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Abstract—The adoption of Network Function Virtualization
and Software Defined Networking technologies allow network
infrastructure operator flexibly orchestrating resources to pro-
vide tenants with their own virtual network. However, access
to computing and network resource management APIs is typi-
cally allowed only within the infrastructure domain and rarely
disclosed to tenants for security and performance reasons. This
may severely limit tenants capability in coping with demands of
application-tailored network services, including Service Function
Chaining (SFC). While the literature extensively addressed the
challenges of SFC in the infrastructure domain, tenant-side
SFC management is quite unexplored yet, although discussed
also by a standardization group. This work proposes an SFC
platform (called SFCLola) providing tenants with a latency-
aware SFC management while minimizing support required
from infrastructure operators. The platform encompasses two
main levels: an end-to-end chain management level featuring
a VNF selection algorithm and a forwarding mechanism that
can be programmed and enforced within the tenant network of
VMs without requiring access to the switches at the network
infrastructure data plane. SFCLola has been implemented as
software prototype and experimentally evaluated on a multi-DC
infrastructure provided by the 5GINFIRE project.

Index Terms—Service Function Chaining, optimization, Vir-
tual Network Function, tenant, Software Defined Networking,
intent interface

I. INTRODUCTION

Orchestration of virtual resources and network programma-

bility brought by Network Function Virtualization (NFV)

[1] and Software Defined Networking (SDN) [2] allow to

create multiple virtual tenant networks over a shared physical

infrastructure (Network Function Virtualization Infrastructure

- NFVI), whose resources are managed and owned by multiple

operators. Each virtual network is logically isolated and can

be dedicated to serve different sets of services with diverse

application-specific requirements [3]. Such an approach may

also assume the flavour of “network slicing”, where a network
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slice consists of a set of infrastructure resources and service

functions to meet the needs of an industry vertical or a service.
Such a flexible and application-oriented use of resources

implies a multi-domain architecture, distinguishing tenant and

infrastructure network domains, where a tenant domain “pro-

vides VNFs, and combinations of VNFs into Network Services,

and is responsible for their management and orchestration,

including their functional configuration and maintenance at

application level”, whilst the infrastructure network is the

“domain within the NFVI that includes all networking that

interconnects compute/storage infrastructure” [4]. In this work

with the term “tenant” we refer to the definition provided

in [5]: “whatever entity (person, organizational unit, orga-

nization, etc.) uses the NFVI to provide or manage network

services”.
The extent to which the infrastructure provider should

expose capabilities for network slice management and setup of

dedicated services, such as VNF instances and service chain

management is under discussion (e.g., [6]). In this context,

access to computing and network resource management APIs

is typically allowed only within the domain of infrastructure

operators and rarely disclosed to tenants for security and

performance reasons [7]. This may severely limit tenants’

capability in managing application-tailored network services,

including Service Function Chaining (SFC).
Indeed, the NFV ETSI Industry Specification Group (ISG)

[5] highlights two main architectural options for service chain-

ing in a virtualized infrastructure:

• SFC defined in the NFVI domain. The service chain

control features (i.e., SDN Controller or VIM networking

functions) are deployed in the NFVI.

• SFC defined in the tenant domain. This implies that

service chains are defined on top of a virtual network

of nodes in the tenant domain and traffic control features

and data plane forwarding capabilities are controlled by

the tenant. This may be implemented leveraging SDN

control capabilities and switching/forwarding features im-

plemented as VNFs in the tenant domain but, depending

on infrastructure operators’ service offering and security978-1-5386-9376-6/19/$31.00 ©2019 IEEE



policies, may not be supported by SFC-oriented capabil-

ities provided by the NFVI (e.g. OpenStack SFC API).

While a huge amount of research work has been devoted to

SFC in the NFVI domain [8], [9], SFC in the tenant domain

is quite unexplored. Wang et al. [7] and Muñoz et al. [10]

propose virtualized SDN services to tenant, which, however,

are used to program switches in the NFVI.

In this work we propose an SFC platform (called SFCLola)

providing tenants with latency-aware SFC management while

minimizing the requirements on the infrastructure and, conse-

quently, on the interaction with NFVI management features.

More specifically, the contribution of the work is threefold:

• an SFC application (SFCLola) managing chain creation

and deletion requests. The chain setup leverages an opti-

mization algorithm that selects VNF instances available

from different DCs (data centers) to minimize an end-

to-end latency estimated considering both processing and

network latency and sends appropriate chaining instruc-

tions to forwarding devices SFCLola can interact with

SFC API offered by Virtual Infrastructure Managers

(VIM), such as OpenStack SFC API or custom intent-

based API (as documented in our previous work [11]).

