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Learning, Ensemble Learning

1. Introduction

In recent years, the interest in studying deep neural network architectures
[1] is literally exploding. This interest is mainly driven by recent technolog-
ical achievements [2], and by the great success in real-world problems, with
relevant examples of application domains provided, e.g., by image processing
(3, 4], speech recognition [5] and bioinformatics [6]. From a computational
point of view, the processing carried out by deep neural models exploits
the sequential composition of multiple non-linear hidden layers, enabling the
development of progressively more abstract representations of the entities in-
volved in the addressed learning problem. Typically, in this kind of learning
models, only the representation computed in the highest hidden layer is used
to feed an output level, while the intermediate representations of previous
layers are considered just as preparatory for the creation of progressively
more complex concepts that are useful for the final output computation.

However, despite the empirical performance of deep architectures on large-
scale problems, there are no guarantees about the quality of the last hidden
representation. The learning process may fail, or it could not provide an
optimal representation, especially in the case of small- and medium-sized
problems. Inspired by recent results on Multiple Kernel Learning (MKL)
(7, 8], we claim that the intermediate hidden representations can provide

different points of view of the main task. Moreover, they contain useful in-



formation in addition to prepare the next hidden representation, and their
principled combination can improve the quality of the representation, and
the performance of the system.

In this paper, we empirically show that, focusing on medium-sized prob-
lems (i.e., featured by a number of training examples ranging from several
hundreds to tens of thousands), intermediate representations of a deep Feed-
forward Neural Network (FFNN) can be exploited to enrich the represen-
tation built on the latter hidden layer, improving the effectiveness of the
network. Most importantly, we propose an ensemble method to optimally
combine the hidden layers’ representations by means of the MKL paradigm.
The combination mechanism optimizes a quality measure of the final rep-
resentation rather than an empirical loss as in the case of common neural
networks. In this case, this quality measure is the margin between the classes.
The proposed method, named KerNET, is experimentally evaluated on two
well-known neural architectures, namely the Multi-layer Perceptron (MLP),
and the Convolutional Neural Network (CNN). Moreover, while typical ap-
proaches in the context of deep FFNNs involve the use of stochastic gradient
descent-based algorithms to tune the weights on the connections between
all the layers, recently a randomized approach to the design of neural archi-
tectures is gauging increasing interest [9, 10]. In this context, a successful
methodology consists in the use of MLP-like architectures in which all the
internal weights are left untrained after initialization, leaving the training

algorithms to operate only on the connections pointing to the output layer.



While this approach routes back to early works in the area of neural networks
[11, 12|, in the last years it has been popularized under several forms and
names, including Random Vector Functional Link [13], Extreme Learning
Machine [14], No-Prop [15], and Stochastic Configuration Network [16]. Ab-
stracting from the peculiarities of the different forms reported in literature,
we refer to the untrained, random setting of internal weights in a MLP-like
architecture as Random-Weights Neural Network (RWNN).

The empirical analysis provided in this paper aims at showing the concrete
benefit of the proposed KerNET framework adopted in synergy with MLPs,
RWNNs and CNNs, and assessed against several baselines on medium-sized
benchmark datasets from several real-world domains including bio-medical
and digit recognition.

This paper is organized as follows. Background and preliminary concepts
on MKL and related approaches exploiting kernel methods in synergy with
deep FFNNs are recalled in Section 2. The motivation and design of the
proposed framework are presented and discussed in Section 3. Section 4
describes the experimental assessment carried out to evaluate the KerNET

method against several baselines. Finally, Section 5 draws conclusions.

2. Background

In this section we briefly recall the fundamental concepts and the liter-
ature background related to the proposed KerNET framework. Specifically,

Section 2.1 gives a basic background on Multiple Kernel Learning, while Sec-



tion 2.2 summarizes previous work about the synergy between kernel methods

and deep neural networks.

2.1. Multiple Kernel Learning

Kernel machines constitute a framework of machine learning algorithms
widely used in the literature. A kernel machine comprises two parts [17].
The first element is a general-purpose learning algorithm whose solution is
expressed by dot-products between training examples. The second element is
the kernel function which defines the implicit representation of training data.
A kernel function k£ : X x X — R is a positive semi-definite function which
corresponds to the dot-product of the input vectors in a Reproducing Kernel
Hilbert Space (RKHS) IC. In other words there exists a function ¢ : X — K
which maps data from the input space X to the kernel space K such that
k(x,z) = (¢(x),d(2)), with x,z € X.

