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In this paper we consider the steady Baldwin-Lomax model, which is a rotational 
model proposed to describe turbulent flows at statistical equilibrium. The Baldwin-
Lomax model is specifically designed to address the problem of a turbulent motion 
taking place in a bounded domain, with Dirichlet boundary conditions at solid 
boundaries. The main features of this model are the degeneracy of the operator at 
the boundary and a formulation in velocity/vorticity variables. The principal part of 
the operator is non-linear and it is degenerate, due to the presence (as a coefficient) 
of a power of the distance from the boundary: This fact makes the existence theory 
naturally set in the framework of appropriate weighted-Sobolev spaces.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the model (and some of its variants which are interesting from the mathematical 
point of view) introduced by Balwdin and Lomax [7]⎧⎪⎪⎨⎪⎪⎩

−ν0 divDv + (∇v)v + curl
(
d2|curlv|curlv

)
+ ∇π = f in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω,

(1.1)

to describe turbulent fluids at the statistical equilibrium, where d is the distance from the boundary. We recall 
that, starting from the work of Reynolds in the 19th Century, a classical paradigm is that of decomposing 
the velocity into the sum of a mean part and (turbulent) fluctuations, see [8]. One basic question is how 
to model the effect of the smaller scales on the larger ones. The Boussinesq assumption suggests that –in 
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average– this produces an additional turbulent viscosity νT ≥ 0, which is proportional to the mixing length 
and to the kinetic energy of fluctuations (at least in the Kolmogorov-Prandtl approximation). In the analysis 
of Baldwin and Lomax, this leads to a turbulent viscosity of the form

νT ∼ �2(x)|curlv(x)|,

where � is a multiple of the distance from the boundary and curlv = ∇ ×v, hence arriving to the model (1.1), 
or to (3.1) when the equations for the turbulent flow are considered in the rotational formulation. (Mean 
velocities are denoted from now on as v.)

The Baldwin-Lomax model (1.1) has been recently revisited –in the unsteady case– by Rong, Layton, 
and Zhao [35], in order to take into account also of the effects of back-scatter. This involves, in addition to 
the usual time derivative ∂v

∂t , a dispersive term of the form

curl
(
�2(x) curl ∂v

∂t
(t,x)

)
,

resembling that appearing in Kelvin-Voigt materials. Also in this case the problem has some degeneracy at 
the boundary. Different mathematical tools are required to handle the above term: being of the Kelvin-Voigt 
type, the latter differential operator is linear and not dissipative, but instead it is dispersive. Further details, 
and its analysis in connection with Turbulent-Kinetic-Energy (TKE) models are studied in [4], in the case 
of a turbulent viscosity depending only on the turbulent kinetic energy, but not on curlv. Related results 
involving a selective anisotropic turbulence model can be also found in [17].

Here, we consider –as a starting point– the problem at statistical equilibrium. We study just the steady 
case, which contains nevertheless several peculiar properties; the methods and techniques involved are 
rather different than those used in the previous mathematical theory of unsteady Baldwin-Lomax type 
models in [4,35].

The class of problems we study is that of finding a velocity field v : Ω → R3 and a pressure function 
π : Ω → R such that the following boundary value problem for a nonlinear system of partial differential 
equations is satisfied ⎧⎪⎪⎨⎪⎪⎩

−ν0 divDv + curlS + (∇v)v = −∇π + f in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

Here Ω denotes a bounded smooth domain in R3, f : Ω → R3 is the volume force and ν0 ≥ 0 is the kinematic 
viscosity.

As a generalized Baldwin-Lomax model, we will also consider the stress tensor S : Ω → R3×3 given by

S = S(x, curlv) = d(x)α(κ + |curlv|)p−2curlv, (1.2)

where d(x) = dist(x, ∂Ω), and α > 0, p > 1, κ ≥ 0 are given constants.
For technical reasons we will need to assume that p > 6

5 and α < p − 1, cf. Theorem 5.6. While the 
restriction on p is needed to give a proper meaning to the convective term, the limiting value of the power of 
the weight function (which is a length) deserves some comments, which are linked with technical arguments 
in the analysis, but that are also connected with modeling.

Modeling and a suggested exponent of the distance function

If one thinks of a flow as composed of eddies of different sizes in different places, as in Large Eddy 
Simulation (LES), then in a region of large eddies the velocity and its curl changes are both O(1) of the 
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typical distance. In a region of smaller eddies the velocity changes over a distance of O (eddy length scale), 
so the local deformation is O (1/eddy length scale), cf. [8, § 3.3.2]. Hence, the Baldwin-Lomax model 
introduces a turbulent viscosity νT = (Cδ)2|curlw|, where δ is the (local) smallest resolved scale, such that

νT =
{
O(δ2) in regions where |curlw| = O(1)

O(δ) in the smallest resolved scale where |curlw| = O(δ−1).

By extrapolation motivated by experiments with central difference approximations to linear convection 
diffusion problems the following alternate scaling is also proposed (cf. again [8] and Layton [32])

νT = (Cδ)p−1|Dw|p−2.

It satisfies

νT =
{
O(δp) in regions where |curlw| = O(1)

O(δ) in the smallest resolved scale where |curlw| = O(δ−1),

which corresponds to the critical value α = p − 1 we consider.
In the following we also give a justification of the critical value p − 1, based directly on dimensional 

arguments, rather than on numerical experiments or analogies as in [32].
Both the ∇v and ω have dimensions T−1, where T is a time, hence in the classical Baldwin-Lomax 

model the turbulent viscosity has the correct dimensions of a viscosity νT = d2|curlω| ∼ L2T−1, where L
is a length. This is the only way to identify (by using only a typical length and the vorticity) a quantity 
with the dimensions of a viscosity. A possible choice is that of using a third parameter and in turbulence 
modeling –especially in the presence of boundary layers– it is common to introduce the so called friction 
velocity v∗ (cf. [4]) which has the dimensions of a velocity, that is v∗ ∼ LT−1.

We propose to find a turbulent viscosity of the following form

νT = vθ∗d
α|ω|p−2,

modulo multiplication by some non-dimensional constant C, where θ, α, p are constant. It turns out that 
the dimensions of this quantity are νT ∼ Lθ+αT 2−θ−p, hence to be dimensionally consistent one has to solve 
the following system {

θ + α = 2,

2 − θ − p = −1,

which has a single solution

θ = 3 − p and α = p− 1. (1.3)

In conclusion, is turns out again that the “correct” exponent in terms of dimensional analysis is the critical 
one, that is α = p − 1 and the dimensionally correct generalization of the Baldwin-Lomax model is the one 
with stress tensor

S(v∗, d(x),ω) = Cv3−p
∗ d(x)p−1|ω|p−2,

and, after re-scaling, one can assume Cv3−p
∗ = 1.
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We will prove the existence of weak solutions for various models with different parameters, and highlight 
the role of the parameters p, α, and ν0. The analysis requires substantial changes in the mathematical 
approach depending on the range of these constants.

The main result we prove is the existence of weak solution in appropriate (weighted) function spaces. 
The results are obtained by using a classical Galerkin approximation procedure and the passage to the limit 
is done by means of monotonicity and truncation methods typical of the analysis of non-Newtonian fluids, 
see for instance the reviews in [12,36].

As far as the classical Baldwin-Lomax model is concerned (that is p = 3 and α = 2) the following is our 
main result.

Theorem 1.1. Let be given ν0 > 0 and f ∈ W−1,2(Ω) = (W 1,2
0 (Ω))′. Then, there exists v ∈ W 1,2

0,σ (Ω), with 
ω = curlv ∈ L3(Ω, d2) ∩ L3

loc(Ω), which is a weak solution Baldwin-Lomax model in the sense that

ˆ

Ω

ν0 Dv : Dϕ + d2|ω|ω · curlϕ + (ω × v) ·ϕ dx = 〈f ,ϕ〉 ∀ϕ ∈ C∞
0,σ(Ω).

The function spaces will be introduced in Section 2 and the proof of the above theorem can be found in 
Section 3. Since the parameter ν0 is typically very small in applications it is of interest also to consider the 
case ν0 = 0. This will be done in Section 4. In Section 5 we finally consider a general constitutive relation 
of the form (1.2), together with different values for α.
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2. Functional setting

In the sequel Ω ⊂ R3 will be a smooth and bounded open set, as usual we write x = (x1, x2, x3) = (x′, x3)
for all x ∈ R3. In particular, we assume that the boundary ∂Ω is of class C0,1, such that the normal unit 
vector n at the boundary is well defined and other relevant properties hold true. We recall a domain is 
of class Ck,1 if for each point P ∈ ∂Ω there are local coordinates such that in these coordinates we have 
P = 0 and ∂Ω is locally described by a Ck,1-function, i.e., there exist RP , R′

P ∈ (0, ∞), rP ∈ (0, 1) and a 
Ck,1-function aP : B2

RP
(0) → B1

R′
P
(0) such that

i) x ∈ ∂Ω ∩ (B2
RP

(0) ×B1
R′

P
(0)) ⇐⇒ x3 = aP (x′),

ii) ΩP := {(x ∈ R3
∣∣x′ ∈ B2

RP
(0), aP (x′) < x3 < aP (x′) + R′

P } ⊂ Ω,
iii) ∇aP (0) = 0, and ∀ x′ ∈ B2

RP
(0) |∇aP (x′)| < rP ,

where Bk
r (0) denotes the k-dimensional open ball with center 0 and radius r > 0.

We also define the distance d(x, A) of a point from a closed set A ⊂ R3 as follows

d(x, A) := inf |x − y|,

y∈A
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and we denote by d(x) the distance of x from the boundary of Ω

d(x) := d(x, ∂Ω).

We recall a well-known lemma about the distance function d(x), see for instance Kufner [30].

