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Abstract—Communication by joint signal processing from
many distributed access points, called Cell-Free Massive MIMO,
is a potential beyond-5G network infrastructure. The aim of
this paper is to provide the first comprehensive comparison
with Cellular Massive MIMO. The uplink spectral efficiencies
of four different cell-free implementations are analyzed, with
spatially correlated fading and arbitrary processing. It turns out
that it is possible to outperform cellular networks by a wide
margin, but only using the right signal processing. A centralized
implementation with optimal processing maximizes performance
and, surprisingly, also reduces the fronthaul signaling.

Index Terms—Cell-Free Massive MIMO, cellular, uplink.

I. INTRODUCTION

By equipping existing base stations (BSs) with Massive

multiple-input multiple-output (mMIMO), the spectral effi-

ciency (SE) can be improved by at least 10× over legacy

cellular networks [1], without having to deploy new BSs.

The SE gain comes from each BS having a co-located array

of a hundred or more antennas, which are used for digital

beamforming and, particularly, to spatially multiplex many

user equipments (UEs). Signal processing methods, such as

minimum mean-squared error (MMSE) combining in the up-

link, can be used to cancel interference at each BS [1], without

the need of any BS cooperation.

Recently, an alternative network infrastructure was proposed

in [2], [3] and called Cell-Free mMIMO. The idea is to deploy

a large number of distributed single-antenna access points

(APs), which are connected to a central processing unit (CPU),

also known as edge-cloud processor [4]. The latter operates

the system in a Network MIMO fashion to jointly serve all

the UEs by coherent joint transmission and reception [5], [6].

The paper [2] advocated the use of maximum ratio (MR)

processing (a.k.a. matched filtering) at each AP, while [3],

[7] showed that partially or fully centralized signal processing

at the CPU can achieve higher SE. The focus in the early

papers [2], [3] was on comparing Cell-Free mMIMO with a

small cell network; that is, each AP serves its own exclusive

set of UEs. Since small cells are a special case of Cell-Free

mMIMO, they obviously provide lower performance.

In this paper, we instead compare Cell-Free mMIMO with

conventional Cellular mMIMO.1 These network topologies are

illustrated in Fig. 1. The large differences make the comparison

non-trivial and provide interesting inputs into the design of
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1A previous comparison is found in [8] but only for a single cell, so it is
not cellular, and only MR is used, which is known to perform badly [1].
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Fig. 1. Illustration of Cell-Free (left) and Cellular mMIMO (right).

beyond-5G networks. Cellular mMIMO benefits from channel

hardening and spatial interference suppression, but cell-edge

UEs can have bad channel conditions. Cell-Free mMIMO, on

the other hand, benefits from strong macro diversity but the

interference suppression capability highly depends on how it

is operated. To achieve a reasonably fair comparison, we focus

on the uplink with fixed UE transmit powers. The following

are the major contributions of this paper:

• We describe four levels of receiver cooperation (i.e.,

from fully centralized to fully distributed) in Cell-Free

mMIMO with multi-antenna APs. We provide new SE

expressions for spatially correlated fading channels with

arbitrary or optimized receive combining.

• We compare Cell-Free and Cellular mMIMO numerically

and explain how to choose the right receive combining.

Notation: The n × n identity matrix is In. A block-

diagonal matrix with the diagonal blocks A1, . . . ,An is

denoted diag(A1, . . . ,An). The multi-variate circularly sym-

metric complex Gaussian distribution with correlation matrix

R is denoted NC(0,R). The expected value is denoted E{·}.

II. CELL-FREE NETWORK MODEL

We consider a cell-free network consisting of L geograph-

ically distributed APs, each equipped with N antennas; see

Fig. 1. There are K single-antenna UEs and the channel

between AP l and UE k is denoted by hkl ∈ C
N . We

assume that each hkl is constant in time-frequency blocks of

τc channel uses [1]. In each block, an independent realization

from a correlated Rayleigh fading distribution is drawn:

hkl ∼ NC(0,Rkl) (1)

where Rkl ∈ C
N×N is the spatial correlation matrix, which

describes the spatial properties of the channel and βkl =
tr(Rkl)/N is the large-scale fading (including pathloss and

shadowing). We assume that the channel correlation matrices

{Rkl : k = 1, . . . ,K} are locally available at AP l [1].
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We consider the uplink, which consists of τp channel uses

dedicated for pilots and τc−τp channel uses for payload data.

