distance function, Itrue=1, and
Ifalse=0. The first fitness function looks for instances z similar
to x (term 1�d(x, z)), but not equal to x (term Ix=z) for which
b produces the same outcome as x (term Ib(x)=b(z)). Thus, the
maximization of fitness

x
= occurs for instances different from

x and whose prediction is equal to b(x). The second fitness
function leads to the generation of instances z similar to x,
but not equal to it, for which b returns a different decision.

LORE generates Z by instantiating the evolutionary ap-
proach of [9]. Using the terminology of [8], it is an instance
of generational genetic algorithms for evolutionary prototype
generation. However, prototypes are a condensed subset of
a training set that enable optimization in predictor learning.
We aim instead to generate new instances that separate well
the decision boundary of the black-box b. The neighborhood

generation function first initializes the population P0 with
N copies of the instance x to explain. Then it enters the
evolution loop that begins with the selection A of the Pi

population having the highest fitness score. After that, the
crossover operator is applied to a proportion of A according to
the pc probability. The resulting and the untouched individuals
are placed in B. We use a two-point crossover which selects
two parents and two crossover features at random, and then
swap the crossover feature values of the parents (see Figure 1).
Thereafter, a proportion of B, determined by pm , is mutated
and placed in C. The unmutated individuals are also added to
C. Mutation consists of replacing features values at random
according to the empirical distribution of a feature (see Fig-
ure 2). In experiments, we derive such distribution from the
test set of instances to explain. Individuals in C = Pi+1 are
evaluated according to the fitness function, and the evolution
loop continues until G generations are completed. The best
individuals, according to the fitness function, are returned. The
neighborhood generation function is run twice, once using
fitness

x
= to derive Z=, and once using fitness

x
6= to derive Z 6=.

age  25

job

income  900

deny grant

age  17

deny grant

income  1500

car

deny grant

grant

true false

clerk employer

no yes

Fig. 4. Decision tree mimicking the local behavior of a black box.

Figure 3 shows an example of neighborhood generation for
a black-box consisting of a random forest and a bi-dimensional
feature space. The figure contrasts uniform random generation
around a specific instance x (starred) to our genetic approach.
The latter yields a neighborhood that is considerably denser
than the former one in the boundary region of the predictor.
The density of the generated instances will be a key factor in
extracting a good local interpretable predictors.

C. Local Classifier and Explanation Extraction

Given the neighborhood Z of x, the second step of LORE
is to build an interpretable predictor c trained on the instances
z 2 Z labeled with the black-box decision b(z) to locally
mimic the behavior of b in Z. Since c must be interpretable
and able to provide a factual and counter-factual explanation
e, LORE considers decision tree classifiers as interpretable
predictor: (i) decision rules can naturally be derived from a
root-leaf path in a decision tree; and, (ii) counterfactuals can
be extracted by symbolic reasoning over the tree.

Once the decision tree c has been trained on Z labeled
with b, LORE derives the explanation e = hr,�i as follows.
The decision rule r = p ! y is formed by including in p
the split conditions on the path from the root to the leaf node
that is satisfied by x, and setting y = c(x). By construction,
r is consistent with c and satisfied by x. Consider now the
counterfactual rules in �. LORE looks for all paths in the
decision tree c leading to a decision y0 6= y. Fix one of
such paths, and let q be the conjunction of split conditions
in it. Again by construction, q ! y0 is a counterfactual rule
consistent with c. Notice that, since we are using a decision
tree, the counterfactual � for which q = p[�] has not to be
explicitly computed – this is a benefit of using decision trees.
Among all such q’s, only those with the minimum number of
split conditions sc not satisfied by x are kept in �.

As an example, consider the decision tree in Figure 4, and
the instance x = {(age=22), (job=clerk), (income=800 ),
(car=no)} for which the decision deny (e.g., of a loan) has
to be explained. The path followed by x is the leftmost one in
the tree. The factual decision rule extracted from the path is
{age  25, job = clerk , income  900} ! deny . There are
four paths leading to the opposite decision: q1 = {age  25,
job = clerk , income > 900}, q2 = {17 < age  25, job =
employer}, q3 = {age > 25, income  1500, car = yes},
and q4 = {age > 25, income > 1500}. It turns out:
nf (q1, x) = 1, nf (q2, x) = 1, nf (q3, x) = 2, nf (q4, x) = 2,
and � = {q1 ! grant , q2 ! grant}.



IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 4

Fig. 5. LORE vs LIME: box plots of fidelity and l-fidelity . Top numbers are mean values.

A counterfactual instance can also be generated from x and
from counterfactual rule q ! y0. Among all instances that
satisfy q, we choose the one that minimally changes attributes
from x according to q.

III. EXPERIMENTS

In this section, we evaluate LORE against state-of-the-art
competitors1. LORE has been developed in Python, using the
deap

2 library for the genetic neighborhood generation, and the
YaDT system3 for the decision tree induction.

A. Experimental Setup

We ran experiments on three tabular real-world open source
datasets: adult4, compas5 and german6. Each dataset was
randomly split into two parts: 70% was used to train the black-
box classifiers, 30%, denoted by X , was used as instances to
be explained. We denote by Ŷ the decisions provided by the
black-box b and by Y the set of decisions provided by the
interpretable predictor c. We trained and explained away the
following black-box classifiers: Random Forest (RF), Support
Vector Machine (SVM), and multi-layer perceptron (NN)
as implemented by the scikit-learn Python library. Default
parameters were used for both the black-boxes and the libraries
of LORE7. We consider the following performance indicators
to evaluate the quality of the explanations:

• The fidelity(Y, Ŷ ) 2 [0, 1] compares the predictions of c
and b on Z measuring how good is c at mimicking b.

• The l-fidelity(Y, Ŷ ) 2 [0, 1] compares the predictions of
c and b on the local (hence “l-”) instances of Z covered
by r measuring how good is r at mimicking b.

1The source code and the datasets for reproducing the experiments are
publicly available at https://github.com/riccotti/LORE. Experiments were per-
formed on Ubuntu 16.04 LTS, 32 GB RAM, 3.30GHz Intel Core i7.

2https://github.com/DEAP/deap
3http://pages.di.unipi.it/ruggieri/YaDT/
4https://archive.ics.uci.edu/ml/datasets/adult
5https://github.com/propublica/compas-analysis
6https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
7The parameters of the genetic procedure, namely probabilities of crossover

and mutation, number of generations, and population size are set with the
default values [9] of 0.7, 0.2, 10 and 1000, respectively.

TABLE I
LORE VS LIME: hit SCORES.

Dataset german compas adult
Black Box LORE LIME LORE LIME LORE LIME

RF .925 ± .2 .880 ± .3 .941 ± .2 .826 ± .4 .901 ± .3 .824 ± .4
NN .980 ± .1 1.00 ± .0 .987 ± .1 .902 ± .3 .918 ± .3 .998 ± .1

SVM 1.00 ± .0 .966 ± .1 .997 ± .1 .900 ± .3 .985 ± .1 .987 ± .1

• The hit(y, ŷ) 2 {0, 1} compares the predictions of c and
b on the instance x under analysis. It returns 1 if c(x) is
equal to b(x), and 0 otherwise.

We adopt the F1-measure for the first two. Aggregated values
are reported by averaging performance indicators over X .

B. Rules vs Linear Regression

We present a qualitative and quantitative comparison with
the linear explanations of LIME8 [3]. A first crucial differ-
ence is that in LIME, the number of features composing an
explanation is an input parameter that must be specified by
the user. LORE, instead, automatically provides the user with
an explanation including only the features useful to justify the
black-box decision. This is a clear improvement over LIME.
In experiments, unless otherwise stated, we vary the number
of features of LIME explanations from two to ten, and we
consider the performance with the highest hit score.