In this work we investigate the case where SFC has to be

implemented within the tenant domain (see next point).

• a forwarding mechanism to manage chains in the tenant

domain. Chaining instructions are implemented as level 3

routing within the virtual network of the VMs managed

by the tenant, exploiting Linux policy routing capabilities.

In practice, an SFC-aware proxy, called Virtual Flow

Forwarder (VFF), is used to steer traffic across VNFs

along a chain. The VFF is a Java application that exposes

intent-based REST API to receive chaining instructions

and translates them into flow forwarding rules enforced

through Linux policy routing capabilities.

• Finally, this solution has been implemented as a software

prototype and experimentally validated on the multi-DC

infrastructure provided by the 5GINFIRE project [12].

It is worth noticing that, although not relying on OpenFlow,

our approach is inspired by the SDN paradigm in that:

i) control (i.e., SFCLola application) is kept separate from

forwarding software (i.e., VFF), ii) programmability is realized

through REST APIs at both control and forwarding levels,

and iii) an abstract network topology is maintained for taking

control decisions.

The proposed solution relies on IPv4 forwarding capabilities

to minimize requirements on NFVI. However, the platform

is modular and can be extended with alternative forwarding

solutions, such as IPv6 Segment Routing [13].

The paper is structured as follows. Section II discusses

related work. Section III describes SFCLola design and im-

plementation details, including the adopted VNF selection

algorithm and the forwarding mechanism. In Section IV we

describe the methodology of experimental evaluation and

the topology of the experiment carried out on top of the

5GINFIRE testbed facilities. Section V reports the results

of the experiment, including a comparative evaluation with

alternative VNF selection strategies. Section VI concludes the

paper with a discussion on the proposed approach and future

research directions.

II. RELATED WORK

Recently, several works have addressed the problem of

flexibly management of specific service/application traffic,

by proposing SFC solutions for flow classification, policy

management and traffic steering [8], [11], [14]. Such solutions

typically rely of network programming capabilities in the

network infrastructure (i.e. network hypervisors, infrastructure

SDN controllers, etc.). However, management and access to

APIs of infrastructure SDN controllers is typically managed by

infrastructure operators for security and performance reasons,

thus offering poor support to tenants’ demands of network

functions and application-tailored network services [7].

As discussed in [5], several options exist for integrating

SDN control functions in an NFV architecture. Moreover,

ETSI propose a hierarchical network control architecture dis-

tinguishing infrastructure and tenant controllers.

Although enabling tenant-side SFC is key for the flex-

ible management of application-specific network services,

this topic has been rarely investigated yet. Wang et al. [7]

introduce a “Bring Your Own Controller” (BYOC) paradigm

and propose BYOC-VISOR, an SDN virtualization platform

that provides customized and scalable SDN services to cloud

users. Muñoz et al. [10] propose an integrated SDN/NFV

management and orchestration architecture for multi-tenant

transport networks where tenant SDN controllers are deployed

as VNFs in DCs. However, neither [7] nor [10] address tenant-

side SFC management and both approaches relies on the

integration with NFVI management features.

Recently, some authors have begun developing and ex-

perimenting SFC based on the IPv6 Segment Routing (SR)

programming model [15]. SR is a routing architecture that is

being developed within the Internet Engineering Task Force

(IETF) [13]. Instead of using traditional destination-based

hop-by-hop forwarding, SR forwards packets towards their

destination by specifying a list of way points called segments.

This mechanism can thus be used to steer packets through

VNFs. SR implementations exist in the MPLS [16] and IPv6

data planes [17], [18]. SR is a promising technology for

SFC support, but we did not adopt it in this work to carry

out short-term experiment activities using mature forwarding

technologies and minimizing technological requirements on

the infrastructure.

III. SFCLOLA ARCHITECTURE

This section describes the main concepts of the SFCLola

architecture. First we introduce the reference service function

chaining use case, we sketch the adopted solution strategy and,

then, we describe the main components of SFCLola.

The goal of SFCLola is to handle SFC requests within a ten-

ant’s virtual network spanning multiple DCs. Our reference use

case consists of multiple instances of different types of VNFs



deployed in virtual networks managed by the tenant and hosted

at multiple and geographically distributed sites. SFC requests

are specified by clients at a high level of abstraction, i.e., a

request should include the information for flow classification

(e.g., source and/or destination IP and address, protocol type,

etc...) and the specification of the chain in terms of ordered

sequence of VNF types and related requirements (maximum

end-to-end latency, minimum bandwidth).

