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Abstract: This paper discusses the linearized relative motion and control of Electric Solar Wind 

Sails (E-sails) operating in formation flight around a heliocentric displaced orbit. An E-sail is 

constituted by thin and centrifugally stretched tethers, and generates a propulsion by momentum 

interaction with the charged particles from the solar wind. Feasible regions and linear stability of 

circular displaced non-Keplerian orbits generated by E-sails are investigated using the latest thrust 

model. The linearized relative motion of E-sails in a formation flight is developed in the chief’s 

orbital frame, and the linear stability of the relative motion is analysed with eigenvalue 

decomposition. Relative trajectories are classified into three categories, according to whether the 

relative orbit is stable, unstable or locally unstable, the latter corresponding to an instability in the 

along-track direction. Two control strategies are proposed for stabilization, the first one is an active 

control aiming to change the topology of the relative motion to eliminate the instability caused by 

positive real eigenvalues, and the other is a closed-loop feedback control to maintain stability in the 

along-track direction. Numerical simulations indicate a high accuracy of the linearized relative 

dynamical model and a good performance of the extra-control strategies. 
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n     =  normal unit vector 

r     =  Sun-spacecraft position vector [au] 

u     =  extra-control acceleration vector 

z     =  displacement of the circular displaced orbit [au] 

α     =  cone angle [deg] 

αn    =  pitch angle [deg] 

∆r     =  relative position from the deputy to the chief [au] 

δn      =  azimuthal angle [deg] 

η     =  eigenvalue 

μ     =  Sun’s gravitational parameter [km3/s2]  

ρ    =  radius of the circular displaced orbit [au] 

τ     =  switching parameter 

ω     =  spacecraft angular velocity [deg/day] 

ϖ       =  Keplerian orbit angular velocity [deg/day] 

Subscripts 

0           chief spacecraft 

1           deputy spacecraft 

⊕             Earth 

max           maximum 

Superscripts 

∧             unit vector 

I. Introduction 

The high cost of fuel required by spacecraft poses a great challenge to the development of space exploration 

activities. Motivated by it, many efforts have been devoted to the investigation of propellantless propulsion systems, 

which contribute to mitigate and even eliminate the constraint of mass consumption. Over the past years, some 

innovative propellantless propulsion systems have been proposed and attracted the interest of the scientific community. 

The photonic solar sail, which gains momentum by reflecting the light from the Sun [1], was the first propellantless 

propulsion system proposed and then analyzed from an engineering viewpoint [2]. In his excellent book, McInnes [3] 

provides a comprehensive and thorough investigation of solar sails in a number of possible mission applications, for 
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instance delivering payloads to high-energy orbits or planning sample return missions [4–7]. There exist also some 

other examples of propellantless propulsion systems, such as the magnetic sail [8-10] and the Mini-Magnetospheric 

Plasma Propulsion [11–13]. More recently, the Electric Solar Wind Sail (E-sail) concept has been introduced by 

Janhunen [14]. An E-sail is constituted by thin and centrifugally stretched tethers, charged by an on-board electron 

gun. The source of acceleration for an E-sail-based spacecraft is the momentum transported to the sail by the 

interaction of the artificial electric field generated by the tethers with the solar wind. 

Because the E-sail thrust is inversely proportional to the Sun-spacecraft distance r, that is, decreases with the 

distance at a slower rate than that of a photonic solar sail (which instead scales as 1/r2) [15], an E-sail becomes a 

superior alternative in a number of mission scenarios, especially for those interplanetary transfers formulated within 

a time-optimal framework [16]. Most of the previous work about E-sail focused on its thrust model, with a continuous 

improvement in the accuracy and complexity of the mathematical models. In recent papers, Yamaguchi and Yamakawa 

[17] proposed a refined mathematical model, where the thrust modulus and the cone angle are written as functions of 

the E-sail attitude (characterized by the pitch angle, corresponding to the angle between the direction of the local solar 

wind and the normal to the E-sail nominal plane), through a sixth-order polynomial equation derived from numerical 

calculations. Later, Huo et al. [18] continued to improve the thrust model on this basis and provided an elegant 

analytical proof of the numerical results.  