Lemma 2.1. Let Ω be a domain of class C0,1, then there exist constants 0 < c0, c1 ∈ R such that

c0 d(x) ≤ |a(x′) − x3| ≤ c1 d(x) ∀x = (x′, x3) ∈ ΩP .

For our analysis we will use the customary Lebesgue (Lp(Ω), ‖ . ‖p) and Sobolev spaces (W k,p(Ω), ‖ . ‖k,p)
of integer index k ∈ N and with 1 ≤ p ≤ ∞. As usual we denote by → the strong (norm) convergence, and 
by ⇀ the weak convergence. We do not distinguish between scalar and vector valued spaces, we just use 
boldface for vectors and tensors. We recall that Lp

0(Ω) denotes the subspace with zero mean value, while 
W 1,p

0 (Ω) is the closure of the smooth and compactly supported functions with respect to the ‖ . ‖1,p-norm. 
If Ω is bounded and if 1 < p < ∞, the following two relevant inequalities hold true:
1) the Poincaré inequality

∃CP (p,Ω) > 0 : ‖u‖p ≤ CP ‖∇u‖p ∀u ∈ W 1,p
0 (Ω); (2.1)

2) the Korn inequality

∃CK(p,Ω) > 0 : ‖∇u‖p ≤ CK‖Du‖p ∀u ∈ W 1,p
0 (Ω), (2.2)

where Du denotes the symmetric part of the matrix of derivatives ∇u.
As a combination of (2.1)-(2.2) we also have that for 1 ≤ p < 3 the Sobolev-type inequality

∃CS > 0 : ‖u‖p∗ ≤ CS‖Du‖p, (2.3)

holds true for all u ∈ W 1,p
0 (Ω), where p∗ := 3p

3−p .
The Korn inequality allows to control the full gradient in Lp by its symmetric part, for functions which 

are zero at the boundary. Classical results (cf. Bourguignon and Brezis [11]) concern controlling the full 
gradient with curl & divergence. The following inequality holds true: For all s ≥ 1 and 1 < p < ∞, there 
exists a constant C = C(s, p, Ω) such that,

‖u‖s,p ≤ C
[
‖divu‖s−1,p + ‖curlu‖s−1,p + ‖u · n‖s−1/p,p,∂Ω + ‖u‖s−1,p

]
,

for all u ∈ (W s,p(Ω))3, where ‖ . ‖s−1/p,p,∂Ω is the trace norm as explained below. This same result has 
been later improved by von Wahl [40] obtaining, under geometric conditions on the domain, the following 
estimate without lower order terms: Let Ω be such that b1(Ω) = b2(Ω) = 0, where bi(Ω) denotes the i-th 
Betti number, that is the dimension of the i-th homology group Hi(Ω, Z). Then, there exists C = C(p, Ω)
such that

‖∇u‖p ≤ C
(
‖divu‖p + ‖curlu‖p

)
, (2.4)

for all u ∈ (W 1,p(Ω))3 satisfying either (u · n)|∂Ω = 0 or (u × n)|∂Ω = 0. For more recent results see also 
Amrouche and Seloula [5].

In the trace-norm the fractional derivative appears in a natural way. Nevertheless, we need also to handle 
fractional spaces W r,p(Ω), which are defined by means of the semi-norm
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[u]ps,p :=
ˆ

Ω

ˆ

Ω

|u(x) − u(y)|p
|x − y|3+sp

dxdy for 0 < s < 1,

as made by functions u ∈ W [r],p(Ω), such that [Dαu]r−[r],p = [Dαu]s,p < ∞, for all multi-indices α such 
that |α| = [r] (for the trace norm one has to integrate instead with respect to the 2-dimensional Hausdorff 
measure). The main result we need is the following generalization of the classical Hardy inequality: Let 
u ∈ Lp(Ω), then

u

ds
∈ Lp(Ω) ⇐⇒ u ∈ W s,p

0 (Ω) for all 0 < s < 1, with s− 1
p
�= 1

2 . (2.5)

2.1. Weighted spaces

Since we have a boundary value problem with an operator which is space dependent, a natural functional 
setting would be that of weighted Sobolev spaces. For this reason we define now the relevant spaces we will 
use. We follow the notation from the classical book of Kufner [30] and also refer further to [6] for questions 
related to unbounded domains and to [27] for applications more specific to fluid flows.

We start by defining weighted Sobolev spaces. Let w(x) : Ω → R+ be given a function (weight) which 
is non-negative and almost everywhere positive. We define, for 1 ≤ p < ∞, the weighted space Lp(Ω, w) as 
follows

Lp(Ω, w) :=

⎧⎨⎩f : Ω → Rn measurable:
ˆ

Ω

|f(x)|p w(x) dx < ∞

⎫⎬⎭ .

The definition is particularly relevant if it allows to work in the standard setting of distributions D′(Ω): for 
p > 1 we have

w−1/(p−1) ∈ L1
loc(Ω) ⇒ Lp(Ω, w) ⊂ L1

loc(Ω) ⊂ D′(Ω).

It turns out that C∞
0 (Ω) is dense in Lp(Ω, w) if the weight satisfies at least w ∈ L1

loc(Ω), see [30]. In addition, 
Lp(Ω, w) is a Banach space when equipped with the norm

‖f‖p,w :=
(ˆ

Ω

|f(x)|pw(x) dx
)1/p

.

Clearly if w(x) ≡ 1 then Lp(Ω, w) = Lp(Ω).
Next, we define weighted Sobolev spaces

W k,p(Ω, w) := {f : Ω → Rn : Dαf ∈ Lp(Ω, w) for all α s.t. |α| ≤ k} ,

equipped with the norm

‖f‖k,p,w :=
( ∑

|α|≤k

‖Dαf‖pp,w

)1/p

.

As expected, we define W k,p
0 (Ω, w) as follows

W k,p
0 (Ω, w) := {ϕ ∈ C∞

0 (Ω)}‖ . ‖k,p,w
.
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In our application the weight w(x) will a power of the distance d(x) from the boundary. Consequently, 
we specialize to this setting and give specific notions regarding these so-called power-type weights, see 
Kufner [30]. First, it turns out that W k,p(Ω, dα) is a separable Banach spaces provided α ∈ R, k ∈ N

and 1 ≤ p < ∞. In this special setting, several results are stronger or more precise due to the inclusion 
Lp(Ω, dα) ⊂ Lp

loc(Ω) for all α ∈ R.
Probably one of the most relevant properties is the embedding

Lp(Ω, dα) ⊂ L1(Ω) if α < p− 1. (2.6)

It follows directly from Hölder’s inequality as follows

ˆ

Ω

|f |dx =
ˆ

Ω

dα/p|f |d−α/pdx ≤
( ˆ

Ω

dα|f |pdx
)1/p(ˆ

Ω

d−αp′/pdx
)1/p′

,

using that the latter integral is finite if and only if

αp′

p
= α

p− 1 < 1

by Lemma 2.1. Moreover, as in [30, Prop. 9.10] it follows that the quantity 
( ´

Ω dα|∇f |p dx
)1/p is an equiv-

alent norm in W 1,p
0 (Ω, dα), provided that α < p − 1. In this case functions from W 1,p

0 (Ω, dα) are zero on 
∂Ω.

Remark 2.2. The above results explain the critical role of the power α = p −1 and highlight the fact that the 
original Balwdin-Lomax model is exactly that corresponding to the critical exponent. For the applications 
we have in mind the value of α is not so strictly relevant and in fact, following the same procedure as in [4], 
it also makes sense to consider turbulent viscosity as follows

νT (v(x)) = �0 �(x)|curlv(x)|, (2.7)

for some �0 ∈ R+.

Appropriate versions of the Sobolev inequality (2.3) are valid also for weighted Sobolev spaces:

Lemma 2.3. There exists a constant C = C(Ω, δ, p), such that

∥∥∥u(x) − −
ˆ

Ω

u(y) dy
∥∥∥
q
≤ C‖dδ(x)∇u(x)‖p = ‖∇u‖p,dpδ , (2.8)

for all u ∈ W 1,p(Ω, dδp), where q ≤ 3p
3−p(1−δ) .

For a proof see Hurri-Syrjänen [29]. Note that this inequality is formulated removing constants by means 
of subtracting averages and that the exponent q equals to p∗ (the usual Sobolev embedding exponent) 
if δ = 0. This will be used later on to make a proper sense of the quadratic term in the Navier–Stokes 
equations, cf. Definitions 4.1 and 5.2.

In addition to (2.6) and the Hardy inequality, the critical role of the exponent p − 1 is also reflected in 
results about general weights and their relation with the maximal function.
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Definition 2.4. We say that w ∈ L1
loc(R3), which is w ≥ 0 a.e., belongs to the Muckenhoupt class Ap, for 

1 < p < ∞, if there exists C such that

sup
Q⊂Rn

(
−
ˆ

Q

w(x) dx
)(

−
ˆ

Q

w(x)1/(1−p) dx
)p−1

≤ C,

where Q denotes a cube in R3.

The role of the power α will be crucial in the sequel and we recall the following result, which allows us 
to embed the results within a classical framework and also to use fundamental tools of harmonic analysis. 
The powers of the distance function belong to the class Ap according to the following well-known result (for
a proof see for instance Durán, Sammartino, and Toschi [22, Thm. 3.1]).

Lemma 2.5. The function w(x) =
(
d(x)

)α is a Muckenhoupt weight of class Ap if and only if −1 < α < p −1.

The main result which we will use about singular integrals, which follows from the pioneering work of 
Muckenhoupt on maximal functions, is the following.

Lemma 2.6. Let CZ : C∞
0 (Rn) → C∞

0 (Rn) be a standard Calderón-Zygmund singular integral operator in 
the sense of [38, Chapter II]. Let w ∈ Ap, for 1 < p < ∞. Then, the operator CZ is continuous from 
Lp(Ω, w) into itself.