A. Pilot Transmission and Channel Estimation

There are τp mutually orthogonal τp-length pilot signals that

are assigned to the UEs. The case of practical interest is a large

network with K > τp so that more than one UE is assigned

to each pilot. We denote the index of the pilot used by UE k
as tk ∈ {1, . . . , τp} and call Pk ⊂ {1, . . . ,K} the subset of

UEs that use the same pilot as UE k, including itself. When

these UEs transmit their pilot, the received signal ztkl ∈ C
N

at AP l is [1, Sec. 3]

ztkl =
∑

i∈Pk

√
piτphil + ntkl (2)

where pi is the transmit power of UE i, τp is the processing

gain, and ntkl ∼ NC(0, σ
2IN ) is the receiver noise with power

σ2. Using standard results from estimation theory [1, Sec. 3],

the minimum mean-square error (MMSE) estimate of hkl is:

ĥkl =
√
pkτpRklΨ

−1
tkl

ztl ∼ NC

(
0, pkτpRklΨ

−1
tkl

Rkl

)
(3)

where

Ψtkl = E{ztklzH

tkl
} =

∑

i∈Pk

τppiRil + IN (4)

is the correlation matrix of the received signal in (2). The

estimation error h̃kl = hkl − ĥkl is independent of ĥkl and

distributed as h̃kl ∼ NC(0,Ckl), with

Ckl = Rkl − pkτpRklΨ
−1
tkl

Rkl. (5)

B. Data Transmission

During data transmission, UE k transmits its data signal sk
with power pk. The received signal yl ∈ C

N at AP l is

yl =
K∑

i=1

hilsi + nl (6)

where nl ∼ NC(0, σ
2IN ) is the receiver noise.

III. FOUR LEVELS OF RECEIVER COOPERATION

The APs are connected via fronthaul to a CPU; see Fig. 1.

AP l receives the signal yl and can use the available channel

estimates {ĥkl : k = 1, . . . ,K} to detect the data locally, or

can fully or partially delegate this task to the CPU. The benefit

of using the CPU is that it can combine the inputs from all

APs. Four levels of receiver cooperation are described below

and are compared with Cellular mMIMO in Section IV.

A. Level 4: Fully Centralized Processing

The most advanced level of Cell-Free operation is when

the L APs send their received pilots {ztl : t = 1, . . . , τp, l =
1, . . . , L} and data signals {yl : l = 1, . . . , L} to the CPU,

which performs channel estimation and signal detection. Each

AP needs to send Nτc complex scalars per coherence block.

The CPU also needs to know the KLN2/2 complex scalars

of the statistical matrices {Rkl : k = 1, . . . ,K, l = 1, . . . , L},

which are fixed for a long time; see Table I for a summary.

TABLE I
NUMBER OF COMPLEX SCALARS TO SEND OVER FRONTHAUL TO THE CPU

Each coherence block Statistical parameters

Level 4 τcNL KLN2/2
Level 3 (τc − τp)KL KL+ (L2K2 +KL)/2
Level 2 (τc − τp)KL −

Level 1 − −

The received signal available at the CPU is expressed as





y1

...

yL






︸ ︷︷ ︸

=y

=

K∑

i=1






hi1

...

hiL






︸ ︷︷ ︸

=hi

si +






n1

...

nL






︸ ︷︷ ︸

=n

(7)

or, in a more compact form, as

y =

K∑

i=1

hisi + n. (8)

The collective channel is distributed as hk ∼ NC(0,Rk)
where Rk = diag(Rk1, . . . ,RkL) ∈ C

M×M is the spatial

correlation matrix, implying that (8) is mathematically equiv-

alent to the system model of a single-cell mMIMO system

with correlated fading [1, Sec. 2.3.1]. The only difference

from conventional mMIMO is how the correlation matrices are

generated and that multiple UEs use the same pilot, leading to

pilot contamination between UEs served by the same entity.