Table I reports the mean and standard deviation of hit , while
Figure 5 details the box plots of fidelity (top) and l -fidelity
(bottom). The results show that LORE definitely outperforms
LIME under various viewpoints. Regarding the hit score, LORE
is clearly better than LIME in 6 out of 9 cases, is very close to
it in 2 cases, and performs clearly worse in 1 case. LORE has
better fidelity scores and is more robust than LIME, which,
instead, exhibits very high variability in the neighborhood
(i.e., l -fidelity). This result can be attributed to the genetic
approach of LORE. Figure 7 reports a multidimensional scaling
of the neighborhoods of an instance x generated by the two
approaches. LORE computes a dense and compact neighbor-
hood. The instances generated by LIME, instead, can be very
distant from each other and with low density around x.

8https://github.com/marcotcr/lime

https://github.com/riccotti/LORE
https://github.com/DEAP/deap
http://pages.di.unipi.it/ruggieri/YaDT/
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://github.com/marcotcr/lime


IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 5

Fig. 6. LORE vs ANCHOR: box plots of precision and coverage. Top numbers are mean values.

Fig. 7. Neighborhoods multidimensional scaling of an instance x. LORE (left)
computes a dense and compact neighborhood. LIME (right) generates instances
that can be very distant from each other and with low density around x.

We claim that the explanations provided by LORE are more
abstract and comprehensible than the ones of LIME. Consider
the example in Figure 8. The top part reports a LORE local
explanation for an instance x from german. The central
part is a LIME explanation. Weights in w are associated with
the categorical values in the instance x to explain, and to
continuous upper/lower bounds where the bounding values
are taken from x. Each weight tells the user how much the
decision would have changed for different values of a specific
feature. In the example, the weight 0.11 has the following
meaning [3]: “if the duration in months had been higher than
the value it is for x, the prediction would have been, on
average, 0.11 less 0 (or 0.11 more 1)”9. A not very easy
logic to follow when compared to a single decision rule which
characterizes the contextual conditions for the decision of the
black-box. Another advantage of LORE explanation consists
in the set of counterfactual rules. LIME provides a rough
indication of where to look for a different decision: different
categorical values or lower/higher continuous values of some
feature. LORE’s counterfactual rules provide high-level and
minimal-change contexts for reversing the outcome prediction.

C. Rules vs Anchors

ANCHOR [4] is a rule-based local explainer inspired to
LIME, which provides decision rules, called anchors

10, as
explanations. Anchors are computed by incrementally adding
equality conditions in the premise, while an estimate of the
anchor precision is above a minimum threshold (set to 95%).

9See lime-tutorial for more details about LIME explanations
10https://github.com/marcotcr/anchor

- LORE
r = ({credit amount > 836, other debtors = none,

credit history = critical account} ! decision = 0)

� = { ({credit amount  836, other debtors = none,

credit history = critical account} ! decision = 1),

({credit amount > 836, other debtors = none,

credit history = all paid back} ! decision = 1) }
- LIME
w = [({duration month  12:0.11, status=male single: 0.07,

credit history= critical account: 0.06}, decision = 0),

({account check status = 0  ... < 200 DM: 0.09,

installment as income= 1: 0.07}, decision = 1)]

- ANCHOR
a = ({credit history = critical account,

duration month 2 [0, 18.00]} ! decision = 0)

Fig. 8. Examples of explanations from LORE, LIME and ANCHOR.

TABLE II
LORE VS ANCHOR: JACCARD MEASURE OF STABILITY.

Dataset german compas adult
Black box LORE ANCHOR LORE ANCHOR LORE ANCHOR

RF .76 ± .15 .61 ± .15 .75 ± .12 .73 ± .14 .70 ± .15 .69 ± .15
NN .69 ± .18 .53 ± .21 .83 ± .13 .79 ± .16 .81 ± .12 .65 ± .16

SVM .82 ± .16 .32 ± .16 .71 ± .16 .70 ± .20 .87 ± .14 .67 ± .13

Such an estimation relies on neighborhood generation through
pure-exploration multi-armed bandit. On a qualitative level of
comparison, ANCHOR requires the apriori discretization of
continuous features, while LORE benefits of the capabilities
of decision trees to split continuous features (see Figure 8).