The most important step when dealing with kernel methods is the choice
of the kernel function. Usually a validation procedure is used to select the
most suitable kernel for a given task from a set of predefined functions. Sev-
eral methods have been recently proposed to learn the kernel function from
data directly. A popular kernel learning paradigm is Multiple Kernel Learn-
ing (MKL), whose purpose is to learn the kernel as a principled combination
of base (or weak) kernels [7, 8]. In this paper, convex combinations of base

kernels have been considered, i.e. linear non-negative combinations whose



weights vector has a fixed 1-norm, that is

bu(,2) = 3 k(@ 2) = 3 (@), 6u(2)), > 0, plh =1, (1)

where k, is the kernel function based on the r-th mapping ¢,, and p is the
weight vector that the algorithm learns. Any type of kernel function can be
virtually combined, such as polynomial or RBF kernels for real-valued data
[8], conjunctive/disjunctive kernels for boolean data [18], and sub-structure
based kernels for strings and graphs datasets [19]. In this work, kernels
generated from deep neural networks have been used. The detailed procedure
is reported and discussed in Section 3.

Other methods exist to combine or to aggregate different information,
such as the popular Canonical Correlation Analysis (CCA), which aim to
find a linear combination of two or more [20] matrices (representations) that
have maximum correlation with each other. Differently from those methods,
MKL tries to maximize a quality measure leveraging all facets of the available

views rather than maximizing a correlation between all input kernels.

2.2. Related work

Despite the widespread use and the great attention in the machine learn-
ing community, theoretically grounded approaches to effectively construct
and regularize deep neural networks still need to be explored [21]. To fill
this gap, in this paper, we propose a novel approach stemming from the idea

of combining the expressive power of neural networks with the robustness



of theoretically grounded kernel methods. In this section we give a brief
overview of the main contributions in the recent literature that showed the
potentiality of neural networks - kernel synergy.

A first way to combine neural networks and kernel methods consists of
pipelining the operation of the two components, using the kernel machine on
the top of the neural network. As a primer example, authors of [22] have
proposed an ensemble method for multimodal sentiment analysis. In that
work, features extracted from audio and video sources by means of CNNs are
combined through MKL, leading to a significant improvement with respect to
standard architectures. Other ensemble systems comprising neural networks
and simple SVMs have been also widely used in real-world applications, as is
the case of neuroimaging [23] , fault detection [24], and intrusion detection
[25]. Even in these cases, the network deals with the feature extraction, and
the SVM performs the classification.

Different newsworthy techniques apply some kernelized layers on the top
of a classical deep neural network, as is the case of Deep Fried convnet [26].
The Deep Fried convnet replaces the fully connected layers on the top of a
CNN with an Adaptive Fastfood transform, which is a generalization of the
Fastfood transform for approximating kernels [27]. Another similar method
has been proposed in [28]. It consists of a Gaussian kernel applied to the top
of a neural network, whose parameters are learned during the optimization of
the network. Kernel Activation Functions (KAFs) represent a further exam-

ple of cooperation between neural networks and kernel methods [29]. Briefly,



in the KAF setting the activation functions are modeled as kernels. The
KAF and the network parameters are usually learned simultaneously. Usu-
ally, fixed kernel families are used for this purpose, such as the popular RBF.
Furthermore, authors in [30] have proposed a method to learn these func-
tions directly from data, exploiting the MKL framework. Kernel approaches
have been also explored for the purposes of neural networks pre-training. A
relevant instance is given in the context of graph processing by the work in
[31], in which graph kernels are used to pre-train a siamese network for graph
classification, showing promising results. Finally, we note that the concept
(and benefit) of combining different representations computed by neural net-
works has been explored in a recent contribution [32]. In this case, authors
have extracted different feature sets by means of multiple neural networks,
and then they have defined a joint representation which is integrated into
the framework of Conditional Random Field for sequence labeling tasks.
Differently from all the above mentioned works, in this paper the kernel
approach is used to combine the internal representations developed by the

different layers of an individual deep neural network architecture.