The CPU can select an arbitrary receive combining vector

vk ∈ C
NM for UE k based on the collective channel estimates

ĥk =






ĥi1

...

ĥiL




 ∼ NC

(
0, pkτpRkΨ

−1
tk

Rk

)
(9)

where Ψtk = diag(Ψtk1, . . . ,ΨtkL). The estimation error is

h̃k = hk−ĥk ∼ NC(0,Ck) with Ck = diag(Ck1, . . . ,CkL).
The capacity is then lower bounded by the following SE.

Proposition 1. At Level 4, an achievable SE of UE k is

SE
(4)
k =

(

1− τp
τc

)

E

{

log2

(

1 + SINR
(4)
k

)}

(10)

where the instantaneous effective signal-to-interference-and-

noise ratio (SINR) is

SINR
(4)
k =

pk|vH

k ĥk|2
K∑

i=1
i 6=k

pi|vH

k ĥi|2 + vH

k

(
K∑

i=1

piCi + σ2IMN

)

vk

. (11)

Proof: The proof follows the same main steps as the proof

of [1, Th. 4.1] and is therefore omitted.

The SE expression in (10) holds for any combiner vk and is

a multi-antenna generalization of [7, Eq. (1)]. It can be easily

computed using Monte Carlo methods, as done in Section IV.

One low-complexity option is to use MR combining with vk =
ĥk, but the SINR-maximizing combining is of main interest

since the CPU typically has high computational capability.



Corollary 1. The instantaneous SINR in (11) for UE k is

maximized by the MMSE combining vector

vk = pk

(
K∑

i=1

pi

(

ĥiĥ
H

i +Ci

)

+ σ2IMN

)−1

ĥk (12)

which leads to the maximum value

SINR
(4)
k = pkĥ

H

k






K∑

i=1
i 6=k

piĥiĥ
H

i +

K∑

i=1

piCi + σ2IMN






−1

ĥk. (13)

Proof: This result follows by utilizing that (10) is a

generalized Rayleigh quotient with respect to vk.

The SINR-maximizing combiner in (12) is called MMSE

combining since it also minimizes the mean-squared error

E{|sk − vH

ky|2
∣
∣{ĥi}}; see [1, Sec. 4.1] for details.

B. Level 3: Local Processing & Large-Scale Fading Decoding

Instead of sending {yl : l = 1, . . . , L} to the CPU, each

AP can preprocess its signal by computing local estimates of

the data that are then passed to the CPU for final decoding.

Let vkl ∈ C
N be the combining vector that AP l selects for

UE k, then its local estimate of sk is

škl = vH

klyl =

K∑

i=1

vH

klhilsi + vH

klnl. (14)

The vector minimizing the MSE E{|sk − vH

klyl|2
∣
∣{ĥil}} is

vkl = pk

(
K∑

i=1

pi

(

ĥilĥ
H

il +Cil

)

+ σ2IN

)−1

ĥkl (15)

which we call Local MMSE (L-MMSE) combining to distin-

guish it from Level 4. The local estimates {škl : l = 1, . . . , L}
are sent to the CPU where they are linearly combined to obtain

ŝk =

L∑

l=1

a∗klškl

=

(
L∑

l=1

a∗klv
H

klhkl

)

︸ ︷︷ ︸

Effective channel

sk+

L∑

l=1

a∗kl






K∑

i=1
i 6=k

vH

klhilsi + vH

klnl




.(16)

The vector ak = [ak1 . . . akL]
T with weighting coefficients

can be selected to maximize SE, but needs to be deterministic

since the CPU does not know the channel estimates at Level

3. This approach is known as Large-Scale Fading Decoding

(LSFD) in Cellular mMIMO [9]. From (16), we see that the

signal of interest sk is multiplied with the effective channel

L∑

l=1

a∗klv
H

klhkl = aH

kgkk (17)

with gki = [vH

k1hi1 . . . vH

kLhiL]
T. It is unknown at the CPU,

but the average aH

kE{gkk} is deterministic and non-zero (if

L-MMSE or MR is used) and thus can be assumed known.