On a quantitative level of comparison, since Anchor pro-
duces a single rule model starting from the instance to ex-
plain, hit is 100% by construction. Moreover, l-fidelity boils
down to rule precision, namely the fraction of instances in
the neighborhood set that is correctly classified by the rule,
i.e., that have the same black-box prediction as the instance to
explain. Figure 6 reports the average precision of the decision
rules for both ANCHOR and LORE. By construction, rule
precision in ANCHOR is very high, since an estimator of such
precision is constrained to be at least 95%. We also evaluate
the rule coverage, namely the fraction of instances to explain
covered by the rule: large values of coverage means better rule
generalization [4]. Figure 6 also shows the average coverage

https://marcotcr.github.io/lime/tutorials/Tutorial%20-%20continuous%20and%20categorical%20features.html
https://github.com/marcotcr/anchor


IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 6

TABLE III
LORE VS SOC: PERFORMANCE OF COUNTERFACTUAL RULES.

dataset method nf c-hit cl-fidelity

german
LORE 1.52 ± 1.18 .7765 ± .38 .6355 ± .43

SOC 14.80 ± 1.59 .3118 ± .47 .2297 ± .36

compas
LORE 1.84 ± 0.78 .8694 ± .37 .8611 ± .41

SOC 6.24 ± 1.45 .8036 ± .38 .7555 ± .34

of the decision rules, with LORE showing a consistently better
coverage than ANCHOR. We also measure the possible over-
specialization of the decision rules by evaluating their stability
with respect to randomness in the neighborhood generation.
We measure stability using Jaccard coefficient of feature sets
used in the 10 decision rules computed for the same instances
in 10 runs of the system. Table II reports mean and standard
deviation of Jaccard coefficient. LORE has a better stability
than ANCHOR for all datasets and black-boxes. In summary,
ANCHOR shows better precision than LORE at the expenses
of generality and stability of the produced explanations. Such
two properties are, however, essential for a general acceptance
of an explanation methodology.

D. Rule-Based vs Stochastic Counterfactuals

We compare LORE with the stochastic optimization coun-
terfactual (SOC) approach [10] returning an instance x0 as
close as possible to a given x, but for which the black-box
outputs a different prediction. To make a fair comparison, we
have implemented the SOC as an alternative fitness function
of the genetic neighborhood generation. Table III shows the
performances of the two methods on nf (number of falsified
conditions in counterfactual rules), c-hit (rate of agreement
of black-box and counterfactual decision for counterfactual
instance), and cl -fidelity (F1-score of agreement of black-box
and counterfactual decision). Results show that LORE returns
shorter explanations, i.e., simpler explanations, and provides
counterfactual rules with an higher fidelity than SOC.

IV. FUTURE WORKS

Future research directions include multi-valued classifica-
tion, going beyond relation data towards image and text, going
beyond decision trees, and considering alternative models such
as rule sets and rule lists. Moreover, even though LORE should
be able to deal with high dimensional datasets via the genetic
process, we plan to develop further experiments to verify its
robustness. We are fully aware that the quest towards mean-
ingful explanations of black-box systems is at an embryonic
stage. How to turn our proposed factual and counterfactual
rules into substantive narratives, which can empower human
stakeholders with diverse expertise by boosting their causal
and what-if reasoning, is a fascinating challenge of great
practical relevance for the successful adoption of many AI
innovations.

ACKNOWLEDGMENT

This work is partially supported by the European Com-
mission through the H2020 project INFRAIA-1-2014-2015:
Research Infrastructure G.A. 654024 SoBigData, G.A. 825619

AI4EU, G.A. 761758 Humane AI, and the ERC-2018-ADG
G.A. 834756 “XAI: Science and technology for the eXplana-
tion of AI decision making”.

REFERENCES

[1] R. Guidotti et al., “A survey of methods for explaining black box
models,” ACM Computing Surveys, vol. 51, no. 5, p. 93, 2018.

[2] S. Grover, C. Pulice, G. I. Simari, and V. Subrahmanian, “Beef: Balanced
english explanations of forecasts,” IEEE Transactions on Computational

Social Systems, vol. 6, no. 2, pp. 350–364, 2019.
[3] M. T. Ribeiro et al., ““Why should I trust you?”: Explaining the

predictions of any classifier,” in KDD. ACM, 2016, pp. 1135–1144.
[4] ——, “Anchors: High-precision model-agnostic explanations,” in AAAI.

