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The search for typical length scales, eventually diverging at a critical point, is a major goal for lattice
approaches looking for a continuum theory of quantum gravity. Within the simplicial Monte Carlo
approach known as causal dynamical triangulations, we study the spectrum of the Laplace operator to infer
the geometrical properties of triangulations. In some phase of the theory a discrete set of length scales
emerges, persisting in the infinite volume limit; such scales run as a function of the bare couplings,
consistently with a critical behavior around a possible second order transition.
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I. INTRODUCTION

The quest for a self-consistent quantum theory of gravity
is still far from being settled. Quantum field theory fails
in providing solutions which are renormalizable from a
perturbative point of view, i.e., with ultraviolet (UV)
divergences reabsorbed at all orders in the coupling
expansion by adding a finite number of counterterms
[1]; however, the possibility of finding a nonperturbative
solution has not yet been given up, a promising approach
being represented by the so-called asymptotic safety pro-
gram [2]. The program is rooted in the renormalization
group (RG) framework: in a few words, the idea is to find a
nonperturbative UV fixed point in parameter space, with a
RG-flow line stemming from it and reproducing the theory
of gravity at lower energy scales.
Consistent progress in this direction has been achieved

by analytic studies of the RG flow [3–6]. A complementary
approach is numerical: one considers a discretization of the
Euclidean path integral of the theory in configuration space,
suitable to be studied by Monte Carlo simulations, and
looks for possible critical points, i.e., for values of the bare
parameters where the correlation length, measured in units
of the elementary discretization scale, diverges. Such points
are candidate UV fixed points for a continuum limit of QG.
As usual in lattice field theory, one aims to eventually find
scaling regions around such points where different physical

lengths scale proportionally to each other as a function
of the bare parameters: apart from providing evidence of
the approach to the continuum, the scaling ratios will
contain information relevant to continuum physics (think,
e.g., of hadron mass ratios determined by lattice QCD
simulations).
A standard discretization is based on the Regge formal-

ism [7] and leads to the formulation known as dynamical
triangulations [8–12]: space-time configurations (triangu-
lations) are represented by the possible collections of flat
simplexes, glued together so as to reproduce different
possible geometries. In the particular approach known as
causal dynamical triangulations (CDT) [13–19], the causal
condition of global hyperbolicity [20,21] is additionally
enforced on triangulations by means of a space-time
foliation, with spatial slices characterized by a fixed top-
ology (usually S3), and typically periodic boundary con-
ditions (p.b.c.) in the time direction.
The path integral over triangulations is built by discretiz-

ing the candidate continuum action. In the absence of
matter fields, the simplest candidate is the Regge discre-
tized version of the Einstein-Hilbert action, which, after
uniformly fixing the lattice spacings and performing aWick
rotation to Euclidean space (see Ref. [13] for more details),
takes the form

SE ¼ −k0N0 þ k4N4 þ ΔðN4 þ N41 − 6N0Þ; ð1Þ

where N0, N4 and N41 count, respectively, the total number
of vertices, of generic pentachorons and of special penta-
chorons having four vertices on the same spatial slice,
while k4, k0 and Δ are free dimensionless parameters,
related to the cosmological and Newton constants Λ and G,
and to the time/space asymmetry of the building simplexes;
such a correspondence is of course just at the level of the
naive continuum limit since the connection with physical
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renormalized constants can be fixed only by the analysis
around the actual continuum limit, if any is found.
Triangulations are then sampled according to a distribution
∝ e−SE , with the caveat that k4 is usually traded for a target
volume V, by adding to SE a volume fixing term: such a
term does not change the original path integral weight
among triangulations sharing the same volume.
A rich phase structure has been found for CDT

[13,15,17,18,22], characterized by four different phases,
named A, B, CdS (de Sitter) and Cb (bifurcation). In the
B phase, VS is concentrated almost in a single slice, while
both the CdS and the Cb phase are characterized by a more
regular spatial volume distribution, localized in a so-called
“blob” of finite time extension; finally, phase A configura-
tions are characterized by multiple and uncorrelated peaks in
the spatial volume per slice VSðtÞ. The bifurcation phase is
further differentiated from the CdS phase by the presence of
two different classes of slices which alternate with each other
in Euclidean time [17,18,23]. The transition lines among
those phases are the candidate places where one can search
for a continuum limit, if they are second order: a candidate
transition, in this respect, is the one separating the Cb from
the CdS phase. Moreover, CdS is the candidate phase for a
correspondence with continuum QG, showing an effective
dimension four at large scales and a volume distribution
compatible with a de Sitter universe [13].
One of the major problems of the CDT program is to