We will use this result mainly on the operators related to the solution of the Poisson equation, to 
reconstruct a vector field from its divergence and its curl.

2.2. Solenoidal spaces

As usual in fluid mechanics, when working with incompressible fluids, it is natural to incorporate the 
divergence-free constraint directly in the function spaces. These spaces are built upon completing the space 
of solenoidal smooth functions with compact support, denoted as ϕ ∈ C∞

0,σ(Ω), in an appropriate topology. 
For α > 0 define

Lp
σ(Ω, dα) :=

{
ϕ ∈ C∞

0,σ(Ω)
}‖ . ‖p,dα

,

W 1,p
0,σ (Ω, dα) :=

{
ϕ ∈ C∞

0,σ(Ω)
}‖ . ‖1,p,dα

.

For α = 0 they reduce to the classical spaces Lp
σ(Ω) and W 1,p

0,σ (Ω). Next, we will extensively use the following 
extension of inequality (2.4).

Lemma 2.7. Let 1 < p < ∞ and assume that the weight w belongs to the class Ap. Then there exists1 a 
constant C depending on the weight w ∈ Ap such that

‖∇u‖p,w ≤ C(‖divu‖p,w + ‖curlu‖p,w) ∀u ∈ W 1,p
0 (Ω, w).

Proof. Let us initially assume that u ∈ C∞
0 (Ω). We can extend u by zero to an element of C∞

0 (Rn) such 
that the boundary of Ω plays no role, anymore. We have the well-known identity

1 The space W 1,p
0 (Ω, w) can be replaced by other function spaces, where C∞

0 (Ω) functions are dense.
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curl curlu(x) = −Δu(x) + ∇divu(x) ∀x ∈ Rn.

By use of the Newtonian potential this implies

u(x) = − 1
4π∇x

ˆ

Rn

divy u(y)
|x − y| dy + 1

4π curl x
ˆ

Rn

curl yu(y)
|x − y| dy,

where the integral can be considered as performed only on Ω, which contains the support of u, see e.g. von 
Wahl [40, Sec. 0, Introduction]. Hence, we obtain for all x ∈ Rn

∇u(x) = − 1
4π∇x ∇x

ˆ

Rn

divy u(y)
|x − y| dy + 1

4π∇x curl x
ˆ

Rn

curl y u(y)
|x − y| dy,

= − 1
4π

ˆ

Rn

∇x ∇x
div y u(y)
|x − y| dy + 1

4π

ˆ

Rn

∇x curl x
curl y u(y)
|x − y| dy,

= CZ1[divu](x) + CZ2[curlu](x),

where both terms CZi from the right-hand side are Calderon-Zygmund type singular integrals. Applying 
the Muckenhoupt result from Lemma 2.6, the claim follows for u ∈ C∞

0 (Ω) ⊆ C∞
0 (Rn). The general case 

follows by approximation in spaces such that smooth and compactly supported functions are dense, as the 
ones we consider. �

In particular, we will use the latter result in the following special form

Corollary 2.8. For −1 < α < p − 1 there exists a constant C = C(Ω, α, p) such that
ˆ

Ω

dα|∇v|p dx ≤ C

ˆ

Ω

dα|curlv|p dx ∀v ∈ W 1,p
0,σ (Ω, dα). (2.9)

A basic tool in mathematical fluid mechanics is the construction of a continuous right inverse of the 
divergence operator with zero Dirichlet conditions. This problem has infinitely many solutions and an 
explicit construction is that due to Bogovskĭı [10], which is reviewed in Galdi [26, Ch. 3] (for earlier results 
about the inversion of the divergence operator with homogeneous Dirichlet conditions, especially in the 
Hilbertian case, we refer to Tartar [39] and Ladyžhenskaya [31], but many other author contributed to this 
problem in various functional settings). The results we need in the sequel are the following.

Theorem 2.9. Let ω ⊂ R3 be a bounded smooth domain and let f ∈ Lp
0(ω) there exists at least one u =

Bogω(f) ∈ W 1,p
0 (ω) which solves the boundary value problem{

divu = f in ω,

u = 0 on ∂ω.

Among other spaces, the operator Bogω is linear and continuous from Lp(ω) to W 1,p
0 (ω), for all p ∈ (1, ∞).

2.3. Solenoidal Lipschitz truncation

We recall that the nonlinear operator defined as follows Ap

Apw = −div
(
|Dw|p−2Dw

)
,
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is strongly monotone in W 1,p
0,σ (Ω), for 1 < p < ∞. In fact

(|Dw1|p−2Dw1 − |Dw2|p−2Dw2) : (Dw1 − Dw2) ≥ 0,

with equality if and only if Dw1 = Dw2. A crucial point in the classical Minty-Browder argument relies on 
analyzing, for vn, v ∈ W 1,p(Ω) the non-negative quantity

ˆ

Ω

(|Dvn|p−2Dvn − |Dv|p−2Dv) : (Dvn − Dv) dx ≥ 0.

Here vn is a Galerkin approximation and v its weak W 1,p
0,σ -limit. Using the weak formulation for both vn

and its limit v one can show (using the monotonicity argument) that

Ap(vn) → Ap(v) at least in (C∞
0,σ(Ω))′.

Two main points of the classical argument are 1) being allowed to use vn as test function and 2) showing that
ˆ

Ω

(∇vn)vn · vn dx →
ˆ

Ω

(∇v)v · v dx.

In general item 1) trivially follows for all 1 < p < ∞, due to the continuity of the operator Ap. We will 
see that this point is not satisfied with the degenerate operators we handle in Section 3-4 and appropriate 
localization/regularization/truncation must be introduced, see below. Hence, we are using here some known 
technical tools in a new and non-standard context: the use of local techniques is not motivated by the 
presence of the convective term, but by the character of the nonlinear stress-tensor. Probably our analysis 
can be extended also to other degenerate fractional operator as those studied by Abdellaoui, Attar, and 
Bentifour [1].

Note also that it is for the request 2) that a limitation on the exponent arises, since vn → v in Lq

for q < p∗ = 3p
3−p and this enforces a lower bound on the allowed values of p. In the analysis of non-

Newtonian fluid this classical monotonicity argument is not applicable when p ≤ 9
5 (in the steady case). 

To overcome this problem and to solve the system also for smaller values of p (up to 6
5 ) one needs test 

functions which are Lipschitz continuous, hence one needs to properly truncate vm − v. This is the point 
where the Lipschitz truncation, originally developed by Acerbi and Fusco [2,3] in the context of quasi-
convex variational problems, comes into play. In fluid mechanics this tool has been firstly used in [19,23], for 
a review we refer to [12,36]. Being strongly nonlinear and also non-local, the Lipschitz truncation destroys 
the solenoidal character of a given function. Consequently, the pressure functions have to be introduced. 
Another approach is that of constructing a divergence-free version of the Lipschitz truncation - extending a 
solenoidal Sobolev function by a solenoidal Lipschitz function. This approach has been developed in [13,14]
and it completely avoids the appearance of the pressure function and highly simplifies the proofs avoiding 
results obtained in Simader and Sohr [37] (as done in Diening, Růžička, and Wolf [21]) to associate a pressure 
to the weak solution. We report the following version which can be found in [14, Thm. 4.2].

Theorem 2.10. Let 1 < s < ∞ and B ⊂ R3 a ball. Let (um) ⊂ W 1,s
0,σ(B) be a weak W 1,s

0,σ(B) null sequence 

extended by zero to R3. Then, there exist j0 ∈ N and a double sequence (λm,j) ⊂ R with 22j ≤ λm,j ≤ 22j+1−1

a sequence of functions (um,j) and open sets2 (Om,j) with the following properties for j ≥ j0.

2 The set Om,j is explicitly given by Om,j := {M(∇2(curl −1um)) > λm,j}, where M is the Hardy-Littlewood maximal operator 
and curl −1 = curl Δ−1.
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(a) um,j ∈ W 1,∞
0,σ (2B) and um,j = um on R3 \ Om,j for all m ∈ N;

(b) ‖∇um,j‖∞ ≤ cλm,j for all m ∈ N;
(c) um,j → 0 for m → ∞ in L∞(Ω);
(d) ∇um,j ∗

⇀ 0 for m → ∞ in L∞(Ω);
(e) For all m, j ∈ N it holds ‖λm,jχOm,j‖s ≤ c(s) 2− j

s ‖∇um‖s.

As usual we denote by χA the indicator function of the measurable set A ⊂ R3.
We remark that the key idea in the recovery of the nonlinear stress tensor (and especially to treat 

convergence issues) is cutting away the singular boundary. The Lipschitz truncation will be applied locally, 
where the effect of the weight function is not seen. For a version of the solenoidal Lipschitz truncation in 
weighted spaces, not needed in our case, we refer to [15,16] (see also [34]).

3. Existence of weak solutions for the Baldwin-Lomax model in the steady case

In this section we consider the model for the average of turbulent fluctuations attributed to Baldwin and 
Lomax (1.1). By using a standard notation we denote the curl of v by ω

ω = curlv = ∇× v.

Since we consider the equations in a rotational setting, we write the convective term as follows

(∇v)v = ω × v + 1
2∇|v|2.

By redefining the pressure we can consider the following steady system for a turbulent flow at statistical 
equilibrium ⎧⎪⎪⎨⎪⎪⎩

−ν0 divDv + ω × v + curl
(
d2|ω|ω

)
+ ∇π = f in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω,

(3.1)

in the case ν0 > 0. We have the following result, which does not follow by the standard theory of monotone 
operator.

Theorem 3.1. Let be given ν0 > 0 and f ∈ W−1,2(Ω) = (W 1,2
0 (Ω))′. Then, there exists v ∈ W 1,2

0,σ (Ω), with 
ω ∈ L3(Ω, d2) ∩ L3

loc(Ω), which is a weak solution to (3.1), that is such that
ˆ

Ω

ν0 Dv : Dϕ + d2|ω|ω · curlϕ + (ω × v) ·ϕ dx = 〈f ,ϕ〉 ∀ϕ ∈ C∞
0,σ(Ω).