3. The KerNET framework

Deep neural networks rely on a stacked sequence of non-linear mappings
which provide an increasingly complex representation of input data. The
computation performed by such model can be mathematically described in

terms of a non-linear function ¢, : X — Y that maps the input data from



the input space X into the output space ). In the case of a general deep
FFNN, the function ¢, can be defined as a composition of base mapping

functions:

anm‘(w) = wou,t o djl 0--+0 wQ o ¢1 ((E), (2)

where 1 maps the input into the 1-st hidden layer, and each successive 1,
operates the non-linear transformation from hidden layer » — 1 to the hidden
layer r, i.e: ¢.(x) = g(W,x+b), where W, is the weight matrix, b is the bias
vector and ¢ is a non-linear elementwise function. This notion can be easily
extended to more complex types of layers, such as convolutional layers, where
the matrix multiplication is replaced by the convolution operator. Finally,
Your Maps the representation from the highest layer to the output. The
symbol [ refers to the number of hidden layers in the architecture.

Let ¢ be a FFNN with 4y, ..., 1; base mappings. Based on the def-
inition of the network described in eq. 2, the hidden representation of an
example x at the hidden layer r can be defined as the composition of the

first r base mapping functions, i.e.:

(br(m) = Q/}r © Q/)r—l ©---0 1/}1(33) (3)

The same representation can be recursively and efficiently computed as:

1/)7' o ¢r71(m) r> 0
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Conventionally, ¢o(x) = « denotes the input representation. This process
determines a pipelined computation, as graphically illustrated in Figure 1
in the context of the above introduced notation. In particular, arrows in
the upper part indicate the operation of the base mapping functions im-
plemented by the successive hidden layers in the neural architecture, i.e.,
U1, ..., followed by the output mapping 1,,. Such mapping functions
are parametrized by the weight matrices W1y, ..., W;, W,,;. The compu-
tation performed through the successive applications of the base mappings
determines the development of internal neural representations at the hidden
layers, indicated in the lower part of Figure 1, i.e. ¢1,...,¢;, and where the
initial (i.e., input) representation ¢q is indicated as well.

V3

Yout

Input layer
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Figure 1: The architecture of a neural network described as a composition of non-linear
functions that relates the input to the output layer. ¢, is the inner representation at
the r-th hidden layer, developed through a stacked sequence of non-linear transformations
U1, ...,%.. W are the weights matrices which define the transformations.

Typically, deep FFNNs perform the classification by using only the rep-
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resentation computed in the last hidden layer of the architecture, i.e. ¢;().
However, the previous intermediate representations, typically neglected at
the stage of output computation, provide a rich pool of different viewpoints
on the input data that we aim at fruitfully exploit.

Inspired by the extensive literature on MKL (see Section 2.1), we claim
that the combination between all of the hidden representation simultaneously
rather than the last one can improve the performance and the generalization
capability of a neural network. To this end, we propose the KerNET frame-
work, a simple yet effective general ensemble to combine all of the hidden
representation that a neural network learns via MKL.

The KerNET framework generally comprises two distinct phases. At first,
a deep FFNN is trained. This phase possibly includes a model selection step
to select the best hyper-parameters configuration. Then, each intermediate
representation ¢,, including the input one, ¢y, is used to build a base kernel
k.(x,z) = (¢.(x), #-(2)). Finally, base kernels are combined by means of a
MKL algorithm according to the eq. 1.

The resulting representation relies on a richer feature space, where the
first layers are involved in the classification step as well as the last one, ac-
cording to their contribution in the combination. The weights vector p that
the MKL algorithm learns defines the contribution of base representations,
and it is selected by optimizing a quality criteria of the resulting representa-
tion. The pseudo code of the ensemble is shown in alg.1.

Section 3.1 minutely describes the instances of the KerNET ensemble with
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Algorithm 1: KerNET

Input:
X, y: training examples and their labels
Output:
ky: the combined kernelized representation.
1 begin
2 a model selection phase is applied to select the best hyper-parameter
configuration
3 the base networks ¢ne; is trained according to the best hyper-parameter
configuration selected in the previous step
4 intermediate representations ¢g, @1, ... are extracted from ¢y, where
¢r(x) defines the representation of the example @ in the hidden layer r.
5 hidden representations are translated to base kernels
ki(x, z) = (¢i(x), ¢i(2))
6 the combined kernel is learned via MKL: ky(x, z) = >, prkr(x, 2)
7 end
8 return k,

the considered architectures, i.e. MLP, RWNN, and CNN, and the extraction
process of the intermediate representations. Then, Section 3.2 explains the

mechanism used to combine the representations.