Based on the latest refined thrust model, this paper aims at studying the E-sail formation flying problem. There 

is a great deal of attention on formation flying of displaced orbits by photonic solar sails [19-21], but less attention is 

given to the cases in which the primary propulsion system is an E-sail. However, E-sails operating in close proximity, 

i.e., in a formation flight, can increase the reference propulsive acceleration of a single E-sail (the so-called 

characteristic acceleration) by disaggregating the payload [22] among multiple spacecraft. Moreover, a formation 

flying arrangement with multiple E-sails can improve the observation capability with higher resolution, which is of 

great importance for scientific missions such as the Mercury’s magnetotail measurement [23] or the astronomical 

observation [24]. In this context, Wang et al. [25] have contributed to the study of E-sail formation around circular 

and elliptic displaced orbits. They used a set of displaced orbital elements to determine the formation boundaries, and 

designed a distributed coordinated control law that uses the information available from the neighbors to enable each 

vehicle to reach a final consensus [26]. Different from the methodology discussed in Ref. [25], this paper linearizes 

the relative motion of E-sails moving in a formation flight along a heliocentric, circular, displaced orbit, and provides 

a global view of their dynamics, linear stability, and control. Although the investigation process uses a classical 
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approach, the results of the relative motion of E-sails in close proximity are different from those related to solar sail-

based spacecraft due to the different thrust models and the limitations on the thrust cone angle of an E-sail spacecraft. 

The reminder of this paper is organized as follows. In section 2, circular displaced non-Keplerian orbits (DNKOs) 

maintained by E-sails are studied using their latest thrust model, with the aim of highlighting the feasible regions and 

their linear stability. Then, the linearized relative motion of E-sail formation flying is developed in Section 3. In the 

feasible region, the linear stability of the relative motions is analyzed to classify the relative trajectories into three 

cases, that is, stable relative orbits, unstable, and locally unstable orbits, the latter corresponding to orbits unstable in 

the along-track direction but stable in the other two directions. Next, two control strategies are proposed in Section 4 

to stabilize the two kinds of unstable motions, where one is an active control that changes the topology of the relative 

motion to stabilize the unstable relative trajectories, and the other is a closed-loop feedback control that makes the 

along-track direction motion bounded. Finally, Section 5 is devoted to conclusions and future work. 

II. E-sail-based Displaced Non-Keplerian Orbits  

The mathematical thrust model of the electric solar wind sail underwent important revisions in last few years for 

obtaining a more accurate calculation of the propulsive acceleration vector [15-18, 27]. In this context, the latest E-

sail thrust analytical model proposed in Ref. [18] is adopted in this paper. 

Consider an E-sail-based spacecraft C, at a distance r from the Sun. Let P be the plane containing the E-sail 

tethers, and n̂  the unit vector orthogonal to P, pointing away from the Sun. Denote with a the propulsive acceleration 

vector, which belongs to the plane spanned by n̂  and r . Note that the propulsive acceleration and the sail attitude 

are related to the pitch angle [0, 2] radnα π∈ and the cone angle α, where the former is the angle between the 

direction of n̂  and that of the Sun-spacecraft vector r, while the latter is the angle between a and r.  

Beside the pitch angle, the azimuthal angle δn is required for describing the E-sail attitude. To that end, let R be 

the local horizontal plane, which contains C and is orthogonal to r , and ι be the fixed reference line obtained as the 

intersection of the orbital plane and the R plane, then δn is the angle between ι and the projection of n̂  onto R. The 

azimuthal angle of the propulsive acceleration a can be defined in a similar way.  

According to the analytical model derived by Huo et al. [18], the expression of the E-sail propulsive acceleration 

a can be written in a compact, analytical, form as  

( )ˆ ˆ ˆ ˆ
2

ca r
r

τ ⊕  ⋅     
a = r + r n n                               (1) 

where τ is the switching parameter τ∈{0, 1}, which models the fact that the E-sail thrust can be turned off (τ = 0) at 

any time by simply switching off the on-board electron gun, r⊕ =1au is a reference distance, and ac is the spacecraft 
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characteristic acceleration, defined as the maximum propulsive acceleration magnitude when r = r⊕. Note that the 

value of ac depends on the geometry of the E-sail, such as the number of tethers, their length and voltage, as discussed 

in Ref. [18]. 

 
Fig.1 E-sail-based DNKO concept. 

In particular, the propulsive acceleration magnitude a a  and the sail cone angle α can be written as functions 

of the sail pitch angle αn as 
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By solving the necessary condition ∂α/∂αn = 0, the maximum modulus of the cone angle α (referred to as αmax) and the 

corresponding value of the sail pitch angle αn are calculated as follows 

max 0.340 radα = ,  ( )max 0.616 radnα α = .                           (3) 

The circular displaced orbits are characterized in terms of orbital period ω, orbital radius ρ and displacement z 

above the ecliptic. To maintain a circular orbit, the value of the required cone angle α and characteristic acceleration 

ac are calculated with [28] 
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       (4b) 

where 3rϖ µ= , and 2 2r zρ= + is the Sun-spacecraft (constant) distance. To summarize, the required value of 
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cone angle for a circular DNKO parameterized by (ρ, h, ω) can be obtained with Eq. (4a), while the corresponding 

values of E-sail pitch angle αn are found by inverting Eq. (2b). When αn is obtained, the characteristic acceleration ac 

is calculated from Eq. (4b), while the value of propulsive acceleration modulus a is given by Eq. (2a). 