Here 〈·, ·〉 denotes generically a duality pairing. By density it is enough to consider test functions ϕ ∈
W 1,2

0,σ (Ω), with curlϕ ∈ L3
loc(Ω).

Remark 3.2. It is possible to recover the pressure (in the sense of distributions) by the classical theorem due 
to De Rham. Using a version of the negative norm theorem in weighted spaces [20], the pressure inherits 
–by comparison– the integrability properties from the remaining terms of the equation.

In this case with ν0 > 0 uniqueness in general is not expected, but it follows in the case of small data, 
exactly as for the classical Navier-Stokes equations. The case with ν0 = 0 seems completely open, see also 
the remark concerning uniqueness in the final section.
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The proof of Theorem 3.1 is based on a Galerkin approximation and monotonicity arguments (beyond 
the classical Minty-Browder trick) to pass to the limit.

We observe that the term coming from Baldwin-Lomax approach is monotone too. We prove for a general 
p ∈ (1, ∞) and a general non-negative weight the following inequality.

Lemma 3.3. For smooth enough ωi (it is actually enough that d
α
p ωi ∈ Lp(Ω), with 1 < p < ∞) and for 

α ∈ R+ it holds that
ˆ

Ω

(dα|ω1|p−2ω1 − dα|ω2|p−2ω2) · (ω1 − ω2) dx ≥ 0,

for any (not necessarily the distance) bounded function such that d : Ω → R+ for a.e. x ∈ Ω.

Proof. We have
ˆ

Ω

(dα|ω1|p−2ω1 − dα|ω2|p−2ω2) · (ω1 − ω2) dx

=
ˆ

Ω

(|dα
p ω1|p−2d

α
p ω1 − |dα

p ω2|p−2d
α
p ω2) : (d

α
p ω1 − d

α
p ω2) dx,

where the last inequality derives from the same monotonicity/convexity argument used classically for the 
operator Ap. �
Proof of Theorem 3.1. The proof is based on the construction of an approximate sequence (vm) ⊂ W 1,3

0,σ (Ω)
which solves the following regularized problem

− 1
m

div
(
|Dvm|Dvm

)
− ν0 divDvm + (∇vm)vm

+ curl
(
d2|ωm|ωm

)
+ ∇π = f in Ω

subject to divergence-free constraint and homogeneous boundary conditions. In the weak formulation this 
reads as follows

ˆ

Ω

1
m
|Dvm|Dvm :Dϕ + ν0 Dvm : Dϕ + d2|ωm|ωm · curlϕ

+ (ωm × vm) ·ϕ dx = 〈f ,ϕ〉, ∀ϕ ∈ W 1,3
0,σ (Ω).

(3.2)

The regularization is a technical step necessary to have a continuous problem, approximating (3.1) and for 
which the difference vm − v can be localized to produce a legitimate test function (this is not easy to be 
done at the finite dimensional level).

The construction of the solution vm goes through a Galerkin approximation vm
n ∈ Vn,

1
m

ˆ

Ω

|Dvm
n |Dvm

n : Dϕj + ν0 Dvm
n : Dϕj + d2|ωm

n |ωm
n · curlϕj

+(ωm
n × vm

n ) ·ϕj dx = 〈f ,ϕj〉 for j = 1, . . . , n,

where Vn = Span{ϕ1, . . . , ϕn} and ωm
n = curlvm

n . The functions (ϕi)i are a Galerkin basis made by smooth 
and solenoidal functions. Since only the third term on the left-hand side of (3.2) is effected by the weight, and 
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the basis functions are smooth, the classical arguments are not spoiled by the singular weight. The existence 
of vm

n can be proved as solution of standard nonlinear algebraic system, with a compact perturbation (leading 
also to a non-negative contribution in the energy estimates, which allows us to prove the a priori bounds, 
which are the core step also for the proof of existence of finite dimensional approximation).

Using vm
n as test function gives the (uniform in n ∈ N) estimate

ˆ

Ω

1
m
|Dvm

n |3 + ν0

2 |Dvm
n |2 + d2|ωm

n |3 dx ≤ C2
K

2ν0
‖f‖2

−1,2,

where CK is the constant in Korn’s inequality (2.2). Hence, using Korn inequality, we have (up to a sub-
sequence) that, for any fixed m ∈ N,

vm
n

n
⇀ vm in W 1,3

0,σ (Ω), (3.3)

vm
n

n→ v in Lq(Ω), ∀ q < ∞. (3.4)

This regularity is enough to apply the classical monotonicity argument (cf. [33, p. 171, p. 216]). In particular, 
from (3.3)-(3.4) it follows that

ˆ

Ω

(ωm
n × vm

n ) · vm
n dx n→

ˆ

Ω

(ωm × vm) · vm dx.

Next, the function vm ∈ W 1,3
0,σ (Ω) is a weak solution in the sense of (3.2). This can be proved by observing 

that if we define the following operator

B1/m(w) := − 1
m

div |Dw|Dw − ν0 divDw + curl (d2 |curlw|curlw),

it holds that

0 ≤
ˆ

Ω

(
B1/m(vm

n ) − B1/m(w)
)

: (vm
n − w) dx ∀w ∈ W 1,3

0,σ (Ω),

(the latter inequality holds not only formally, but rigorously, since integral is well-defined). Moreover, being 
vm
n a legitimate test function in the Galerkin formulation, it is possible to pass to the limit (for fixed m ∈ N) 

as n → ∞, showing that (exactly as in [33], where the tools for generalized Navier-Stokes equations have 
been developed)

0 ≤
ˆ

Ω

(
B1/m(vm) − B1/m(w)

)
: (vm − w) dx ∀w ∈ W 1,3

0,σ (Ω).

Choosing w = vm − λ ϕ, with λ > 0 and arbitrary ϕ ∈ W 1,3
0,σ (Ω), this is enough to infer that 

limn→+∞ B1/m(vm
n ) = B1/m(vm).

To study the limit m → +∞ for the sequence (vm) a technique beyond the classical monotonicity is 
needed.

First, taking vm as test function in (3.2) we get

ˆ 1
m
|Dvm|3 + ν0

2 |Dvm|2 + d2|ωm|3 dx ≤ C2
K

2ν0
‖f‖2

−1,2. (3.5)

Ω
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Hence, using Korn inequality, we have (up to a sub-sequence)

1
m
|Dvm|Dvm ⇀ 0 in L3/2(Ω), (3.6)

vm ⇀ v in W 1,2
0,σ (Ω), (3.7)

vm → v in Lq(Ω), ∀ q < 6, (3.8)

d4/3|ωm|ωm ⇀ χ in L3/2(Ω). (3.9)

This implies in particular that, as m → +∞,
ˆ

Ω

(ωm × vm) · vm dx →
ˆ

Ω

(ω × v) · v dx,

ˆ

Ω

d2|ωm|ωm ·ψ dx =
ˆ

Ω

d4/3|ωm|ωm · d2/3ψ dx

→
ˆ

Ω

χ · d2/3ψ dx =
ˆ

Ω

d2/3χ ·ψ dx,

for all ψ ∈ L3(Ω). Passing to the limit in the weak formulation we have
ˆ

Ω

ν0 Dv : Dϕ + d2/3χ · curlϕ + (ω × v) ·ϕdx = 〈f ,ϕ〉 (3.10)

for all ϕ ∈ C∞
0,σ(Ω). If we formally rewrite now the inequality

0 ≤
ˆ

Ω

(d2|ωm|ωm − d2|ω|ω) · (ωm − ω) dx,

coming from the monotonicity and express the same quantity by means of the weak formulation, we can 
observe that the classical monotonicity argument will work since the convergence of the generally troubling 
term

ˆ

Ω

ωm × vm · (vm − v) dx → 0,

trivially follows from the uniform bound ‖vm‖W 1,2 ≤ C.

The crucial point is now that the integral
ˆ

Ω

d2|ω|ω · (ωm − ω) dx,

is not defined. In fact, for v ∈ W 1,2
0,σ (Ω) we only have d2|ω|ω ∈ L1(Ω) and also ωm−ω ∈ L2(Ω). To overcome 

this problem we observe that for each compact set K � Ω(
min
x∈K

d(x)2
)ˆ
K

|ωm|3 dx ≤
ˆ

Ω

d2|ωm|3 dx ≤ C2
K

2ν0
‖f‖2

−1,2,

hence a completely local argument may work, being ω in L3(K).
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Remark 3.4. Since the function (d(x))2 is not in the Muckenhoupt A3 class, we cannot recover global bounds 
on the sequence (∇vm) from the a priori estimate (3.5) and Lemma 2.7. This is a mathematical peculiarity 
of the Baldwin-Lomax stress tensor.

To use a local argument we consider the family of compact sets

Kn :=
{
x ∈ Ω : d(x) ≥ 1

n

}
� Ω,

which are nested and invading, that is Kn ⊂ Kn+1 and ∪n∈NKn = Ω. Hence, by a diagonal argument, up 
to a further sub-sequence, we can write that for each K � Ω

ωm ⇀ ω in L3(K),

where ω = curlv, by uniqueness of the weak limit.
Next, we fix an open ball B � Ω such that 2B � Ω and localize with a bump function η ∈ C∞

0 (2B) such 
that

χB(x) ≤ η(x) ≤ χ2B(x), (3.11)

and |∇η| ≤ c R−1, where R > 0 is the radius of B. We define the following divergence-free function with 
support in 2B:

wm := η (vm − v) − Bog2B(∇η · (vm − v)),

where Bog2B is the Bogovskĭı operator on 2B, acting linearly from Lp
0(2B) to W 1,p

0 (2B), cf. Theorem 2.9. 
We introduce the function wm to localize the arguments and thus to avoid problems with the singularity of 
the weight at the boundary. The multiplication with a cut-off function destroys the solenoidal character of 
the functions. This is corrected by means of the Bogovskĭı operator, which results in an additional term of 
lower order. Since ∇η · (vm − v) is bounded in L6

0(2B) by (3.7), we have that wm is bounded in W 1,6
0,σ (2B). 