3.1. Instances of the framework

The KerNET framework can be virtually applied to any deep FFNN.
In this work, two main architectures have been considered, namely the MLP
(both fully trained and in a RWNN setting) and the CNN. In the fully trained
MLP scenario, the network’s weights are learned using stochastic gradient
descent, with a model selection procedure to select the best hyper-parameter
configuration. Then, the intermediate representations developed by the hid-

den layers can be easily extracted from the network. Each hidden layer r
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contains a feature vector ¢,(x) associated to the input example x (see eq.
3), which can be easily used for the kernel computation. Figure 1 describes
this process. The same pipeline can be applied to the RWNN, where train-
ing is restricted only to the output layer, and the translation process from
intermediate representations to kernels does not change.

In the case of CNN, there are some small clarifications to be done with
respect to the MLP/RWNN setup. The output of a convolution layer is not
a single vector as is the case of the previous architectures, but it is a tensor
whose shape depends on the dimensions of the input image times the number
of filters. As such, after the training of the network, intermediate representa-
tions are flattened to build kernels. This flattening operation, which removes
the structural and the spatial information of an image, is not a limitation.
Indeed, flattening layers are usually applied to the network after a stacked
sequence of convolutions. Furthermore, CNNs include a variety of different
layers besides convolutions, such as Pooling, Dropout, and Dense layers. The
case of Dense layers reflects the same translation process from representations
to kernels described for the MLP. However, we decided to not consider the
intermediate outputs from Pooling and Dropout layers to not inject further
intricacy. In accordance with the notation previously defined, we denote as
¢r(x) the intermediate representation developed at the r-th convolutional or
dense layer of the network. The KerNET process with CNN as base network

is depicted in Figure 2.
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Figure 2: A CNN consists of a stacked sequence of Convolution, Pooling, and Dense layers.
The output of convolutions and dense layers define intermediate representations ¢,. As
in the case of a deep FFNN illustrated in Figure 1, the intermediate representations are
combined in the KerNET framework via MKTL.

3.2. The combining mechanism

As introduced in Section 3, a MKL algorithm is used to find the optimal
convex combination of base representations. Among the plethora of MKL
algorithms available in the literature, EasyMKL [8] has been considered in
this work. The algorithm has the advantage of being an efficient and scalable
MKL algorithm, which can be easily applied to medium-sized datasets. More-
over, the algorithm has recently proven its effectiveness on several tasks and
real-world problems; such as hyper-parameters selection [33, 19], Alzheimer’s
disease detection [34], and bio-medical entity recognition [35]. Briefly, the
algorithm is a binary classifier which learns the convex kernels combination
that maximizes an approximation of the distance between the convex hulls
of the positive and negative classes.

However, the MKL is not the only paradigm to combine these base repre-
sentations. A similar combination mechanism can be provided by a further

neural architecture which substitutes the KerNET ensemble, and that can
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be studied as baselines for comparison. This network reflects the main deep
structure of the former networks, i.e. it consists of a stacked sequence of
Dense layers, or Convolutions and Pooling. The main difference with clas-
sical architectures is that all of the layers are simultaneously connected to

4

the output. This corresponds to a “virtual” dense layer placed before the
output, and that consists of the concatenation of all previous layers, includ-
ing the input one. In this way, the deep architecture with representations
of increasing complexity is preserved, but the output computation, i.e. the

final prediction, is allowed to exploit the information that comes from the

whole network. This architecture is depicted in Figure 3.

Input

Figure 3: A neural network architecture to combine intermediate representations.

A similar architectural design has been proposed in the case of Fully
Convolutional Networks (FCN) [36] for semantic segmentation. There, inter-
mediate representations have been combined to improve the overall results.
However, there are some differences between the (baseline) architecture in
Figure 3, and the FCN. Firstly, FCN combines layers by element-wise addi-

tion rather than concatenation. Secondly, they combine pooling layers rather
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than flatten convolutions. Finally, while the FCN approach has been intro-
duced originally for tasks of semantic segmentation nature, here we consider
the case of general classification tasks.