Based on this knowledge, the following SE is achievable.

Proposition 2. At Level 3, an achievable SE of UE k is

SE
(3)
k =

(

1− τp
τc

)

log2

(

1 + SINR
(3)
k

)

(18)

with the effective SINR given by

SINR
(3)
k =

pk |aH

kE{gkk}|2

aH

k

(
K∑

i=1

piE{gkig
H

ki}+σ2Dk

)

ak−pk |aH

kE{gkk}|2

(19)

where Dk = diag(E{‖vk1‖2}, . . . ,E{‖vkL‖2}).
Proof: The result is proved by rewriting the system model

(16) to fit [1, Cor. 1.3] and is omitted for space limitations.

The above SE holds for any combiner vkl, not only for L-

MMSE combining in (15) or for MR with vkl = ĥkl that was

used in [7]. The structure of (19) makes it possible to find the

deterministic weighting vector ak that maximizes the SINR.

Corollary 2. The effective SINR in (19) for UE k is maximized

by

ak =

(
K∑

i=1

piE{gkig
H

ki}+ σ2Dk

)−1

E{gkk} (20)

which leads to the maximum value

SINR
(3)
k = pkE{gH

kk}

×
(

K∑

i=1

piE{gkig
H

ki}+σ2Dk−pkE{gkk}E{gH

kk}
)−1

E{gkk}.

(21)

Proof: It follows by noting that (19) is a generalized

Rayleigh quotient with respect to ak.

We note that Level 3 is an extension of the LSFD framework

in [7], [9], [10], which has only been used in Cell-Free

mMIMO along with MR combining. The signaling required

at Level 3 is quantified as follows. Each AP needs to send

(τc − τp)K complex scalars (i.e., škl for all k) per coherence

block. In addition, the evaluation of (20) requires knowledge

of the L-length complex vector E{gkk} and L × L matrices

E{gkig
H

ki} and Dk for all k, i. Hence, KL+(L2K2+KL)/2
complex scalars are needed in total, which can be a large

number. These values are summarized in Table I.

C. Level 2: Local Processing & Simple Centralized Decoding

Although the optimized LSFD step in Level 3 maximizes

the SE, in practice the large number of statistical parameters

must be estimated at the APs and it might not be feasible to

share them with the CPU if the statistics vary with time. In

that case, the CPU can form its estimate of the signal from

UE k by taking the average of the local estimates. This yields

ŝk =
1

L

L∑

l=1

škl (22)

where škl is given in (14) and can be obtained by any local

combining vector. Since this is equivalent to setting ak =
[1/L . . . 1/L]T in Proposition 2, the following is obtained.



Corollary 3. At Level 2, an achievable SE of UE k is

SE
(2)
k =

(

1− τp
τc

)

log2

(

1 + SINR
(2)
k

)

(23)

with the effective SINR given by

SINR
(2)
k =

pk

∣
∣
∣
∣

L∑

l=1

E {vH

klhkl}
∣
∣
∣
∣

2

K∑

i=1

piE

{∣
∣
∣
∣

L∑

l=1

vH

klhil

∣
∣
∣
∣

2
}

+σ2
L∑

l=1

E{‖vkl‖2}−pk

∣
∣
∣
∣

L∑

l=1

E{vH

klhkl}
∣
∣
∣
∣

2
.

(24)

This SE can be utilized along with any local combiner.

If MR is used with single-antenna APs (i.e., N = 1), then

Corollary 3 reduces to the case considered in [2]. The number

of complex scalars to be exchanged per coherence block is the

same as in Level 3, but no statistical parameters are needed.