find suitable observables, capable of capturing the essential
geometrical features around the transition. Progress has
been achieved by the study of diffusion processes on the
triangulations [24,25], leading to relevant information such
as their spectral dimension. A generalization along this
direction has been proposed in Ref. [26], consisting in the
analysis of the spectrum of the Laplace-Beltrami (LB)
operator computed on the triangulations.
The analysis of Ref. [26], limited to the LB operator

defined on spatial slices, has shown that the various phases
can be characterized by the presence (B) or absence
(A, CdS) of a gap in the spectrum, while the Cb phase shows
the alternance of spatial slices of both types, gapped and
nongapped, which for this reason can be named B-type and
dS-type slices. The presence of a gap indicates that spatial
slices are characterized by a high connectivity and can be
interpreted geometrically as a universe with an infinite
dimensionality at large scales, whose diameter grows at
most logarithmically with VS. On the contrary, the closing
of the gap indicates the emergence of an extended universe,
with a finite dimensionality at large scales. In the Cb phase,
the alternating slices share similar geometries up to some
finite length, then differentiate at larger scales. Moreover,
the value of the gap seems to change continuously, moving
from the B to the Cb phase, approaching zero towards the
CdS phase.
The findings reported above, and the fact that the gap

of the LB operator spectrum is a quantity with mass

dimension two (an inverse squared length), suggest that
the gap can be used as an order parameter for the Cb − CdS
transition and, if it is second order, to characterize the
critical behavior around it. Having this in mind, the purpose
of this study is to put the strategy of Ref. [26] on firmer and
more quantitative grounds. One should first demonstrate
that the gap is actually a good order parameter by studying
its thermodynamical limit, proving it is strictly zero in one
phase and nonzero in the other. Once this is done, one can
study its possible critical behavior around the transition:
we see that one can actually find several length scales, all
showing a similar scaling.

II. NUMERICAL SETUP

We have investigated CDT with p.b.c. in the Euclidean
time direction and an S3 topology for spatial slices.
Configurations have been sampled proportionally to
expð−SEÞ by means of a Metropolis-Hastings algorithm,
consisting in a set of local moves (see Ref. [13] for more
details). Here Nt ¼ 80 total space-time slices have been
taken in all simulations, and the total spatial volume
VS;tot ¼ N41=2 has been fixed by adding to SE a term
ΔS ¼ ϵðN41 − N̄41Þ2, with ϵ ¼ 0.005, then selecting only
configurations with N41 ¼ N̄41.
The eigenvalues of the discretized LB operator have been

computed on the spatial slices of those configurations,
consisting of sets of glued tetrahedra. As in Ref. [26], the
discretization consists of a linear operator L acting on real
functions defined on the vertices of the graph dual to the
triangulation. Since any tetrahedron is adjacent to exactly 4
neighboring tetrahedra, dual graphs are 4-regular (each
vertex is connected with 4 other vertices), so L can be
written as L ¼ 4 · 1 − A where A is the so-called adjacency
matrix, having nonzero unit elements only between pairs
of connected vertices. Therefore, L is a sparse matrix, and
its eignvalues have been computed by means of the
“Armadillo” C++ library [27] with Lapack, Arpack and
SuperLU support.
The smallest eigenvalue, λ0 ¼ 0, always corresponds to a

uniform eigenfunction. Then, λ1 defines the gap of the
spectrum. We will study λ1 and a few other lowest lying
eigenvalues as a function of the spatial volume VS, trying to
extrapolate the VS → ∞ (thermodynamical) limit for each
of them. For a regular, extended geometry one expects
λn → 0 in the thermodynamical limit for any finite n, in
particular, λn ∝ 1=D2 where D is the diameter of the graph
(maximum over all pairs of vertices of the minimum path
length connecting the pair).
We have performed sets of simulations at fixed k0 and

different values of Δ, chosen so as to stay in the Cb phase
while approaching the CdS phase; moreover, different
values of N̄41 have been considered to explore the impact
on results of the total spatial volume. A few simulations in
the B phase or in theCdS phase have also been performed to
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have a comparison for the infinite volume behavior of the
lowest lying eigenvalues in those cases.