AAAI Press, 2018, pp. 1527–1535.
[5] B. Ruth M.J., “Counterfactuals in explainable artificial intelligence (xai):

Evidence from human reasoning,” IJCAI, pp. 6276–6282, 2019.
[6] T. Miller, “Explanation in artificial intelligence: Insights from the social

sciences,” Artificial Intelligence, vol. 267, pp. 1 – 38, 2019.
[7] J. A. Olvera-López et al., “A review of instance selection methods,”

AIR, vol. 34, no. 2, pp. 133–143, 2010.
[8] J. Derrac et al., “A survey on evolutionary instance selection and

generation,” in Modeling, Analysis, and Applications in Metaheuristic

Computing. IGI Global, 2012, pp. 233–266.
[9] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary computation 1:

Basic algorithms and operators. CRC press, 2000, vol. 1.
[10] S. Wachter et al., “Counterfactual explanations without opening the

black box: Automated decisions and the GDPR,” HJLT, 2018.

Riccardo Guidotti is a researcher at KDD Lab
in ISTI-CNR, Pisa. He holds a PhD in Computer
Science from the University of Pisa, with a thesis
on Personal Data Analytics. He received an IBM
fellowship Award in 2014/2015, and spent an Intern-
ship at IBM Research Dublin. He has been awarded
with the ISTI-CNR Young Researcher Award from
2016 to 2019, and with the NGDSA at DSAA 2018.

Anna Monreale is an Assistant Professor at the
Computer Science Department, University of Pisa
and member of KDD Lab. She has been a visiting
student at Stevens Institute of Technology in 2010.
Her research interests include data analytics, privacy
and ethical issues in mining human data. She is a
Privacy-by-Design Ambassador and a member of the
EU Panel of Experts on the Open Science Cloud.

Fosca Giannotti is a director of research at ISTI-
CNR, Pisa. Fosca leads the Pisa KDD Lab - Knowl-
edge Discovery and Data Mining Laboratory, a
joint research initiative of ISTI-CNR and University
of Pisa, founded in 1994. She is the coordinator
of the European research infrastructure SoBigData
(http://www.sobigdata.eu). She received the ERC
Advanced Grant XAI – Science and technology for

the explanation of AI decision making.

http://www.sobigdata.eu


IEEE INTELLIGENT SYSTEMS JOURNAL - RECEIVED DATE: ?, REVISED DATE: ? 7

Dino Pedreschi is a professor of Computer Science
at the University of Pisa, a co-founder of KDD
Lab, and a pioneering scientist in data science. His
research focus is on big data analytics and mining
and their impact on society. Dino is the director of
the Data Science PhD program at Scuola Normale
Superiore in Pisa.

Salvatore Ruggieri is professor of Computer Sci-
ence at the University of Pisa. He is member of
KDD Lab, with research interests in data mining and
AI, including: algorithmic fairness, explainable AI,
systems for knowledge discovery process; sequential
and parallel classification algorithms. He is a pro-
gram co-chair of the ACM conference on Fairness,
Accountability and Transparency, 2020.

Franco Turini is a professor in the Department
of Computer Science, University of Pisa and a co-
founder of KDD Lab. In 78/80 he has been a visiting
scientist of the Carnegie-Mellon University and of
the IBM Research Center S.Jose, afterwards. In
92/93 he has been visiting professor at the University
of Utah. His contributions include discrimination-
aware data mining and ML.


	Introduction
	Local Rule-based Explanation Method
	Factual and Counter-Factual Explanation
	Neighborhood Generation
	Local Classifier and Explanation Extraction

	Experiments
	Experimental Setup
	Rules vs Linear Regression
	Rules vs Anchors
	Rule-Based vs Stochastic Counterfactuals

	Future Works
	References
	Biographies
	Riccardo Guidotti
	Anna Monreale
	Fosca Giannotti
	Dino Pedreschi
	Salvatore Ruggieri
	Franco Turini