In the remainder of the paper, the architectural setup described in Fig-
ure 3 is considered for comparative assessment of KerNET effectiveness. More
specifically, we refer this architecture as MLP-ALL, RWNN-ALL, and CNN-
ALL, when instantiated with MLP, RWNN, and CNN respectively. Despite
the highlighted similarity, it is worth noticing that the MKL step is not
limited to combine the intermediate representations, but it finds a combina-
tion which maximizes a quality criteria (the margin between classes in this
case) of the resulting representation rather than an empirical loss. For com-
pleteness, we evaluated both methodologies, neural combination and MKL.
Furthermore, we find it useful to notice that the concept of maximizing the
margin between classes while combining internal representations brings in-
teresting similarities to the operation of specialized loss functions, such as
the contrastive loss [37]. Note, however, that in this work we do not consider
the systematic evaluation of loss functions for multiple reasons. Firstly, the
modular architecture of KerNET allows us to use different MKL algorithms,
objective functions, and quality criteria in addition to the margin. Secondly,
the MKL optimizes a global measure, computed on all examples simultane-

ously, whereas loss functions (typically) act on batches of examples.
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4. Experimental assessment

This section describes the various aspects of the experimental analysis
conducted in this paper. Specifically, the adopted datasets are introduced
in Section 4.1. The implementation details, the validation procedure, and
the configuration of the networks are presented in Section 4.2. The setup
of the experiments under an empirical comparison perspective is described
and discussed in Section 4.3. Numerical results are reported in Section 4.4.

Finally, an analysis of the contribution of each layer is given in Section 4.5.

4.1. Datasets

Several benchmark datasets have been used to evaluate the KerNET
method. The datasets have been selected with different characteristics to
better analyze the behaviour of the proposed ensemble in different stressed
conditions. Small- and medium- sized, binary and (single-label) multi-class
datasets have been considered, with 528 up to 60000 training examples, and
up to 11 classes. These datasets are splice, dna, madelon, satimage, usps,
pendigits, and MNIST, and they are freely available on online repositories®.
The details of these datasets are shown in Table 1. The first datasets have
been used to evaluate the effectiveness of the KerNET framework when in-
stantiated with MLP and RWNN models. Conversely, the MNIST dataset

has been considered to assess the impact of KerNET with CNNs. Overall, the

Ihttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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adopted datasets enable to outline a broad-spectrum experimental analysis,
comparatively conducted under a variety of cases.

In our experiments, a preprocessing phase has been used, where features
have been rescaled in range [0, 1], and examples are then normalized, i.e.

| - ||I3 = 1. The accuracy score has been used to evaluate the performances.

dataset # training # test # features # classes

splice 1000 2175 60 2
dna 2000 1186 180 3
madelon 2000 600 500 2
satimage 4435 2000 36 6
usps 7291 2007 256 10
pendigits 7494 3498 16 10
MNIST 60000 10000 784 10

Table 1: Summary of the characteristics of the adopted datasets.

4.2. Networks settings and model selection

As introduced in the previous sections, three different realizations of the
KerNET framework have been analyzed, using MLPs, RWNNs, and CNNs
as base networks.

In all the experiments, training data has been split into training (90%)
and validation (10%) sets. The validation set has been used to select the
best hyper-parameters configuration, and to early stop the training proce-
dure by observing the validation loss. The hyper-parameters of the MLP
architecture are the number of hidden layers | € {0,1,...,10}, and the
number of neurons per layer d - m, where m is the number of input fea-

tures and d € {0.5,1,1.5,2,3,5}. In the case of RWNN, the hidden lay-
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ers’ weights have been initialized randomly from a uniform distribution in
[—1,1], and then the corresponding weight matrices have been rescaled to
control their Frobenius norm w. In particular, we considered settings where
the same value of w has been used for all the hidden layers, exploring val-
ues of w € {0.1,0.2,0.5,1,2,3}. The value of w has been selected on the
validation set. On the other side, the CNN consists of stacked convolution
layers with 32 3 x 3 filters. A 2 x 2 MaxPooling has been introduced every
two convolutions. A dense layer with 64 neurons has been placed on top of
the network. The number of convolution layers, from 1 up to 6, has been
selected in validation. Other hyper-parameters have been selected with a pre-
liminary experimentation phase. The loss function applied is the categorical
cross-entropy. The activations functions are the sigmoid for MLPs, ReLLU for
CNNs, and tanh for RWNNs. Softmax activations have been applied to the
output layer for MLLPs and CNNs, whereas linear activations have been used
for the output of RWNNs. As pertains the learning algorithms, for MLPs
and CNNs we applied gradient descent with Adam [38] optimization (using
Adam default configuration from the Keras library?). The output weights
matrix of RWNNs has been learned in closed-form via pseudo-inversion [39].
The winner-take-all strategy has been used to elect the final class. For each
hyper-parameter configuration, 5 networks guesses have been trained, on

which average results (and standard deviations) have been computed. For

’https://keras.io

19



the purposes of model selection, the best hyper-parameter setting for each
model under consideration has been selected as the one achieving the highest
average accuracy on the validation set.