The problem we address is the setup of the requested ser-

vice chain within a tenant virtual network, possibly spanning

multiple DCs, by, first, selecting VNF instances that minimize

end-to-end latency, instructing the data plane accordingly,

and, finally, enforcing chaining instructions. As mentioned

above, SFC management within the tenant domain implies

that traffic routing along chained VNFs should be enforced

by programmable forwarding elements that manage traffic

flow routing in the tenant data plane, without relying on

management capabilities at the NFVI level.

For the sake of clarity, we consider the example of a request

chain from source node SRC to destination node DST, and an

ordered sequence of VNF types (VF-1, VF-2, VF-3) (shown

in the top side of Fig. 1. The proposed strategy consists of two

main steps: VNF Selection and Service Function Chaining.

VNF Selection. The end-to-end SFC request is handled

by the SFCLola application that, using an abstracted view

of the multi-DC topology, selects the VNF instances that

should realize the target service chain (spanning multiple DCs,

where appropriate), using an optimization algorithm. As shown

in Fig. 1, a possible choice is selecting VF-1 instance in

DC1 and VF-2 and VF-3 instances in DC2. SFCLola then

prepares and sends appropriate forwarding instructions to each

concerned DC. The forwarding instructions dispatched by

SFCLola defines a logical path (blue dotted line in Fig. 1).

As explained in the following item, in this work we use a

Service Function Chaining mechanism based on programming

forwarding nodes leveraging linux policy routing. However,

the application could use traditional APIs, such as OpenStack

SFC APIs, if exposed by the provider. A previous release of

the VNF Selection application uses intent-based SFC APIs

offered by NFVI providers [11].

Service function chaining. In order to minimize inter-DC

connection requirements, the tenant virtual network is an

interconnection of L3 networks. As regards SFC, a DC may

be responsible of a portion of a chain. In our architecture the

forwarding action is implemented as a software component

executed by a VM, called Virtual Flow Forwarder (VFF). A

VFF acts as a forwarding device in the overlay network, i.e.,

all the packets exiting from/directed to a VNF node has to be

forwarded to the VFF, which decides the next hop, according

to the installed forwarding rules. The VFF offers an intent-

based REST API for creating or deleting service chains or

parts of service chain within a DC. The logical path forwarding

instructions sent by SFCLola are mapped by the VFF into a

L3 routing path in the virtual network (red line in Fig. 1).

Hereafter we describe the SFCLola application, the VNF

Selection algorithm and the VFF.

VF-1 VF-2 VF-3

VFF-DC1

SRC

VF-1 VF-2 VF-3
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Fig. 1. SFCLola forwarding mechanism in a tenant network in a 2-DC
environment. The blue dotted line represents the logical path to implement a
service chain as decided by SFCLola (VF-1 in DC1 and VF-2 and VF-3 in
DC2), while the red path represents the real path enforced by a VFF element
within each intra-DC virtual network.

A. SFCLola application

SFCLola is a JAVA application exposing REST APIs for

managing service chains through Create Read Update and

Delete (CRUD) operations. In order to accomplish service

chain requests, it leverages an optimization algorithm that

selects VNF instances available from different clouds that

minimize the end-to-end latency estimated considering both

processing delays and inter-DC network delay.

The algorithm (described in Section III-B) takes its decision

based on an abstracted view of the underlying topology, thus

also taking into account the case that the NFVI provider

decides to expose only a subset of topological and resource

information (as discussed by ETSI in [19]). This abstracted

view includes measured inter-DC network latency values for

each pair of DCs and, for each DC, the list of VNF instances

available and their parameters (i.e., VNF type, processing

capacity, measured traffic input rate). We suppose this set of in-

formation is periodically provided by the infrastructure and/or

measured within the tenant domain (see Section IV for the

description of a prototype experiment). These measurements

are influenced and reflect possible events at the infrastructure

level (i.e. VM migration, availability of VNF instances),

therefore the frequency to which monitored information are

collected and polled by SFCLola is a key design choice.

If it is possible to satisfy the request, the algorithm will

provide an optimal solution as output. Starting from the

optimal solution, SFCLola estimates the end-to-end latency

and, if this value exceeds the maximum latency tolerated

by the request, the request is rejected and an error message

is returned to the client. If the solution encompasses more

than one DC, SFCLola splits the forwarding instructions and

sends to each DC a chain specification composed by: flow

classification information, the sub-chain to be realized within



the DC (e.g. VF-2 and VF-3 in DC2) and appropriate ingress

and egress connection points towards external DCs if the flow

does not originate/terminate in that DC (e.g. DC2 will receive

the target flow from DC1 connection point).