Moreover, vm → v in L3(Ω) and the continuity of the Bogovskĭı operator Bog2B implies

wm → 0 in L3(2B), (3.12)

wm ⇀ 0 in W 1,3(2B), (3.13)

Bog2B(∇η · (vm − v)) → 0 in W 1,3
0 (2B). (3.14)

The functions wm ∈ W 1,3
0 (2B) and their extensions by zero on Ω\2B (the extended functions still belong 

to W 1,3
0 (Ω) and we denote, by a slight abuse of notation, with the same symbol) are then legitimate test 

functions, since |ωm|ωm and |ω|ω both belong to L3/2
loc (Ω).

We subtract the weak formulation (3.2) of the regularized problem from its limit version (3.10) and test 
with the function wm introduced above. After rearranging terms we obtain the following equality

ˆ

Ω

η
(
d2|ωm|ωm − d2|ω|ω

)
·
(
ωm − ω

)
dx

= −
ˆ

Ω

(
d2|ωm|ωm − d2|ω|ω

)
· ∇η ×

(
vm − v

)
dx

+
ˆ (

d2|ωm|ωm − d2|ω|ω
)
· curl

[
Bog2B(∇η · (vm − v))

]
dx
Ω
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− ν0

ˆ

Ω

D(vm − v) : Dwm dx +
ˆ

Ω

(
ω × v − ωm × vm

)
· wm dx

+
ˆ

Ω

(
d2/3χ− d2|ω|ω

)
· curlwm dx − 1

m

ˆ

Ω

|Dvm|Dvm : Dwm dx

=: (I) + (II) + (III) + (IV ) + (V ) + (V I).

Due to the strong L3 convergence of vm and (3.14) we see that (I) and (II) vanish as m → +∞. (We also 
used that the function d is uniformly bounded.) We write the following equality

(III) = −ν0

ˆ

Ω

η|D(vm − v)|2 − ν0

ˆ

Ω

D(vm − v) : ∇η ⊗ (vm − v) dx

+ ν0

ˆ

Ω

D(vm − v) : D
[
Bog2B(∇η · (vm − v))

]
dx,

where the first term is non-positive and the second and third one vanish on account of (3.8) and (3.14)
respectively. The convergence of (IV ) follows trivially from the uniform bounds in W 1,2(Ω) and (3.12). The 
term (V ) → 0 due to (3.14) and the bound in L3/2(B) of χ and |ω|ω. Finally, (V I) → 0, due the W 1,3(B)
bound of vm − v and (3.6).

In conclusion, since η ≥ 0, the integrand is non-negative by Lemma 2.7, and from η ≡ 1 on B, it follows

0 ≤
ˆ

B

(
d2 |ωm|ωm − d2|ω|ω

)
·
(
ωm − ω

)
dx

≤
ˆ

Ω

η
(
d2 |ωm|ωm − d2|ω|ω

)
·
(
ωm − ω

)
dx.

Consequently, we obtain

lim
m→∞

ˆ

B

(
d2 |ωm|ωm − d2|ω|ω

)
·
(
ωm − ω

)
dx = 0,

and so,

d2/3ωm → d2/3ω a.e in B.

Finally, we use d(B, ∂Ω) > R and the fact that the distance d(x) is strictly positive for each x ∈ Ω. The 
arbitrariness of B implies

ωm → ω a.e in Ω.

Next, the limit function ω belongs to L2(Ω) and it is finite almost everywhere. The hypotheses of Vitali’s 
convergence theorem are satisfied since

d4/3|ωm|ωm uniformly bounded in L3/2(Ω),

d4/3|ωm|ωm → d4/3|ω|ω a.e. in Ω,

ω finite a.e.,

ensuring that d2/3χ = d2|ω|ω and also that the limit v is a weak solution to (3.1). �
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4. On generalized Baldwin-Lomax models

In the proof of the result from the previous section it was essential to have ν0 positive and fixed, to derive 
a uniform bound of (vm)m∈N in W 1,2

0 (Ω). This allows us to make sense of the boundary conditions, among 
the other relevant properties. On the other hand, in applications ν0 is generally an extremely small number. 
The K41-Kolmogorov theory for turbulence is in fact valid in the vanishing viscosity limit, and predicts 
(still in a statistical sense) a non zero turbulent dissipation, see Frisch [24]. To capture the properties which 
are still valid in the limit ν0 = 0 we study now the following steady system⎧⎪⎨⎪⎩

(∇v)v + curl
(
dα(κ + |ω|)p−2ω

)
+ ∇π = f in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

Here κ ≥ 0 and the most interesting case is the following one

κ = 0, p = 3, α = 1,

where the exponent p = 3 is exactly that from the turbulence theory (as a generalization of the classical 
Smagorinsky theory), while α = 1 is the same as suggested in (2.7) from the model introduced in [4]. 
Without loss of generality we also set �0 = 1 and �(x) = d(x), as in the turbulent viscosity described in 
Remark 2.2.

Remark 4.1. The critical value (coming from both LES and the Muckenhoupt theory, cf. Section 2.1) for 
the power of the distance is α = p − 1 = 3 − 1 = 2. In this case certain bounds on the first derivatives of 
the velocity can be still inferred from weighted estimates of the gradient, as in (2.9).

We start our analysis focusing on the following boundary value problem still written in rotational form⎧⎪⎨⎪⎩
ω × v + curl

(
d |ω|ω

)
+ ∇π = f in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

(4.1)

Definition 4.2. We say that v ∈ W 1,3
0,σ (Ω, d) is a weak solution to (4.1) if the following equality is satisfied

ˆ

Ω

(ω × v) ·ϕ + d |ω|ω · curlϕ dx =
ˆ

Ω

f ·ϕdx ∀ϕ ∈ C∞
0,σ(Ω).

The main result we will prove in this section is the following.

Theorem 4.3. Let be given f = divF with F ∈ L3/2(Ω, d−1/2) then there exists a weak solution v ∈ W 1,3
0,σ (Ω, d)

of the problem (4.1). In addition, the solution satisfies the energy-type equality
ˆ

Ω

d |ω|3 dx = −
ˆ

Ω

F · ∇v dx.

Remark 4.4. By using fractional spaces we have that the same theorem holds for instance if ∂Ω is of class 
C2 and if

f ∈ Ŵ−2/3,3/2(Ω) := (W 2/3,3(Ω) ∩ L3
0(Ω))′.
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In fact, by using Thm. 3.4 from Geißert, Heck, and Hieber [28] there exists a bounded linear operator 
R : Ŵ−2/3,3/2(Ω) → W 1/3,3/2(Ω), such that divR(f) = f . Next, observe that W 1/3,3/2(Ω) = W

1/3,3/2
0 (Ω), 

and consequently it follows

〈f ,ϕ〉 = 〈divR(f),ϕ〉 = −〈R(f),∇ϕ〉 = −〈d−1/3R(f), d1/3∇ϕ〉 ∀ϕ ∈ C∞
0 (Ω),

and –with the characterization of fractional spaces from (2.5)–∣∣∣〈f ,ϕ〉∣∣∣ ≤ c‖R(f)‖1/3,3/2‖∇ϕ‖3,d ≤ ‖f‖−2/3,3/2‖∇ϕ‖3,d.

Then, the estimates follow in the same manner as before.

Due to the fact that we have a problem without a principal part of standard p-Stokes type, we need to 
properly approximate (4.1) in order to construct weak solutions. As in the previous section we consider, for 
ε > 0, the following approximate system⎧⎪⎨⎪⎩

−ε div (|Dvε|Dvε) + ωε × vε + curl
(
d |ωε|ωε

)
+ ∇πε = f in Ω,

divvε = 0 in Ω,

vε = 0 on ∂Ω,

(4.2)

which falls within in the classical setting as studied starting with the work of Ladyžhenskaya [31] and 
Lions [33].

Remark 4.5. At this stage (existence of weak solutions for the approximate problem) the power of d(x)
entering in the equations does not play any specific role.

With the same tools already used, we have the following result.

Theorem 4.6. For any ε > 0 and for f = divF with F ∈ L3/2(Ω) there exists a weak solution vε ∈ W 1,3
0,σ (Ω)

which satisfies
ˆ

Ω

ε|Dvε|Dvε : Dϕ + (ωε × vε) ·ϕ + d |ωε|ωε · curlϕdx = −
ˆ

Ω

F · ∇ϕ dx, (4.3)

for all ϕ ∈ W 1,3
0,σ (Ω). The function vε satisfies the energy-type estimate

ε‖vε‖3
W 1,3

0
+
ˆ

Ω

d |ωε|3 ≤ C√
ε
‖F‖3/2

3/2. (4.4)

Moreover, if F ∈ L3/2(Ω, d−1/2), then

ε‖vε‖3
W 1,3 +

ˆ

Ω

d |ωε|3 ≤ C

ˆ

Ω

|F|3/2
d1/2 dx = C‖F‖3/2

3/2,d−1/2 , (4.5)

for some constant C independent of ε.

Remark 4.7. The approximation in (4.2) is introduced only as a mathematical tool, no modeling is hidden 
inside the choice for the perturbation.
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The regularization can be also done in the following way, respecting the rotational structure of the 
equation:

ωε × vε + curl
(
(ε + d)|ωε|ωε

)
+ ∇πε = f in Ω.