After the validation of the base network, weak kernels have been ex-
tracted from intermediate layers, and the EasyMKL algorithm has been ap-
plied to learn the optimal kernels combination. EasyMKL has a further
hyper-parameter, i.e. A, which represents a trade off between the maximiza-
tion of the margin (A = 0), and the maximization of the distance between
the centroids (A = 1). The value of A has been selected by means of a 5-
fold cross-validation from the set {0,0.1,0.2,0.5,0.9,1}. A Support Vector
Machine (SVM) has been used as base learner with the learned kernels com-
bination. The C value has been selected in {107, = —3...3}. In the case of
multi-class problems, the one-vs-one decomposition strategy has been used.

Note that, despite the number of hyper-parameters, the model selection
of the ensemble is not excessively expensive. The hyper-parameters of the
network are selected without considering the MKL step. The complexity of
this model selection phase is consistent with classical neural networks. In
the MKL phase, the grid search of the two hyper-parameters (A and ') can
be simplified, for instance by considering a different base learner rather than
the popular SVM. Authors in [8] replaced the SVM with the KOMD [40]
algorithm, whose hyper-parameter A\ is shared with EasyMKL. Moreover,
as stated in [33], the combination weights of the MKL algorithm can be

effectively learned by using sub-sampling strategies, without a significant
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decrease in accuracy and making our approach scalable with large datasets.
Although the KerNET framework is certainly compatible with the above
mentioned simplification schemes, this aspect is left out of the scopes of this

paper, which focuses on analyzing the general properties of the approach.

4.3. Empirical comparison

The empirical comparison conducted in this paper relies on three differ-
ent points. Firstly, the effectiveness of combining all of the intermediate
representations of the neural network has been evaluated, showing that a
rich pool of representations of increasing expressiveness can cooperate for
improving the final classification. Then, the KerNET framework has been
evaluated, showing that the combination mechanism and the quality of the
final representation plays a crucial role in the resulting representation, and
thus the MKL framework can be effectively applied to this purpose. Finally,
the robustness of the proposed method with respect to the dimension of the
network is analyzed, showing that the ensemble is able to adapt its combina-
tion to avoid overfitting. Having said that, the methods and baselines that

have been considered in this evaluation are:

e NET: the base network where the output level is fed only by the last
hidden layer in the architecture, i.e. MLP, RWNN, and CNN.

e NET-ALL: the extended architecture described in the Figure 3. This
model helps understanding the effectiveness of combining multiple in-

termediate representations rather than using a single one.
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e NET-SVM: The base network, but with the output level implemented
by an SVM. This further baseline allows us to understand how much
the SVM contributes in the MKL setting rather than the combination
of neural representations. This baseline can be seen as a special case
of the KerNET method, where the latter hidden representation is the

only one with a positive weight.

e KerNET: the proposed ensemble, where the EasyMKL algorithm has
been used to learn the optimal combination of the intermediate neural

representations.

4.4. Results

Table 2 reports the test accuracy obtained when using MLP as base
network. As it can be seen, compared to the basic network setup, while
MLP-ALL and MLP-SVM do not generally lead to significant performance
improvements, the KerNET approach results in performance enhancement
on all the considered tasks. Overall, in this setting KerNET achieved the
highest test accuracy in 5 over 6 tasks. Note that this performance improve-
ment has only a moderate computational cost. In particular, just to give
an idea on the additional cost for the inference phase (i.e., on the test set),
the times required® are 1.36' (MLP), 2.42' (MLP-ALL) 0.71" (MLP-SVM),
1.92" (KerNET) for Splice, and 1.75" (MLP), 3.30" (MLP-ALL), 3.68 (MLP-

SVM), and 5.10" (KerNET) for Satimage. This latency is mainly due to the

3Evaluated on a system equipped by an Intel(R) Xeon(R) CPU E5-2603 0 @ 1.80GHz.
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prediction through the MKL algorithm and to MKL implementation®.