B. VNF Selection algorithm

The adopted optimization algorithm, already presented in

[20], solves a Resource Constrained Shortest Path problem on

an auxiliary layered graph properly defined, which is known

to have pseudo-polynomial complexity [21]. Specifically, a

layered graph is built for each request as exemplified in Fig.2.

The graph contains a layer for each VNF in the request and

two extra layers, i.e., layer zero containing the source node s
r

of the request and the last layer containing the destination node

d
r of the request. Layer i, i.e., an intermediate layer different

from the first and the last one, contains all those DCs able to

operate the i-th VNF of the chain. Thus, the layered structure

of the graph ensures that the order of VNFs specified in the

request is preserved. Arcs in the auxiliary graph only link

nodes belonging to two consecutive layers. Specifically, there

are arcs between the source node at layer zero and the nodes of

layer one corresponding to DCs hosting instances of the first

virtual function in the request. Then, there are arcs connecting

nodes in the layer corresponding to the last virtual function of

the request with the destination node, and arcs between a node

in layer i to a node in layer i+ 1 if the assignment of VNFs

i and i + 1 in the request to the DCs corresponding to such

nodes is feasible. Additional constraints (e.g., incompatibility

constraints between DCs and VNFs or maximum allowed

network latency on the link between two specific DCs) can

be taken into account and properly enforced during the graph

construction phase. Once the auxiliary graph has been defined

for a given request, the problem of satisfying the request at

minimum cost can be solved by finding a constrained shortest

path on such a graph from the source node to the destination

node. By construction, such a path visits only one node in

each layer and the node visited in each intermediate layer i

corresponds to the DC hosting the i-th VNF.

The optimization problem is thus formulated mathemati-

cally by means of 0-1 decision variables corresponding to the

arcs of the auxiliary layered graph. The constraints guarantee

that the design variables define a path starting from the source

node, ending in the destination node and visiting exactly

one node in each intermediate layer. Additional constraints

guarantee quality of service requisites on the whole path,

such as for example those imposing that the total latency

experimented along the whole path does not exceed the

maximum latency tolerated by the request. For each request,

the objective function in the optimization problem accounts for

the minimization of the estimated end-to-end latency which is

given by both processing and network latency. The cost of

the path connecting the source and the destination nodes of a

request is given by the sum of the latency at the intermediate

nodes and on the used network links.

sr

Level 1

DC0

DC1

DC2

DCn

Level 2

DC0

DC1

DC2

DCn

Level l

DC0

DC1

DC2

DCn

dr

Fig. 2. Layered auxiliary graph for request r

C. Virtual Flow Forwarder

The VFF is implemented as a software running on a VM,

which exploits Linux kernel routing capabilities and offers

a set of REST APIs for installing or deleting forwarding

rules. The REST API offered by the VFF has been designed

as an intent-based interface, so that the client only provides

functional specifications of the actions to be accomplished.

SFC instructions are delivered as JSON messages encoding

abstract forwarding instructions specifying the ids of VNF

instances to be chained within that DC, antecedent hop (i.e.

source or previous DC) and subsequent one (i.e., next DC

or final destination). The VFF translates these instructions

into forwarding rules. In the current implementation flows

can be classified through a combination of the following

parameters: source/destination IP addresses and ports and

transport protocol. For instance, a request for creating a new

chain is specified in terms of: flow classification information,

ordered sequence of VNF instances to be chained (identified

by host’s name or public IP), optional ingress and egress

connection points towards VFFs in external DCs.

Since the chaining sequence across VNFs is enforced by

the VFF, which is the only element in an intra-DC overlay

network aware of service chaining, endpoint nodes and VNFs

must be configured to send their traffic to the VFF. Then, the

VFF will forward the packet flow to the next hop in the chain,

no matter the IP destination of the end-to-end service.

Traffic steering through VNFs is achieved through the joint

use of Linux policy routing [22] and the packet marking

capability provided by the netfilter framework, which extends

the traditional destination-based routing strategy. More specif-

ically, in each VFF node we set netfilter rules so that packets

are marked based on a combination of filters (e..g., flow

classification information, incoming interface, source MAC

address). Marks are used by the Linux kernel to select the

appropriate routing tables, according to previously configured

policy routing rules (i.e., routing tables are associated to marks

through the fwmark parameter). As a prerequisite we create

routing tables for each VNFs in the VFF DC, so that packets

are forwarded to that VNF.
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Fig. 3. Experiment topology for SFCLola evaluation on the 5GINFIRE
infrastructure: a tenant network consisting of 33 VMs (divided into endpoint
nodes, VNFs and VFFs) on a multi-site and multi-operator environment has
been reproduced using the facilities of four different 5GINFIRE testbeds
(5TONIC, 5TONIC-bis, ITaV, Bristol)

SFCLola sends JSON messages to VFF through REST

APIs to ask creating or deleting (portions of) service func-

tion chains. The VFF translates this request into the inser-

tion/deletion of the appropriate set of flow marking rules in

PREROUTING (see example in 1) forcing the use of routing

tables so to steer the flow through the desired VNFs. This

implies that given a chain, or a portion of a chain, of length

n to be realized inside a DC, if the final destination node is

within the DC network n − 1 flow marking rules are added,

n rules are added otherwise (i.e., the final next hop is a VFF

in another DC).