For this approximation one can use the fact that d + ε ≥ ε > 0 and ‖ωε‖p ∼ ‖∇v‖p for functions which 
are divergence-free and zero at the boundary by (2.4). We preferred the more classical way in order to use 
directly known results, being completely equivalent in terms of existence theorems.

Proof of Theorem 4.6. We do not give the easy proof of this result we just show the basic a priori estimates. 
The first ε-dependent estimate (4.4) is obtained by using as test function vε itself, integrating by parts, and 
using Hölder inequality to estimate the right-hand side.

In the following we also need estimates which are independent of ε > 0 and choosing again ϕ = vε

in (4.3) the right-hand side can be estimated by

ˆ

Ω

d−1/2F · d1/3∇vε dx ≤ C

⎛⎝ˆ

Ω

|F|3/2
d1/2 dx

⎞⎠2/3 ⎛⎝ˆ

Ω

d |∇vε|3 dx

⎞⎠1/3

,

using Hölder’s inequality. On account of (2.9) and Young’s inequality we obtain further

ε‖vε‖3
W 1,3 +

ˆ

Ω

d |ωε|3 + d |∇vε|3 dx ≤ C

ˆ

Ω

|F|3/2
d1/2 dx, (4.6)

hence (4.5) with a constant C independent of ε.
Finally, for q < 3/2 we have by Hölder’s inequality

ˆ

Ω

|∇vε|q dx =
ˆ

Ω

d−q/3 dq/3|∇vε|q dx

≤

⎛⎝ˆ

Ω

d−
q

3−q dx

⎞⎠(3−q)/3 ⎛⎝ˆ

Ω

d |∇vε|3 dx

⎞⎠q/3

≤ c

⎛⎝ˆ

Ω

d |∇vε|3 dx

⎞⎠q/3

,

such that

⎛⎝ˆ

Ω

|∇vε|q dx

⎞⎠3/q

≤ c

ˆ

Ω

d |ωε|3 dx ≤ C‖F‖3/2
3/2,d−1/2 ,

using (4.6). This proves then that the solution to (4.2) satisfies also the estimate

‖∇vε‖Lq ≤ C(q,Ω, ‖F‖3/2,d−1/2), (4.7)

for all q < 3 . �
2
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Collecting all estimates we can give now the main existence result for the generalized Baldwin-Lomax 
model (4.1), passing to the limit as ε → 0.

Proof of Theorem 4.3. Using the existence result from Theorem 4.6 we obtain a sequence of solutions (vε) ⊂
W 1,3

0,σ (Ω) to (4.2). From the uniform estimates (4.5)-(4.7) we infer the existence of a limit function v ∈
W 1,q

0,σ(Ω) such that along a sequence εm → 0 and for vm := vεm it holds

vm ⇀ v in W 1,q
0,σ(Ω) ∀ q <

3
2 , (4.8)

vm → v in Lr
σ(Ω) ∀ r < 3, (4.9)

vm → v a.e. in Ω, (4.10)

εm|Dvm|Dvm → 0 in L
3/2
0 (Ω). (4.11)

At this point we observe that it is not possible to pass to the limit as ε → 0 in the equations directly by 
monotonicity arguments since 3

2 < 9
5 . Hence, the difficulty will be again proving that v is a weak solution 

to (4.1). We will employ a local argument similar to the previous section. For all compact sets K � Ω it 
holds that

c0
(
min
x∈K

d(x)
) ˆ
K

|∇vm|3 dx ≤ c0

ˆ

K

d |∇vm|3 dx

≤ c0

ˆ

Ω

d |∇vm|3 dx ≤ C(Ω, ‖F‖3/2,d−1/2),

using (4.5). This shows that (up to possibly another sub-sequence)

(∇vm)|K ⇀ ∇v|K in L3(K) ∀K � Ω,

(vm)|K → v|K in Lr(K) ∀ r < ∞.
(4.12)

This proves that
ˆ

Ω

(ωm × vm) ·ϕ dx m→∞−−−−→
ˆ

Ω

(ω × v) ·ϕ dx ∀ϕ ∈ C∞
0,σ(Ω),

while passing to the limit in the nonlinear term requires again a local approach, as developed in the previous 
section.

Based on the previous observations if S denotes the L3/2
loc (Ω)-weak limit of d |ωε|ωε, which exists by using 

the uniform bound coming from (4.5), we obtain the limit system⎧⎪⎨⎪⎩
ω × v + curlS + ∇π = divF in Ω,

divv = 0 in Ω,
v = 0 on ∂Ω,

(4.13)

where the first equation is satisfied in the sense of distributions over Ω. The remaining effort is to show that 
S = d |ω|ω.

Observe also that at this point we have that ωε×vε ∈ Ls
loc(Ω) ⊂ L1

loc(Ω) for all s < 3, but not uniformly 
in ε.

The uniform estimates imply that vm ∈ W 1,q
0 (Ω), for all q < 3/2, hence vm ∈ Lr(Ω), for all r < 3. This 

is not enough to show ωm × vm ∈ L1(Ω), hence testing with v itself seems not possible.
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First, we improve the known summability of the solutions, by observing that applying (2.8) to our case 
(p = 3, δ = 1/3) implies

∥∥∥vm(x) − −
ˆ

Ω

vm(y) dy
∥∥∥3

9
≤ C‖d1/3∇vm‖3

3 =
ˆ

Ω

d |∇vm|3 dx ≤ C‖F‖3/2
3/2,d−1/2 ,

uniformly in ε. Next we recall that by Hölder inequality 
∥∥∥ −́Ω f dx

∥∥∥
p
≤ ‖f‖p, such that

‖f‖p −
∥∥∥ −
ˆ

Ω

f(y) dy
∥∥∥
p
≤

∥∥∥f(x) − −
ˆ

Ω

f(y) dy
∥∥∥
p
,

for any f ∈ Lp(Ω). This yields, due to the embedding into Lr(Ω) ⊂ L1(Ω) for r < 3, the following

‖vm‖9 ≤
∥∥∥ −
ˆ

Ω

vm dy
∥∥∥

9
+ C‖F‖1/2

3/2,d−1/2

≤ 1
|Ω|8/9 ‖v

m‖1 + C‖F‖1/2
3/2,d−1/2 ≤ c(|Ω|, ‖F‖3/2,d−1/2).

Finally, we obtain

ωm × vm ∈ Ls(Ω) ∀ s < 9
7 ,

uniformly in m ∈ N. We can also improve (4.9) to

vm → v in Lr
σ(Ω) ∀ r < 9.

Now we consider the difference of (4.2) and (4.13) and localize as in Section 3, taking into account (4.12). 
Given the bump function as in (3.11) we define

wm := η (vm − v) − Bog2B(∇η · (vm − v)) ∈ W 1,3
0,σ (2B) ⊂ W 1,3

0,σ (Ω),

and we have, due to the W 1,3
loc (Ω)-bounds from cf. (4.12), that the same convergence as in (3.12)-(3.13)-(3.14)

holds true. Now we test the difference between the εm-regularized system and the original one with wm ∈
W 1,3

0,σ (Ω) and, by using the same argument as before, we get

lim
m→+∞

ˆ

B

(
d |ωm|ωm − d|ω|ω

)
·
(
ωm − ω

)
dx = 0.

This can be used to show that

ωm → ω in L3(B),

and since the ball B � Ω is arbitrary, this implies S = d |ω|ω.

We finally prove the energy-type balance. We observe that the equality
ˆ

(ω × v) ·ϕ + d |ω|ω · curlϕ dx = −
ˆ

F · ∇ϕ dx,

Ω Ω
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by density makes sense also for ϕ ∈ W 1,3
0,σ (Ω, d), being the integrals well defined by the following estimates 

for q = 9
7 < 3

2 ∣∣∣∣∣∣
ˆ

Ω

(ω × v) ·ϕ dx

∣∣∣∣∣∣ ≤ ‖∇v‖q‖v‖9‖ϕ‖9 ≤ c‖v‖2
W 1,3

0 (Ω,d)‖ϕ‖W 1,3
0 (Ω,d),

∣∣∣∣∣∣
ˆ

Ω

d |ω|ω · curlϕ dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ˆ

Ω

d2/3 |ω|ω · d1/3curlϕ

∣∣∣∣∣∣ ≤ c‖v‖2
W 1,3

0 (Ω,d)‖ϕ‖W 1,3
0 (Ω,d),

∣∣∣∣∣∣
ˆ

Ω

F · ∇ϕ dx

∣∣∣∣∣∣ ≤ ‖F‖3/2,d−1/2‖ϕ‖W 1,3
0 (Ω,d).

Note that we used again (2.8) with p = 3 and δ = 1
3 . Hence, by setting ϕ = v and by observing that

ˆ

Ω

(ω × v) · v dx = 0,

once it is well-defined, we get the claimed energy equality. �
Remark 4.8. Since the convergence is based on local W 1,3-estimates, the convergence of the stress tensor 
does not depend on the power of the distance, while the range of α is crucial to handle the convective term 
and to give a proper meaning to the equations in the sense of distributions.

5. Extension to more general cases

In this section we consider the same problem as in (4.1) but we consider different values of both the 
exponent p and of the weight α. Some results follow in a straightforward way since p = 3 (the main argument 
of monotonicity requires in fact p > 9

5 , while others for smaller values of p require a more technical argument 
with a Lipschitz truncation of the test functions).

5.1. Generalization to other values of the parameter α, but still with p = 3

We consider now the possible extension to larger values of the parameter 1 ≤ α < 2. As explained before 
the value α = 2 = 3 − 1 is critical as it does not allow to bound the weighted gradient by the weighted curl. 
We study now the system

⎧⎪⎨⎪⎩
ω × v + curl

(
dα|ω|ω

)
+ ∇π = f in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

(5.1)

We write just the a priori estimates, since the approximation and the passage to the limit is exactly the 
same as in Theorem 4.6 being based on local estimates for the gradient in L3(K).