III. RESULTS

We start by analyzing the VS → ∞ limit of the lowest
lying part of the LB spectrum in the CdS phase. We have
considered a simulation performed for k0 ¼ 0.75, Δ ¼ 0.7,
with the total spatial volume fixed to VS;tot ¼ 4104 (40 K).
Since for each configuration most of the spatial volume is
distributed over many connected slices forming the so-
called blob, the volume VS of a single spatial slice is
regularly distributed over a wide range going up to a few
thousand tetrahedra. Because of our finite sample, consist-
ing of about 500 configurations, this range has been divided
into regular bins of volumes, so as to have sufficiently
populated subsamples in each bin. Average values hλni
have then been computed over each bin: results for n ¼ 1,
3, 5 are reported in Fig. 1; statistical errors have been
computed by properly taking into account autocorrelations
among subsequent triangulations. For a few bins, we also
report results obtained by fixing a different global volume
VS;tot, to check that this has no impact on the study of the
VS → ∞ limit.
In Fig. 1 we also report best fits to a power law dictated

by a large distance effective dimension dEFF,

hλni ¼ AnV
−2=dEFF
S ; ð2Þ

all yielding χ2=d:o:f: ∼ 1 with dEFF ≃ 1.6, in agreement
with the large scale spectral effective dimension of spatial
slices measured in previous studies [26,28]; similar results
are obtained for n up to a few tens. This confirms that, in
the CdS phase, the gap of the LB operator closes in the
thermodynamical limit, with a scaling dictated by dEFF.

The situation is quite different in phase B. In this case,
most of the total spatial volume is found in a single slice,
so that, in order to study the VS → ∞ limit of the spectrum,
we had to perform simulations at different values of
VS;tot ¼ 3 K, 4 K, 5 K, 6.5 K, 8 K. Results for hλni on
this single slice are reported, for some n, in Fig. 2; VS in
this case is the average volume of the maximal slice;
statistical errors are reported but are not appreciable. In this
case, a smooth infinite volume extrapolation is obtained by
considering simple power corrections in V−1

S :

hλniVS
¼ hλni∞ þ an

VS
þ bn
V2
S

ð3Þ

and χ2=d:o:f: ≃ 1 is obtained only allowing for bn ≠ 0. As
already expected from the results of Ref. [26], the extrapo-
lated values hλni∞ are nonzero, as shown in Fig. 2. What is
more interesting is that the extrapolated values for different
values of n do not coincide; i.e., in the thermodynamical
limit the spectrum above the gap seems to be discrete,
defining a hierarchy of length scales for the geometry of
the B phase. Further evidence comes from the behavior of
the volume-normalized spectral density, which becomes
smaller and smaller as VS → ∞ in the region above the gap,
as expected for a discrete spectrum.
Our interest is mostly focused on the intermediate

phase Cb. As discussed above, the two classes of alternat-
ing slices differ mostly at large scales. This is enlightened
by the scaling profiles where the eigenvalues λn of the LB
operator are plotted versus the scaling variable n=VS:
such profiles provide information about the effective
dimensionality of spatial triangulations at different scales
[26] (smaller n=VS corresponding to larger scales),
2=dEFF ¼ d log λn=d logðn=VSÞ. In particular, the develop-
ment of a gap in the VS → ∞ limit corresponds to an
infinite dimensionality at large scales, induced by a high
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FIG. 1. Average eigenvalues of the LB operator on spatial slices
versus 1=VS in phase Cds (k0 ¼ 0.75, Δ ¼ 0.7), mostly for
VS;tot ¼ 40 K. We also report best fits to Eq. (2).
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FIG. 2. Average eigenvalues versus 1=VS in phase B (k0 ¼ 1.0,
Δ ¼ −0.2). Data points at 1=VS ¼ 0 have been extrapolated
according to Eq. (3).
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connectivity of the dual graph. In Fig. 3 we report the
profiles obtained in the Cb phase at k0 ¼ 0.75 for three
different values of Δ ¼ 0.2, 0.4 and 0.6: the point where
two different profiles emerge moves to smaller values of
n=VS as Δ approaches the transition to the CdS phase,
where the separation in two classes disappears. We have
computed hλniðVSÞ separately for the two classes of slices,
starting from VS large enough to make the separation
unambiguous as in Fig. 3. Figure 4 shows an example of
results obtained for k0 ¼ 0.75 and Δ ¼ 0.4 on dS-like
slices: an extrapolation as in Eq. (2) works well in all cases,
with χ2=d:o:f: ≃ 1, confirming the absence of a gap.
Results for B-like slices, reported for the same param-

eters in Fig. 5, point instead clearly to hλni∞ ≠ 0 in the
VS → ∞ limit. Extrapolated values in Fig. 5 are the result
of a fit to Eq. (3) and include systematic errors related to
the choice of the fitted range or the inclusion/exclusion
of 1=V2