When the chain implementation consists of a sequence of

VNFs instantiated in different DCs, the delivery of packets

to another DC is managed at VFF level by sending packets

with destination to the VFF of the external DC through IPinIP

encapsulation. This allows easily building a logical tunnel

between the two VMs hosting the VFFs. Moreover, netfilter

allows easily marking flows coming from an IPinIP interface.

1 −A PREROUTING −t mangle
−s 1 0 . 4 . 3 2 . 1 2 / 3 2 −d 1 0 . 1 5 4 . 8 . 1 1 5 / 3 2 −p udp
−m mac −−mac−s o u r c e FA : 1 6 : 3 E : 5 F : 0A: 8 4
−−d p o r t 9000 −j MARK −−s e t−mark 1

2 −A PREROUTING −t mangle
−s 1 0 . 4 . 3 2 . 1 2 / 3 2 −d 1 0 . 1 5 4 . 8 . 1 1 5 / 3 2 −p udp
−m mac −−mac−s o u r c e FA : 1 6 : 3 E : 5 F : 0A: 8 4
−−d p o r t 9000 −j RETURN

Listing 1. Example of iptables rules to steer the traffic going from 10.4.32.12
to 10.154.8.115 and coming from the VNF with MAC FA:16:3E:5F:0A:84
through the VNF associated with mark 1

Listing 1 shows a minimal set of iptables rules that are

produced by a VFF upon a chain creation request. These

rules are installed so to classify the traffic and mark the

corresponding packets. Each mark is associated with a specific

routing table allowing the routing module to forward the traffic

TABLE I
VNF DEPLOYMENT IN 5GINFIRE MULTI-DC TOPOLOGY

VF
DC

5Tonic ITaV Bristol 5Tonic-bis

VF-1 X X

VF-2 X X

VF-3 X X

VF-4 X X

VF-5 X X

VF-6 X X

VF-7 X X

VF-8 X X

VF-9 X X

VF-10 X X

VF-11 X X

VF-13 X X X

VNF capacity 100 Mbps 150 Mbps 80 Mbps 120 Mbps

to the correct next hop (i.e. next VNF) in the chain.

IV. EXPERIMENT METHODOLOGY

In this section we describe the methodology and the setup

of the experiment on the 5GINFIRE infrastructure facilities

to experimentally evaluate the SFCLola solution. 5GINFIRE

[12] is a 5G NFV-enabled experimental testbed consisting of

multi-site cloud and vertical-specific facilities endowed with

open source Management and Orchestration (MANO) features

and a set of tools for the automated instantiation, deployment

and lifecycle management of experiments and resources.

A. Experiment Topology

We deployed 33 VMs on 4 logical networks provided

by the following testbeds: 5TONIC (providing 2 networks,

called 5TONIC and 5TONIC-bis, very close to each other),

ITaV in Portugal and the University of Bristol’s 5G testbed.

The logical topology is shown in Fig. 3. On each DC we

instantiated a VFF, an endpoint node capable to be used both

as traffic source or destination and a set of VNFs, as specified

in table I. We used a VNF emulation software that delays

the incoming traffic proportionally to the traffic rate and a

custom parameter (named Processing Capacity) representing

the computational power of the VNF. At the bottom of table

I the processing capacities (in Mbps) of the deployed VNFs

are summarized (every VNF belonging to the same DC has

the same capacity but VNFs of the same type in different DCs

have different capacity). Monitoring information required by

the algorithm is measured through ad-hoc developed software

components, deployed in the tenant domain, that periodically

post measurements on the Gnocchi database. SFCLola uses

the REST APIs provided by Gnocchi to retrieve metrics.

Further details on measured QoS (latency) of inter-DC links

are provided in the Appendix.

B. Metrics

The reference workflow of the experiment activities consists

in creating a set of chain requests that are sent sequentially to

SFCLola, waiting an interval long enough to let the monitoring



system sense the changes and, then, collect the measurements

on the infrastructure to evaluate the following metrics:

• Computation time: time spent by the optimization algo-

rithm to handle a VNF selection request.