From the Hölder inequality we get for 1 ≤ α < 2 and if αq
3−q < 1 (which holds if 1 ≤ q < 3

1+α ) that

‖∇v‖3
q ≤ c

ˆ
dα |∇v|3 dx ∀v ∈ W 1,3(Ω, dα).
Ω
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Next, the Sobolev embedding from Lemma 2.3 yields∥∥∥v(x) − −
ˆ

Ω

v(y) dy
∥∥∥3

9/α
≤ C

ˆ

Ω

dα|∇v|3 dx ∀v ∈ W 1,3(Ω, dα).

At this point the convective term satisfies

(∇v)v ∈ Ls(Ω) ∀ s < 9
3 + 4α,

and s ≥ 1 if α < 3
2 . Under these assumptions the proof follows as before and we can prove the following 

result where we distinguish two cases depending if α is small enough to allow the solution to have a proper 
sense. A different formulation for the larger values of α. We write results in the terms of F such that 
f = divF, but this can be translated in terms of f only, again using [28] and (2.5).

Theorem 5.1.

(a) Let α < 6
5 and suppose that f = divF for some F ∈ L3/2(Ω, d−α/2). Then, there exists a weak solution 

v ∈ W 1,3
0,σ (Ω, dα) of the problem (4.1) such that

ˆ

Ω

(ω × v) ·ϕ + dα |ω|ω · curlϕdx = −
ˆ

Ω

F · ∇ϕ dx ∀ϕ ∈ C∞
0,σ(Ω),

and
ˆ

Ω

dα |ω|3 dx = −
ˆ

Ω

F · ∇v dx.

(b) Let 6
5 ≤ α < 3

2 and suppose that f = divF with F ∈ L3/2(Ω, d−α/2). Then, there exists a weak solution 
v ∈ W 1,3

0,σ (Ω, dα) of the problem (4.1) such that

ˆ

Ω

(ω × v) ·ϕ + dα |ω|ω · curlϕdx = −
ˆ

Ω

F · ∇ϕ dx ∀ϕ ∈ C∞
0,σ(Ω).

Proof. The proof follows exactly the same lines of that of Theorem 4.3. We observe that in order to use v
itself as test function, hence to cancel the convective term, we need for instance the estimate∣∣∣ ˆ

Ω

(ω × v) · v dx
∣∣∣ ≤ ‖ω‖3/(1+α)−ε‖v‖2

9/α for some ε > 0,

which holds true if 1+α
3 + 2α

9 < 1 or, equivalently, if α < 6
5 .

In the other case, the convective term is still in L1(Ω), but the function v is not regular enough to be 
used globally as test function and to write the energy-type estimate. �

We consider now even larger values of α and we observe that for all 0 < α < 2 it holds true that,

v ⊗ v ∈ L
9
2α (Ω) ⊂ L

9
4 (Ω) ⊂ L1(Ω),

hence, we can reformulate the problem with the convective term written as follows
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(∇v)v = div (v ⊗ v),

and consider the following notion of weak solution

Definition 5.2. We say that v ∈ W 1,3
0,σ (Ω, dα) is a weak solution to (5.1) if

−
ˆ

Ω

v ⊗ v : ∇ϕ + dα |ω|ω · curlϕ dx = −
ˆ

Ω

F · ∇ϕdx ∀ϕ ∈ C∞
0,σ(Ω).

A similar argument can be used also to prove the following result, changing the notion of weak solution.

Theorem 5.3. Let 0 ≤ α < 2 and suppose that f = divF with F ∈ L3/2(Ω, d−α/2). Then, there exists a weak 
solution v ∈ W 1,3

0,σ (Ω, dα) of the problem (4.1) in the sense of Definition 5.2.

Remark 5.4. The same reasoning can be used to handle the problem (5.2) below with 9
5 < p < 3 and 

any α < p − 1. The important observation is that we still have v ∈ W 1,p
σ (K) for all K � Ω and hence 

v⊗ v ∈ L
p∗/2
Loc (Ω). The convergence of the nonlinear stress tensor follows in the same way as before as well.

5.2. Extension to values of p smaller than 9
5

We now study what happens in the case of a model with smaller values of p, hence we consider the generic 
system ⎧⎪⎨⎪⎩

div (v ⊗ v) + curl
(
dα|ω|p−2ω

)
+ ∇π = divF in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω,

(5.2)

with 1 < p < 3 and 0 ≤ α < p − 1.

Definition 5.5. We say that v ∈ W 1,p
0,σ (Ω, dα) is a weak solution to (5.2) if

−
ˆ

Ω

v ⊗ v : ∇ϕ + dα |ω|p−2ω · curlϕdx = −
ˆ

Ω

F · ∇ϕ dx ∀ϕ ∈ C∞
0,σ(Ω).

We obtain the following result

Theorem 5.6. Let p > 6
5 , 0 ≤ α < p −1, and suppose that f = divF with F ∈ Lp′(Ω, d−α/(p−1)). Then, there 

exists a weak solution v ∈ W 1,p
0,σ (Ω, dα) of the problem (5.2) in the sense of Definition 5.5.

Proof. As before in the previous proofs we regularize (5.2) and consider the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ε div |Dvε|p−2Dvε + div (vε ⊗ vε)

+curl
(
dα|ωε|p−2ωε

)
+ ∇π = divF in Ω,

divvε = 0 in Ω,

vε = 0 on ∂Ω,

(5.3)

and we can follow the same procedure to prove existence of the approximate system, at least for p > 6/5, 
following the approach from Málek and Steinhauer et al. [19,23]. Also, we obtain uniform estimate
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ε‖vε‖3
W 1,p +

ˆ

Ω

dα |ωε|p dx ≤ C(Ω,F),

which yields

vε ⇀ v in W 1,q
0,σ (Ω) ∀ q <

p

α + 1 (5.4)

vε → v in Lr
σ(Ω) ∀ r <

3p
3α + 3 − p

(5.5)

vε → v a.e. in Ω, (5.6)

ε|Dvε|p−2Dvε → 0 in Lp′
(Ω). (5.7)

(∇vε)|K ⇀ ∇v|K in Lp(K) ∀K � Ω, (5.8)

(vε)|K → v|K in Lr(K) ∀ r <
3p

3 − p
. (5.9)

Based on the previous observations we obtain the limit system⎧⎪⎨⎪⎩
div (v ⊗ v) + curlS + ∇π = divF in Ω,

divv = 0 in Ω,
v = 0 on ∂Ω,

where the first equation has to be understood in the sense of distributions. Here the limit is taken along 
some sequence εm → 0 and for simplicity we set

vm := vεm and ωm := ωεm .

Here S denotes the weak limit of dα|ωm|p−2ωm which exists in Lp′

loc(Ω). The remaining effort is to show 
that S = dα|ω|ω, i.e.〈

dα|ωm|p−2ωm, curl (ϕ)
〉
→

〈
dα|ω|p−2ω, curl (ϕ)

〉
∀ϕ ∈ C∞

0,σ(Ω). (5.10)

It suffices to prove that ωm → ω almost everywhere. This follows from the strict monotonicity of the 
operator ξ �→ |ξ|p−2ξ provided that for a certain θ ∈ (0, 1] and every ball B ⊂ Ω with 4B ⊂ Ω

lim sup
m→∞

ˆ

B

(
|ωm|p−2ωm − |ω|p−2ω) · (ωm − ω)

)θ

dx = 0 . (5.11)

To verify equation (5.11), let η ∈ C∞
0 (2B) be as in (3.11), with B now such that 4B � Ω. Define

wm := η (vm − v) − Bog2B(∇η · (vm − v)),

where Bog2B is the Bogovskĭı operator on 2B from Lp
0(2B) to W 1,p

0 (2B). Since ∇η · (vm − v) is bounded 
in Lp

0(2B) by (5.9), we have that wm is bounded in W 1,p
0,σ (2B). Moreover, vm → v in L2(2B) and the 

continuity of Bog2B implies wm → 0 at least in L1(2B). In particular, we can apply the solenoidal Lipschitz 
truncation of Theorem 2.10 to construct a suitable double sequence wm,j ∈ W 1,∞

0,σ (4B).
We use now wm,j as a test function in (5.3) and obtain

〈dα|ωm|p−2ωm − dα|ω|p−2ω, curl (wm,j)〉 = −〈dα|ω|p−2ω, curl (wm,j)〉
− εm〈|Dvm|p−2Dvm,Dwm,j)〉 + 〈F,∇wm,j〉
+ 〈vm ⊗ vm,∇wm,j〉.
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It follows from the properties of wm,j and vm that the right-hand side converges for fixed j to zero as 
m → ∞. So we get

lim
m→∞

〈dα|ωm|p−2ωm − dα|ω|p−2ω, curl (wm,j)〉 = 0.

We decompose the set 4B into {wm �= wm,j} and 4B ∩ {wm = wm,j} to get

(I) :=
∣∣∣∣ ˆ

4B∩{wn=wm,j}

η dα
(
|ωm|p−2ωm − |ω|p−2ω

)
· (ωm − ω) dx

∣∣∣∣
=

∣∣∣∣ ˆ

{wn �=wm,j}

dα
(
|ωm|p−2ωm − |ω|p−2ω

)
· curl (wm,j) dx

∣∣∣∣
+

∣∣∣∣ ˆ

4B∩{wn=wm,j}

dα
(
|ωm|p−2ωm − |ω|p−2ω

)
·
(
∇η × (vm − v)

)
dx

∣∣∣∣
+

∣∣∣∣ ˆ

4B∩{wn=wm,j}

dα
(
|ωm|p−2ωm − |ω|p−2ω

)
· curl

(
Bog2B(∇η · (vm − v))

)
dx

∣∣∣∣
=: (II) + (III) + (IV ).