We investigate now the feasibility and linear stability of the DNKOs with the latest E-sail thrust model. Following 

the methodology developed in Ref. [28], a final map of the admissible region for DNKOs (both feasible and stable) is 

obtained, and illustrated as the white region in Fig.2. The red curve represents the region boundary, characterized by 

ac<0, the yellow curve denotes the region boundary with α>αmax, the green curves highlight the boundary of the linear 

unstable region. The red and yellow curves delimit the feasibility regions, while the green curves delimit the stability 

regions. From Fig.2, the feasible and stable region of DNKOs is relatively small, but lower the displacement is, the 

more possibilities of stability there are. Figure 2 provides a good reference for the design of E-sail based DNKO that 

are used for formation flying purposes discussed below. 

 
Fig.2 Feasible and stable region of DNKO (grey regions are unfeasible and/or unstable). 

III. Linearized Relative Motion of Formation Flying 

III.I. Dynamical Model of Relative Motion 

In this section, the relative motion modelling between two spacecraft in heliocentric DNKO is analyzed. In 

particular, the E-sail-based spacecraft that tracks a circular displaced orbit is referred to as the chief, and the other is 

referred to as the deputy. Taking into account Eq. (1), the inertial (vectorial) equations of motion of both the chief and 

the deputy are given by  
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Let 1 0∆ = −r r r  denote the (relative) position of the deputy with respect to the chief. Subtracting Eq. (5a) from 

(5.b) yields 
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          (6) 

Introduce now the inertial reference frame ξ  and the orbital reference frame ς  [29], so that the relative 

acceleration in the chief’s orbital reference frame ς can be written as 
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where ξ ςω  denotes the angular velocity vector of frame ς  relative to frame ξ , given by 

[ ]0 0 0 0cos 0 sin Tξ ς ω ϕ ω ϕ=ω .                          (8) 

The chief position vector can be written as [ ]0 0 0 0 Tr=r , and let { } [ ]Tx y z
ς

∆ =r , so that the equations of 

relative motions in the orbit frame become 
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To simplify Eq. (9), some parameters are specified, such as, for example, 
,1 ,0n nα α=  and 

,1 ,0c ca a= . It is 

reasonable to assume that the deputy has the same acceleration and thrust pitch angle as that of the chief, since they 

are close to each other at the initial time. As a result, the expressions of 1ϕ  and ϑ∆  are 

0
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The linearized dynamical model of the E-sail formation flying is given by 

∆ ∆ + ∆ 0 r + A r  B r =                                 (13) 

where, omitting the subscript 0 in the symbols ω,ϕ , a, and αn (since these are all parameters of the chief), we get 
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B =

(15) 

    The accuracy of the linearized dynamics is better appreciated with an example. The circular displaced orbit of 

the chief has a radius ρ = 0.2r⊕, a displacement z0 = 0.004r⊕ and an angular velocity ω0 = 0.76ϖ0. Assuming the initial 

conditions of the relative motion to be [ ] [ ]0 0; 10 10 100 0.01 0 0.01 T∆ ∆ =r r , the errors between the nonlinear 

and linearized relative orbits, integrated numerically for 5 years, are shown in Fig.3. During such a long mission time, 

the maximum error in the along-track direction is less than 0.12 km. Compared to the large spacecraft orbit, the 

accuracy of the linearized relative motions is acceptable. Because the relative orbit in this case is unstable and 

observing that in a stable case the error between the nonlinear and linearized relative dynamical models could be 
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further decreased, the linearized relative dynamics shows a relatively high performance in precision along the long-

time mission. 

a b  
Fig.3 Error between the nonlinear and linearized relative dynamical models: a relative trajectory in the position space; b error in three 

coordinate components of the Chief’s orbital frame. 

III.II. Linear Stability Analysis 

Based on the linearized Eq. (13), the linear stability of the relative motion can be studied by looking at the 

eigenvalues of the matrix M defined as 

 
 
 

0 I
M =

A B
.                                  (16) 

There are three pairs of eigenvalues, referred to as 1,2η , 3,4η  and 5,6η . Clearly, the eigenvalues vary when different 

parameters of the chief’s orbit (ϕ , ω) are chosen. Below is a detailed analysis about their linear stability. 