• VFF load: we analyzed the impact of chain setup and

flow forwarding at VFF tracking CPU load and incoming

traffic rate variations.

• E2E latency: time encompassed by a packet going from

source node to the its final destination (through the VNF

chain in case of an active chain).

• Latency estimation error: error between the estimated

latency, used by the VNF selection algorithm, and the

end-to-end latency measured after the chain setup and

during traffic flow.

V. RESULTS

This section describes the main results of the experiment

activities. First, we report on the results of the tests measuring

the impact on VFFs resources by varying the load in terms of

flow routing rules and incoming traffic rate. Then, we describe

a set of tests for evaluating the error in the estimation of

the end-to-end latency used by the VNF selection algorithm.

Finally, we compare the adopted VNF selection algorithm with

two baseline strategies: a round robin approach and a greedy

one.

A. VFF Load

We performed a set of tests to monitor the CPU load, while

progressively adding chains and then sending the correspond-

ing traffic flows. As described above, a new chain request

requires a set of rules to be installed at concerned VFFs. For

each chain, the number of rules to be installed is proportional

to the number of hops (i.e. selected VNFs instances on the

DC for implementing the chain). Then, when the traffic flows

have started, the VFF CPU has to manage incoming packets

by performing rule matching against packet header and then

by forwarding packets. The experiment topology and chain

requests have been configured so to run the experiment in a

4-DC setting, where only one VFF in one DC is the monitored

one (we selected the one in ITaV testbed) and in charge

of the whole steering task, while the other DCs host the

traffic sources (so that also the tunneling mechanism is always

solicited). In table II we show the results of a test conducted

with a set of 30 chain requests, each one composed by 4 VNFs

and with a fixed bandwidth of 1 Mbps per traffic flow. The

first row shows the CPU load (min, max and average values)

measured before the experiment (system in idle status). The

experiment distinguishes three main phases: rule installation,

traffic steering and rule deletion.

In this experiment, 240 rules are installed, 2 for each hop

in the chain (one rule for traffic steering, one for exiting

the rule evaluation procedure). The maximum CPU load is

around 7% and is reached when flow rules are installed (phase

1). The second row reports the CPU load values referring

to the time interval when all traffic flows are active and no

rule management operation is performed (phase 2). The CPU

TABLE II
CPU LOAD AND BITRATE AT VFF WITH 30 CHAINS (4 VFS, 1 MBPS)

CPU load Incoming bitrate (Mbps)

Timeinterval min max avg min max avg

Idle 0.10% 0.65% 0.28% 0.014 0.017 0.015
Phase 1 1.00% 7.20% 3.04% 0.01 145.0 79.1
Phase 2 2.87% 4.54% 3.40% 134.6 165.5 151.0
Phase 3 - 18.32% - - - -

Phase 1: installations of the flows (1 request each 5 seconds), phase 2: mere
traffic steering, i. e. all traffic flows running together (for 60 seconds), phase

3: deletion of the flows
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Fig. 4. CPU load at VFF due to chain installation and traffic steering with
30 chains (4 VNFs, 1 Mbps)

load is almost stable around 3,4%. We also traced the CPU

load measured around the traffic peak occurrence (165 Mbps),

which is around 2,9%. Fig. 4 provides more details on the

bitrate and CPU load evolution during phase 1 and phase 2 of

the experiment. To conclude the test, the 30 flows have been

deleted (at a rate of 4 deletions per second) reaching a peak

CPU load on the monitored VFF of about 18,3%.

B. End-to-end Latency estimation

SFCLola takes its decisions using an estimated latency value

for the new incoming chain, computed by considering the

contributions of inter-DC network latencies and an estimation

of processing delay introduced by each VNF. The latter is

computed considering the processing delay measured at each

VNF and the additional delay introduced by the incoming re-

quest. Inter-DC network latency values are obtained measuring

the latency between each pair of VFFs at 10 seconds intervals

and averaging these values over a 30 seconds wide window.

It is therefore relevant evaluating the accuracy of latency

estimation with respect to the actual measurements of end-

to-end delay of traffic flows steered through the chains. To

this purpose, we performed several iterations of the following

experiment:

1) We generate a set of 20 chain requests with a number

of VNFs between 2 and 4.

2) The requests are submitted to SFCLola at the rate of one

each 30 seconds.
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Fig. 5. Measured end-to-end latency of traffic flow of chain no. 20. The
vertical dashed lines delimit the time interval selected for comparing estimated
and measured latency values.