S corrections. Even taking these systematics into

account, hλni∞ values for different n are not compatible,
confirming that also for B-like slices the lowest lying part
of the spectrum is likely discrete even in the thermody-
namical limit, as for the B phase.
The main point of our investigation is to adopt the

nonzero hλni∞ ofB-like slices as order parameters approach-
ing zero at the Cb − CdS transition and probing a possible
critical behavior around there. To that purpose, we per-
formed simulations along two different lines with fixed k0
(k0 ¼ 0.75 and k0 ¼ 1.5), crossing the Cb − CdS transition
line in different points, as sketched in Fig. 6. In Fig. 7 we
report some hλni∞ (n ¼ 1 and 5) as a function of Δ along
these two lines; volumes where B-like and dS-like slices are
clearly distinguished grow approaching the CdS phase, so
that for some values of Δ, which are excluded from Fig. 7,
we could not reliably perform the VS → ∞ limit.
On dimensional grounds, different hλni∞ correspond to

different inverse squared lengths, which around a critical
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FIG. 3. Scatter plot of λn versus n=VS for slices with VS > 200
from sample configurations at k0 ¼ 0.75 and three values of Δ in
the Cb phase.
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FIG. 4. hλniðVSÞ for dS-like slices in the Cb phase (k0 ¼ 0.75,
Δ ¼ 0.4, VS;tot ¼ 40 K). We report also best fits to Eq. (2).
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0 1 2 3 4 5
k

0

-0.2

0

0.2

0.4

0.6

Δ

0 1 2 3 4 5
k

0

-0.2

0

0.2

0.4

0.6

Δ

FIG. 6. Sketch of the phase diagram of CDT with S3 slice
topology. The isolated points correspond to the simulations
performed (total volume not shown); The points with error bars
are the quantitative estimates for the corresponding critical values
of Δc obtained in this study and reported in the text.
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point should scale proportionally to each other. Based on
that, we have tried a fit to the scaling formula

hλni∞ ¼ AnðΔc − ΔÞ2ν ð4Þ

where only the An coefficients depend on n. A combined
fit, including n ¼ 1; 5, yieldsΔc ¼ 0.635ð14Þ, ν ¼ 0.55ð4Þ
for k0 ¼ 0.75 (χ2=d:o:f: ¼ 31=26), and Δc ¼ 0.544ð36Þ,
ν ¼ 0.82ð12Þ for k0 ¼ 1.50 (χ2=d:o:f: ¼ 6=14). Similar
and consistent results are obtained including different
values of n, or if the eigenvalues are fitted separately;
some tension emerges only when eigenvalues with n ≳ 10
are included. Our best fits suggest that the index ν could
change along the transition line; however, we stress that a
global fit in which ν is set equal for both k0 works equally
well, yielding ν ¼ 0.59ð4Þ, Δcðk0 ¼ 0.75Þ ¼ 0.656ð15Þ,
Δcðk0 ¼ 1.5Þ ¼ 0.479ð10Þ with χ2=d:o:f: ¼ 47=41.

IV. CONCLUSIONS

We have studied the spectrum of the LB operator defined
on the foliation slices of CDT, showing that the B and the

Cb phases of the theory are characterized by a discrete set
of lowest eigenvalues, persisting in the thermodynamical
limit. They can be interpreted as a set of dynamical mass
scales, characterizing, for instance, the propagation of
massless scalar fields in the sampled geometries.
When the appropriate infinite volume limit is taken,

these mass scales appear to vanish as the de Sitter phase is
approached, thus permitting us to determine the location of
the transition from the Cb to the CdS phase. It is interesting
to stress that such a determination, which is reported in
Fig. 6 for the two explored values of k0, is compatible with
what can be found by the analysis of other parameters,
based on counting the coordination number of triangula-
tions, which have been introduced and used in previous
studies [18,29].
The novelty of the quantities analyzed in this study is

that they vanish exactly in one phase, as one would expect
for an order parameter. Moreover, these scales have a
dependence on the bare couplings which is consistent with
a common critical behavior, i.e., governed by a common
critical exponent: this is exactly what one would expect for
a lattice field theory approaching the continuum limit.
We stress that such length scales are still not of direct

physical relevance. However, our findings create a clear
path for future steps along the CDT program. If analogous
length scales are defined on the other side of the transition,
in the CdS phase, one could then check if they scale as a
function of the bare parameters, similarly to what was
found in this study: that would provide clear evidence for
the existence of a critical point.
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