A similar trend is observed when considering RWNN as base network, as
indicated by the results reported in Table 3. Also in this case, indeed, we
can observe that KerNET is the only approach that generally leads to per-
formance enhancement with respect to the base network, globally resulting
in the highest test accuracy in 4 over the 6 considered cases. In this context,
KerNET results indicate that a principled combination of the internal neural
representations developed in successive layers of a deep architecture is ad-
vantageous also in the absence of (or prior to) training of the hidden layers’
connections. Finally, comparing the results in Table 3 with those in Table 2,
we can see that the performance of RWNN is generally lower than that of
MLP. While this is not surprising, given that RWNNs use untrained hidden
layers (and hence are featured by a significantly smaller number of trainable
weights), we also observe that the performance gap is greatly reduced when
RWNNs are used together with KerNET. This side consideration allows us
to highlight the further merit of KerNET as an effective way to introduce
adaptivity in the context of RWNNs, providing a promising trade-off between
efficiency of training algorithms and accuracy.

The advantage of the KerNET framework is confirmed also when adopted
in conjunction with CNNs, as is it shown by the test accuracy reported in

Table 4 for MNIST. Complementing the already discussed results, values in

‘https://github.com/Ivanolauriola/MKLpy
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dataset MLP MLP-ALL MLP-SVM  KerNET

splice 89~77:I:0.54 85.46:|:0.19 85~43:|:0‘14 90.07:|:0‘21
dna 94.25:&0.12 93.96:&0,29 94.22:|:0.10 95.11:|:0.00
madelon 50'00:I:0.00 57°47:l:1.02 50~00:|:0‘00 55~73:I:0.08
satimage 87.50:&0’93 82.58:&1,17 78.84:;:0423 88.63:&0415
usps 93'71:|:0.43 93.04;&)‘13 91.46:|:0.28 93.97:&).29
pendigits 95.73:&0.35 95.85:1:0,24 93. 18:&0‘78 96.71:;:0‘34

Table 2: Average test accuracy scores and standard deviation of MLP and derived methods
computed on 5 runs. The best result is highlighted in bold font for each task.

dataset RWNN  RWNN-ALL RWNN-SVM  KerNET

splice 84.05:|:0.23 82.78:|:1'24 83.83:&0,78 85.35:&).16
dna 93.61:&0.27 89.61:|:1.20 92.28:|:0.39 94°47:I:0.38
madelon 50']—7:|:1.98 51.50:|:3‘17 56.90:|:1‘01 58°43:|:0.86
satimage 75~07:|:0.46 75.74:|:4.35 4. 13:&0.38 80.58:&0,22
usps 88.64:&)'23 58.70:&)‘24 93°43:|:0.45 92. 18:|:0‘14
pendigits  92.341097  87.3919.45 95.381018  91.6340.23

Table 3: Average test accuracy scores and standard deviation of RWNN and derived
methods computed on 5 runs. The best result is highlighted in bold font for each task.

Table 4 suggest that the introduced approach is generally favourable also in

cases in which the performance of the base networks is already very good.

dataset CNN
MNIST 99.08.:1011

CNN-ALL CNN-SVM
99.08;&0,10 99.22:“).07

KerNET
99.32.1 907

Table 4: Average test accuracy scores and standard deviation of CNN and derived methods
computed on 5 runs. The best result is highlighted in bold font for each task.

From a general perspective, the results in Tables 2, 3 and 4 provide an
empirical evidence of the fact that the aggregation of multiple intermediate
neural representations can improve the network performance in some cases,
but the way in which the combination is optimized is the key aspect. In other

words, the mere quantity of information is not sufficient without control.
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One of the desired key points of the proposed ensemble approach is the
ability to learn a final representation that reflects the complexity of the prob-
lem at hand. When dealing with increasingly complex and deeper neural
architectures, the algorithm should be virtually able to adapt the combina-
tion weights towards simpler representations, avoiding to fall in overfitting
behavior. In order to empirically test the proposed approach against this
possibility, we run a further set of ad-hoc designed experiments. Specifically,
we considered the KerNET framework instantiated with a MLP architecture
of increasing depth, with a number of hidden layers up to 10. To assess the
impact of the proposed methodology, we conducted this analysis in compar-
ison to the results achieved by the base MLP network. The experimental
conditions were as in previous experiments, with 5 runs performed for each
hyper-parameters configuration, and the same approach for model selection
(including the same ranges of explored values for the hyper-parameters). In
this phase, we focused on a selection of tasks (i.e., splice, dna, usps) chosen
to be representative of the variety of considered cases, covering smaller to
larger values of training sets, number of input features and number of target
classes. The test accuracy achieved by KerNET and base MLP is plotted in
Figure 4 for increasing depth of the neural architecture.