3) For each request, the corresponding traffic flow is gen-

erated using the iPerf3 tool sending UDP traffic for

a duration of 600 seconds and end-to-end latency is

periodically measured.

It is worth observing that more than one flow can pass

through a VNF at the same time. In this experiment we

use destination ports to distinguish flows and we use an

ad-hoc developed application (called UDP Ping) to measure

latency along a chain sending UDP probe packets. The actual

end to end latency is calculated as follows: latency from

source to destination node is measured by the UDP Ping

application each second, and a median value is computed over

the measurements in the central 10 seconds-interval. Fig. 5

shows the measured end-to-end latency of the traffic flow for

request n. 20. This figure also helps clarifying the adopted

methodology, in that it highlights the time interval (from

second 10 to second 20) selected to gather end-to-end latency

measurements for comparison with the estimated ones.

Fig. 6 shows a comparison between measured and estimated

latency for each chain contained in a set of 20, sent one after

the other every 30 seconds. The estimation error averaged over

the chains in the request set is around 2.5 ms (i.e. 4%). This

error strongly depends on the inter-dc network delay variations

that can be experienced in the infrastructure and, consequently,

on the way latency values are measured and aggregated, as

explained above. We repeated this test five times, with similar

results. The resulting average estimation error is 3.8%.

C. Comparative evaluation of VNF selection algorithms

We ran a set of tests to compare the VNF selection algorithm

used in SFCLola with two alternative selection strategies: a

greedy approach and a round robin one. The greedy approach

works by choosing at each iteration the VNF instance with

the lowest processing time, among the VNF available in

all the DCs, thus disregarding the contribution of inter-DC

network latency to the overall end-to-end delay. When using

the round robin strategy VNF instances are selected in turn,

thus distributing the load among DCs. This experiment is

analogous to the one described in V-B with the only difference

that each set of requests is sent to SFCLola 3 times, one for

each selection strategy. Since the experiment is performed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Request

20

30

40

50

60

70

80

90

100

110

120

130

140

L
a

te
n

c
y
 (

m
s
)

Measured latency

Estimated latency

Fig. 6. Comparison between measured and estimated latency in a set of 20
requests.

TABLE III
VNF SELECTION ALGORITHMS - COMPARATIVE EVALUATION RESULTS

Percentage difference Percentage difference
SFCLola vs Greedy SFCLola vs Round Robin

Set avg σ avg σ

1 -12.75% 25.12% -28.47% 21.05%
2 -17.08% 21.60% -28.51% 21.86%
3 -10.07% 23.10% -29.11% 24.80%
4 -15.89% 23.07% -22.85% 24.07%
5 -9.21% 16.59% -25.91% 19.62%
6 -12.63% 21.00% -25.41% 22.91%
7 -14.36% 24.12% -24.74% 24.88%
8 -15.47% 22.40% -25.99% 17.75%
9 -13.95% 18.41% -25.88% 27.74%
10 -12.16% 16.90% -28.11% 18.62%

Overall -13.73% 21.19% -26.91% 22.05%

on a testbed, it is obvious that the status of the resource

infrastructure may slightly vary at each iteration.

Table III shows the difference (in percentage) between the

latency obtained using the SFCLola optimized selection vs the

greedy approach and a round robin selection strategy. Data are

averaged by request set and for each set we observe a negative

value which means SFCLola approach, on average, obtains a

lower latency compared with the greedy and the round robin

strategies. The overall latency improvement versus the greedy

approach is more than 13% and more than 26% if compared

to the round robin selection strategy.

We measured a peak gain on latency around 60% going

from 123 ms using round robin and 122 ms with the greedy

strategy to 48 ms using SFCLola, observing a decrease of

about 74 ms. The measurement data collection and aggregation

followed the same strategy described in section V-B. Fig. 7

shows the histogram of all the relative differences measured

in our experiment between latency measurements of solutions

provided by SFCLola and those by alternative approaches. We

can state that in more than 75% of the requests we obtained

an improvement over latency (i.e., negative values) and even

when we measured a worse latency (i.e., positive values), the

relative difference in measured latency is mostly displaced in

the range 0%-20%, thus confirming the overall improvement

provided by SFCLola.
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Fig. 8. Histogram of the percentage deltas computed considering all the
requests sent. SFCLola vs Round Robin approach.

It is worth clarifying that all iterations start in a similar

network and VNF load scenario, but different VNF selection

decisions taken by the algorithms gradually change the

experiment resource load. Therefore it may happen that,

given a n-th request, SFCLola chooses a chain setup that

is optimal for the current situation, but can show a worse

latency with respect to the n-th decision taken by another

algorithm in a load scenario that evolved differently.