Since ∇η ⊗ (vm − v) m→ 0 in Lp(2B), we have (III) + (IV ) m→ 0, recall (5.8) and (5.9). Note that we also 
used the continuity of Bog2B from Lp

0(2B) to W 1,p
0 (2B).

By Hölder’s inequality, (5.8) and Theorem 2.10-(e)

(II) ≤ lim sup
m→+∞

(
‖ωm‖p′ + ‖ω‖p′

)
‖χ{wn �=wm,j}∇wm,j‖

p

≤ c2−j/p‖∇wm‖p ≤ c2−j/p.

Overall we get

lim sup
m→+∞

∣∣∣∣ ˆ

4B∩{wm=wm,j}

η dα
(
|ωm|p−2ωm − |ω|p−2ω

)
· (ωm − ω) dx

∣∣∣∣ ≤ c 2−j/p.

This implies

lim sup
m→+∞

ˆ

4B

(
η dα

(
|ωm|p−2ωm − |ω|p−2ω

)
· (ωm − ω)

)θ

dx = 0

for any θ ∈ (0, 1) as a consequence of (5.8) and Theorem 2.10-(e). Now, (5.11) follows form η ≥ χB and 
d ≥ CB > 0 in B. So we obtain (5.10) as desired, which finishes the proof. �
Remark 5.7. We are not considering here problems of regularity of the weak solutions and also of less regular 
weight functions as in the recent studies by Cirmi, D’Asero, and Leonardi [18]. Moreover, as it is the case for 
similar problems, uniqueness for the system (4.1) is not known, even for small enough solutions. Uniqueness 
of small solutions to (3.1) follows directly by the same results for the Navier-Stokes equations, as explained 
in Galdi [26]. On the other hand uniqueness of small solutions –even for the regularized system (5.3)– is not 
known for p > 2 or for p < 9 , see Blavier and Mikelić [9] and the review in Galdi [25].
5
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in: Partial Differential Equations and Functional Analysis, in: Oper. Theory Adv. Appl., vol. 168, Birkhäuser, Basel, 2006, 
pp. 113–121.

[29] R. Hurri-Syrjänen, An improved Poincaré inequality, Proc. Am. Math. Soc. 120 (1) (1994) 213–222.
[30] A. Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. Trans-

lated from Czech.
[31] O.A. Ladyžhenskaya, The Mathematical Theory of Viscous Incompressible Flow, second English edition, revised and 

enlarged, Mathematics and Its Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1969. Translated 
from Russian by Richard A. Silverman and John Chu.

[32] W.J. Layton, A nonlinear, subgridscale model for incompressible viscous flow problems, SIAM J. Sci. Comput. 17 (2) 
(1996) 347–357.

http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA57BBECF633144B34479B95660141958s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA57BBECF633144B34479B95660141958s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib63547E931F7972C35439ECDBA1C139FAs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib63547E931F7972C35439ECDBA1C139FAs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib8C83D831E37EB63C173FA566DFBEA2C5s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib8C83D831E37EB63C173FA566DFBEA2C5s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibE2CF9D175ED87F620CCC140F7A70E26Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibE2CF9D175ED87F620CCC140F7A70E26Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib016055E4607088A11F04F8C26E2C385As1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib016055E4607088A11F04F8C26E2C385As1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib3112D0C4685E61B6D306A9B8FED6E8DBs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib3112D0C4685E61B6D306A9B8FED6E8DBs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib3635EC302EE0299FFA22B7975DDC1D23s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib3635EC302EE0299FFA22B7975DDC1D23s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib801B0F9BE9CFB1B3A0D8085FFA0ED683s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib801B0F9BE9CFB1B3A0D8085FFA0ED683s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibCDF9B8ECC85D0A23637A40293D636C5Cs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibCDF9B8ECC85D0A23637A40293D636C5Cs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibCDF9B8ECC85D0A23637A40293D636C5Cs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib4813468CE26F268883C1A788F69ED102s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib6E11491EE0EC8D8B90CC3C5F7855765Fs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib6E11491EE0EC8D8B90CC3C5F7855765Fs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib10C1E1E4EBD04C1B800D404AD190B304s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib10C1E1E4EBD04C1B800D404AD190B304s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib4BCF606A6B4270B1705359E1935E89BEs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib4BCF606A6B4270B1705359E1935E89BEs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib69F984E6B98C48E49B5D118A5C79BC6Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib69F984E6B98C48E49B5D118A5C79BC6Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib6BB19B4295780C66548D3C781A8ACAE8s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib6BB19B4295780C66548D3C781A8ACAE8s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibAEA12494B5D808F0BBB8D81EAD19BE01s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibAEA12494B5D808F0BBB8D81EAD19BE01s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA4D8E507DCC83581BE6B5FE5D1DE9A63s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA4D8E507DCC83581BE6B5FE5D1DE9A63s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib5329B65F5B773130E1F6B864D72DD231s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib5329B65F5B773130E1F6B864D72DD231s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibF1E3446C69E4D87279FF7863482F9DCBs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibF1E3446C69E4D87279FF7863482F9DCBs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib69B1CFE933F498FA5AB4B4ED8781EFA0s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib69B1CFE933F498FA5AB4B4ED8781EFA0s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib8019980FFA1981957F626D17617B8D3As1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib8019980FFA1981957F626D17617B8D3As1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibF13D3C2D97B7884C2CB06100954459D3s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibF13D3C2D97B7884C2CB06100954459D3s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib94B16A15D91AFF52A705D36F16160534s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib413B5CA70BE3427C30CCCB5CC9F0C0ADs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib413B5CA70BE3427C30CCCB5CC9F0C0ADs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib09FEBD44AB7A0426FDC550F8245CAFAFs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib09FEBD44AB7A0426FDC550F8245CAFAFs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib64F3BD1741AB8D6BA545A1AE09BB8728s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib64F3BD1741AB8D6BA545A1AE09BB8728s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib07CE7D9A5B1627DAC20CFA6E42F81A9Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib07CE7D9A5B1627DAC20CFA6E42F81A9Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib07CE7D9A5B1627DAC20CFA6E42F81A9Bs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib86D83659A97BA31975E9C18996D169A2s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib2DBDC574F8526BBD7897D43BF77279C5s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib2DBDC574F8526BBD7897D43BF77279C5s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib429D136F094409D0C194EDB74636C868s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib429D136F094409D0C194EDB74636C868s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib429D136F094409D0C194EDB74636C868s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib52F53D38F0ED1C6CC2E4285925B7FE16s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib52F53D38F0ED1C6CC2E4285925B7FE16s1


28 L.C. Berselli, D. Breit / J. Math. Anal. Appl. 501 (2021) 124633
[33] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 
1969.

[34] C. Mindrila, S. Schwarzacher, Existence of steady very weak solutions to Navier-Stokes equations with non-Newtonian 
stress tensors, Preprint at arXiv :1911 .02055v2.

[35] Y. Rong, W. Layton, H. Zhao, Extension of a simplified Baldwin-Lomax model to nonequilibrium turbulence: model, 
analysis and algorithms, Numer. Methods Partial Differ. Equ. 35 (5) (2019) 1821–1846.

[36] M. Růžička, Analysis of generalized Newtonian fluids, in: Topics in Mathematical Fluid Mechanics, in: Lecture Notes in 
Math., vol. 2073, Springer, Heidelberg, 2013, pp. 199–238.

[37] C.G. Simader, H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for 
bounded and exterior domains, in: Mathematical Problems Relating to the Navier-Stokes Equation, in: Ser. Adv. Math. 
Appl. Sci., vol. 11, World Sci. Publ., River Edge, NJ, 1992, pp. 1–35.

[38] E.M. Stein, Harmonic Analysis: Singular Integrals and Differentiability Properties of Functions, Monographs in Harmonic 
Analysis, II, Princeton Univ. Press, 1970.

[39] L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay, vol. 78, Université de Paris-Sud, Départe-
ment de Mathématique, Orsay, 1978.

[40] W. von Wahl, Estimating ∇u by divu and curlu, Math. Methods Appl. Sci. 15 (2) (1992) 123–143.

http://refhub.elsevier.com/S0022-247X(20)30796-4/bibF59F17C1B3D347F75D919236306F8D99s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibF59F17C1B3D347F75D919236306F8D99s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA19BE9BC0E7A81E8757A36B421AC87D1s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA19BE9BC0E7A81E8757A36B421AC87D1s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib36B4EC22CFF5599493685B3EBCD999B1s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib36B4EC22CFF5599493685B3EBCD999B1s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib4C5CD628C505C6116C8339CFE8BAEF58s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib4C5CD628C505C6116C8339CFE8BAEF58s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibBBFEF58DB449FCAE084864FB32E4AF09s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibBBFEF58DB449FCAE084864FB32E4AF09s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibBBFEF58DB449FCAE084864FB32E4AF09s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibE3A8BBDD4638397265F88E83A52C22AEs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibE3A8BBDD4638397265F88E83A52C22AEs1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib3448FB6ED7813FF7AF41D6968039CA16s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bib3448FB6ED7813FF7AF41D6968039CA16s1
http://refhub.elsevier.com/S0022-247X(20)30796-4/bibA72C866477D555A4C69A51046BAB1CF8s1

	On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations
	1 Introduction
	Modeling and a suggested exponent of the distance function

	Acknowledgments
	2 Functional setting
	2.1 Weighted spaces
	2.2 Solenoidal spaces
	2.3 Solenoidal Lipschitz truncation

	3 Existence of weak solutions for the Baldwin-Lomax model in the steady case
	4 On generalized Baldwin-Lomax models
	5 Extension to more general cases
	5.1 Generalization to other values of the parameter α, but still with p=3
	5.2 Extension to values of p smaller than 9/5

	References