As expected, the number of hidden layers is a crucial hyper-parameter
for a deep neural network, especially in the case of medium-sized datasets,
where the number of learnable parameters should be carefully controlled.

Results in Figure 4 clearly show an overfitting behavior of the base MLP
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Figure 4: Average test accuracy scores and standard deviation of MLP and KerNET
methods computed on 5 runs while increasing the number of hidden layers on selected

benchmark datasets.

networks for increasing depth of the architecture, appreciable after 6 layers

in all the considered cases. On the other hand, we observe that the Ker-

NET approach is able to drastically reduce the sensibility to the number of

layers, appropriately exploiting the intermediate representations to learn a

robust combination of layers’ activations. This results in the ability to effec-

tively counterbalance the increasing complexity of the base model, avoiding

overfitting and achieving higher performance in all the explored settings.
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4.5. Evaluation of combination weights

As described in the previous sections, a major advantage of the proposed
KerNET method is its ability to emphasize the information coming from
different layers, and to select the most suitable abstraction level by learning
the weights vector p (see equation (1)), which modulates the contribution
of each layer. Figure 5 depicts the weights distribution g computed by the
MKL algorithm for a selection of datasets, which are splice, dna, satimage,
and usps. The architecture used in this experiment is the MLP with 8 hidden
layer. This experimental setup, including the choice of the datasets and of
the MLP architecture, allows us to observe the weights vector distribution
in two distinct cases.

What is evident from Figure 5, is that the system perceives the com-
plexity of the task, and it is able to correctly distribute the weights that
modulate the representation in a suitable way. In particular, we observe that
in the case of splice and dna, where the MLP network is extremely large,
the KerNET system gives stronger weights to the representations developed
in the lower levels of the architecture (i.e., to the input - where the relation
with the output is linear - and to the first hidden layers), preventing overfit-
ting. On the other hand, the more complex satimage and usps tasks leverage
deep hidden representations computed by large networks, and the KerNET
ensemble gives stronger weights to higher levels representations. Specifically,
for satimage the combination weights tend to progressively focus more on

the higher layers in the neural architecture, whereas for usps the weights
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Figure 5: Weights distribution computed by the proposed system (0 = input representa-
tion). For multiclass datasets, the average distribution obtained by decomposed tasks is
shown.

are spread through the whole network (and especially on layers from 2 to 8),

showing that in this case different types of features can be equally important.

5. Conclusions and future work

This paper describes KerNET, a general framework to enrich the rep-
resentation of a deep neural network by ensembling information developed
within the successive layers of the hierarchical architecture. The combi-
nation is performed by applying the Multiple Kernel Learning framework

which optimally aggregates the hidden representations according to a qual-
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ity criteria based on maximizing the margin between classes in the feature
space. The proposed methodology has been applied to different feed-forward
neural models, including Multi-layer Perceptrons, Random-Weights Neural
Networks and Convolutional Neural Networks. A wide empirical assessment
has been carried out, considering several tasks of different nature. The re-
sults of our experimental analysis showed that the principled combination of
intermediate representations provided by the KerNET framework is able to
adapt to the characteristics of the learning task at hand and of the adopted
neural network architecture. Remarkably, our analysis pointed out that the
introduced framework has the effect of enhancing the performance of the base
models both in terms of accuracy score and in terms of robustness against
overfitting in deeper architectural settings. The performance advantages of
the introduced framework have been observed for heterogeneous neural net-
work setups, highlighting its potentialities in terms of versatility in the area
of deep Neural Networks.

While the introduced KerNET approach already gives an effective way to
the design of the output computation in deep networks, it paves the way to
further developments along with different research directions. First, exploit-
ing the proposed method, we foresee novel theoretically-grounded approaches
to drive the construction of deep models with optimal trade-off between good-
ness of performance and minimality of the architectures. Moreover, note that
the proposed approach could be easily extended to cope with virtually any

kind of deep neural network. In this sense, we plan to investigate applications
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to Deep Recurrent Neural Networks [41]. Finally, extensive applications to

large-scale problems are also planned in the near future.
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