Fig. 9 shows the absolute difference of latencies considering

all the requests sent (sorted by value for sake of clarity)

comparing the greedy strategy with the SFCLola approach.

Most of the values show an improvement over latencies

reflecting what is shown by the histogram in Fig. 7 and Fig. 8

for the comparison with the greedy and round robin strategies,

respectively.

VI. CONCLUSIONS

This work tackled the problem of Service Function Chaining

management within a multi-DC virtual tenant network. The

proposed SFC solution can be deployed on top of the tenant

network of virtual nodes (VMs) and does not require SFC-

oriented support from the infrastructure, except from the basic

requirement of L3 connectivity among VMs sub-networks in
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Fig. 9. Latency differences in milliseconds between SFCLola optimisation
strategy and the greedy approach. Gray values represent positive differences
while black negative ones (improvements).

different DCs. We presented a modular service platform where

two main hierarchically related levels are defined: i) an end-to-

end chain management level (called SFCLola application) that

offers a service chain management REST API and performs

a VNF selection decision, and ii) a forwarding mechanism

(VFF) that can be programmed and enforced within the tenant

domain.

The SFCLola application maintains a logical and abstract

view of the network topology, minimizing the need of sen-

sitive infrastructure information. Once SFCLola has selected

the VNF instances for chain setup, appropriate forwarding

instructions are sent to concerned VFFs. The VFFs expose an

intent-based interface allowing to easily specify requests for

installation and deletion of chain forwarding rules, indepen-

dently from the specific forwarding technology. In this work,

IPv4 stable Linux policy routing capabilities have been used,

but the platform can be easily extended to exploit alternative

technologies, such as IPv6 Segment Routing, as we plan to do

as future work. Moreover, security and isolation issues are not

in the scope of the paper and may be considered for future

work.

Last but not least, SFCLola has been implemented as

software and this work reports on the results of a test campaign

performed on top of 5GINFIRE infrastructure facilities. The

experiment allowed us to demonstrate the correct operation of

SFCLola and evaluate the impact in terms of resource con-

sumption at VFF nodes (which are the only SFC-aware nodes

in an intra-DC portion of the tenant network). Such impact

appeared sustainable, although approximately proportional to

traffic load and chain number. Experimental measurements

allowed us assessing the error between the estimated latency

computed on the abstract topology and the measured end-to-

end latency along the established chain, which resulted in an

average error of 3.8%. Finally, the comparison with alterna-

tive heuristic strategies showed the benefits of the proposed

approach that, on the given experiment scale, required a few

milliseconds computation time. More precisely, considering a

set of 250 random requests with a number of VNFs between

2 and 4 we measured an average computation time of 2.6ms

and a standard deviation of 1.89ms. The experiment has been



performed using UDP traffic and software emulating a VNF

processing delay, in the future experiment activities will be

performed using realistic VNFs and TCP traffic.

In addition to planned activities mentioned above, future

work will be devoted to improve the VNF selection algorithm

to take into account bandwidth constraints at inter-DC links

and evaluate the impact on previously installed and active

chains when performing a VNF selection decision for an

incoming service chain request. Moreover, when a request can-

not be accommodated due to the maximum latency constraint,

the current SFCLola implementation returns to the client

with the achievable minimum latency. SFCLola could thus be

extended to support a QoS negotiation mechanism allowing to

partially accommodate SFC requests and optimizing resource

usage.
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APPENDIX

Table IV shows some descriptive statistics measures derived

from a population of Round Trip Time (RTT) measurements

collected in a 2-days interval at 10 seconds frequency and

then aggregated as average values over 30 seconds-windows

by our monitoring software. Please consider that RTT values

are divided by two to roughly obtain a one-way delay and

values above 300 ms are filtered out. Network links between

DCs are pretty stable but we experimented limited periods in

which a few packets were lost and latencies jumped to values

above 1 second.

TABLE IV
STATISTICS OF LATENCIES BETWEEN DCS

Link Average σ 95%ile 99%ile

5Tonic - ITaV 14.99 ms 4.44 ms 23.17 ms 35.38 ms
5Tonic - Bristol 20.21 ms 0.86 ms 20.67 ms 26.00 ms
5Tonic - 5Tonic-bis 1.15 ms 4.85 ms 0.83 ms 24.36 ms
ITaV - Bristol 34.76 ms 4.90 ms 43.78 ms 58.21 ms
ITaV - 5Tonic-bis 5.53 ms 5.84 ms 26.17 ms 44.76 ms
Bristol - 5Tonic-bis 20.82 ms 3.43 ms 21.50 ms 32.02 ms
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