This is summarized in Table I.

D. Level 1: Small Cells

The simplest implementation level is when the signal from

UE k is decoded using only the received signal from one AP

[6, Sec. 4.2]. This decoding can be done locally at the AP,

using its local channel estimates. Therefore, there is no need to

exchange anything with the CPU.2 This assumption essentially

turns Cell-Free mMIMO into a small-cell network, but the

macro diversity achieved by the AP-selection approach could

potentially make it competitive compared to conventional

Cellular mMIMO with larger cells.

Cell-Free mMIMO and small cells were compared in [2],

[3] with N = 1 and an AP selection based on the largest

large-scale fading coefficient βkl. Unlike [2], [3], we make no

restrictions on N and let the AP that gives the highest SE to

a specific UE be the one decoding its signal.3

Corollary 4. At Level 1, an achievable SE of UE k is

SE
(1)
k =

(

1− τp
τc

)

max
l

E

{

log2

(

1 + SINR
(1)
kl

)}

(25)

where the instantaneous effective SINR for AP l is

SINR
(1)
kl =

pk|vH

klĥkl|2
K∑

i=1
i 6=k

pi|vH

klĥil|2 + vH

kl

(
K∑

i=1

piCil + σ2IN

)

vkl

. (26)

The maximum in (26) is achieved with the L-MMSE combining

in (15) and is given by

SINR
(1)
kl = pkĥ

H

kl






K∑

i=1
i 6=k

piĥilĥ
H

il +

K∑

i=1

piCil + σ2IN






−1

ĥkl. (27)

2In all the four levels, the K data streams need to be transmitted to the
core network after decoding, which requires a backhaul load proportional to
the sum SE. This is not included in Table I but is different for each level.

3We also noticed that the SE expression in [2, Eq. (47)] neglects the impact
of pilot contamination during data transmission, thus it is an approximation.
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Fig. 2. Comparison of Cellular mMIMO with Cell-Free (L = 400, N = 1)
when using MMSE or L-MMSE combining.

IV. CELL-FREE VERSUS CELLULAR MMIMO

In this section, we compare Cell-Free mMIMO, with the

different cooperation levels, and Cellular mMIMO using the

SE expression in [1, Sec. 4.1] and optimal multi-cell MMSE

(M-MMSE) combining. The cellular network has 4 square

cells in a 1 × 1 km area, as in Fig. 1, with 100 antennas

per BS. The cell-free network is deployed in the same area

and has either 400 single-antenna APs (i.e., N = 1) or

100 four-antenna APs (i.e., N = 4). Hence, all the network

configurations have the same number of antennas. To make

a fair comparison, the APs are deployed on a square grid

(instead of randomly as in [2], [3], [7]) and we use the same

propagation model in all cases. It is based on the 3GPP Urban

Microcell model in [11] with 2 GHz carrier frequency and

βkl [dB] = −30.5− 36.7 log10

(
dkl
1m

)

+ Fkl (28)

where dkl is the distance between UE k and AP l (computed

as the minimum over different wrap-around cases) and Fkl ∼
N (0, 42) is the shadow fading. The shadowing terms from an

AP to different UEs are correlated as [11, Table B.1.2.2.1-4]

E{FklFij} =

{

42e−δki/13 m l = j

0 l 6= j
(29)

where δki is the distance between UE k and UE i. The second

row in (29) accounts for the correlation of shadowing terms

among two different APs, which is negligible since we always

have at least 50 m between APs (notice that e−50/13 ≈ 0.02).4

The multi-antenna APs are equipped with half-wavelength-

spaced uniform linear arrays and the spatial channel correla-

tion is generated using the Gaussian local scattering model

with 15◦ angular standard deviation [1, Sec. 2.6]. We use the

same propagation models for the Cellular mMIMO case.

There are K = 40 UEs, whereof ten are uniformly dropped

in each cell and assigned to unique pilots with random indices.

The same UE locations and pilot assignments are considered

in the cell-free case, but the shadowing is generated indepen-

dently. The transmit power is pk = 100mW, bandwidth is

20 MHz, σ2 = −96 dBm, τc = 200, and τp = 10.

4The papers [2], [7] have established a standard model for evaluating Cell-
Free mMIMO, but it is based on an older propagation model and has a shadow
fading decorrelation distance that is 10× larger than in the 3GPP model [11].
This is why we use the newer 3GPP model that we believe is more realistic.
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Fig. 3. Comparison of Cellular mMIMO with Cell-Free (L = 100, N = 4)
when using MMSE or L-MMSE combining.
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Fig. 4. Comparison of Cellular mMIMO with Cell-Free (L = 400, N = 1)
when using MR combining.

Fig. 2 considers L = 400 and N = 1 and shows the cu-

mulative distribution function (CDF) of the SE of a randomly

located UE, when using MMSE or L-MMSE combining in

the cell-free cases. At the 90% or 95% likely SE points, the

cell-free cases perform according to their level: Level 4 is by

far the best, while Level 1 gives the lowest SE but is anyway

preferable as compared to Cellular mMIMO. Looking at the

complete CDF curves, the situation is more complicated since

the Level 1 and Cellular curves are crossing the Level 2 and

Level 3 curves. Hence, UEs with better channel conditions

get better performance with these cellular methods. However,

Level 4 performs better than Cellular mMIMO for every UE.

Fig. 3 considers cell-free with L = 100 and N = 4 instead.

The general trends are the same as in Fig. 2 but Level 4

loses in performance due to the reduced macro diversity, while

Level 1 gains in performance since each AP can now suppress

interference locally, by using its four antennas. In fact, Level

1 is now comparable to Level 2 for the weakest UEs and

substantially better for the strongest UEs.

Finally, Fig. 4 considers the case N = 1 and MR combining,

which is the receiver processing advocated in the early papers

on Cell-Free mMIMO. More precisely, Level 2 was considered

in [2] and Level 3 in [7]. Compared to Fig. 2, the SE loss for

Cell-Free mMIMO is very large due to the poor processing. In

fact, Level 2 is outperformed by both small cells (Level 1) and

Cellular mMIMO for every single UE. This is different from

[2, Fig. 6], where Level 2 was the better choice for the majority

of UEs. The reason is that we use a better UE association

policy for the small cells, leading to more fair and competitive

results. Not even Level 4 performs better than cellular.

A. A Quick Look at the Fronthaul Signaling Load

The reported results show that a Level 4 implementation is

strongly preferred, otherwise, the SE gain over small cells is

low. The counterargument might be that such an implementa-

tion would require much more fronthaul signaling than Level

2 and Level 3, but that is typically not the case. By using the

numbers in Table I, Level 4 requires less signaling if

τcNL

(τc − τp)KL
=

τc
τc − τp

N

K
< 1. (30)

Since τc
τc−τp

≈ 1 and K ≫ N are typical in Cell-Free

mMIMO, Level 4 actually requires much less signaling. The

reason is that the received data signals constitute a much

larger number of scalars than the pilot signals. In fact, since

K ≥ N is typical, Level 2 and Level 3 actually increase the

fronthaul signaling by processing the N -dimensional vector yl

into the K-dimensional vector [š1l, . . . šKl]
T. Admittedly, this

comparison assumes that all scalars are shared with infinite

precision, while in practice it is plausible that the received

pilot signals require higher bit-resolution than the data signals.

On the other hand, [12] recently showed that the estimates can

be compressed rather well in Cell-Free mMIMO.

V. CONCLUSIONS

We compared Cell-Free and Cellular mMIMO and conclude

that cell-free can provide vastly higher SE for all the UEs, but

only if: (i) MMSE processing is used instead of MR; (ii) the

received signals and estimates are sent to a CPU instead of

being preprocessed at the APs (as previously advocated), since

the latter greatly reduces the SE and increases the signaling.
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