Firstly, due to the limitation on the maximum allowable modulus of the cone angle α, the feasible parameters of 

the displaced orbit are constrained. For a given radius ρ, the angle ( )arctan zϕ ρ=  depends on the displacement z, 

and using different values of the angular velocity ω, there are different feasible ranges for the displacement z. The 

feasible pairs (z, ω) are reassumed in Fig.4a, which shows that the DNKO with a smaller angular velocity has a wider 

feasible range of ϕ  to design the displacement under a given radius ρ. 

In the feasible region, the eigenvalues 1,2η , 3,4η  and 5,6η  are investigated when they cross the pairs (z, ω). It is 

found that 1,2η  is always a pair of zero eigenvalues, and 5,6η  is always a pair of conjugate imaginary eigenvalues, 

i.e., 1,2 0η =  , 5,6 3iη ω= ±   (with ω3>0). Differently, 3,4η   is more complicated, since it changes from a pair of 

conjugate imaginary to zero eigenvalues, and to real eigenvalues, when the displacement increases. The variations of 

3,4η   and 5,6η   with displacement and angular velocity are plotted in Fig.4b and 4c. There are three possible 
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combinations of eigenvalues, that is, [0, 0, 2iω± , 3iω± ], [0, 0, 0, 0, 3iω± ], or [0, 0, 2λ± , 3iω± ], where ω2>0 and 

λ2>0. The positive real eigenvalue 3 2η λ= +   represents an instability of the relative motion, but the eigenvalue 

spectrum without real eigenvalues does not imply stability. In the cases of eigenvalue spectrum composed by zero 

eigenvalues, the stability depends on the initial value of the relative orbit. According to Fig.1 and Fig.4b, even though 

the DNKO with a lower angular velocity has a wider feasible range, the stable region of the formation flight is smaller 

than that with a relatively higher angular velocity.  

a b

c d  

Fig.4 The variation of cone angle and eigenvalues with height and angular velocity: a feasible range of displacement with different ω, αmax= 

0.34 rad; b variation of 3,4η , changing from 2iω±  to 0 to 2λ± ; c variation of 5,6η , 5,6 3iη ω= ± ; d variation of ratio of ω3 ⁄ω2; 0.2rρ ⊕= . 

In particular, when the eigenvalue spectrum consists of 0, 0, 2iω± , 3iω± , where ω2 and ω3 are referred to as 

the natural frequencies, there exist some resonant orbits. Unlike the case of a solar sail in which the ratio ω3 ⁄ω2 

increases from one to infinity [29], the ratio ω3 ⁄ω2 of relative motions with E-sails is different and limited, as shown 

in Fig.4d. The minimum ratio ω3 ⁄ω2, obtained by increasing the angular velocity, is limited by the feasibility condition, 

and its value is close to, but greater than 1. The maximum ratio ω3 ⁄ω2, instead, is limited by the stability constraint, 
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and its value is about 32. In some resonance cases in which ω3 ⁄ω2=m/n (with m and n positive commutative integers), 

the bounded relative orbit is periodic instead of quasi-periodic [29]. Thus, Fig.4d provides a good reference to design 

the periodic resonant relative orbits. Some examples are plotted in Fig.5, where all trajectories are propagated from 

[ ]0 0; ∆ ∆ r r = [0; 0; 100; 0; 0; 0]T. 

a b

c d  

Fig.5 Periodic resonant relative orbits: a ω3:ω2= 2:1; b ω3:ω2= 3:1 c ω3:ω2= 4:1 d ω3:ω2= 5:1. 

IV. Bounded Relative Trajectories by Extra-Control 

The relative trajectories of E-sail-based spacecraft in a formation flying can be divided into three categories. The 

first ones, referred to as stable relative trajectories, are stable in all directions; the second ones, called locally unstable 

trajectories, are unstable in the along-track direction but stable in the other two directions; the third ones, referred to 

as fully unstable trajectories, are unstable in all directions. For different types of naturally unstable relative motions, 

we propose different control strategies, as is now discussed. 
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IV.I. Active Control for Fully Unstable Trajectories 

According to the analysis of Ref. [30], an active control is regarded as a feasible and effective approach for the 

motion stabilization or maintenance, which is obtained by adjusting the E-sail grid voltage, and thus modifying the 

value of the spacecraft characteristic acceleration ac. 

Introducing the vector [ ]TX = r r , the controlled linearized equation of the system becomes 

1
X = MX + u                                      (17) 

where M is given by Eq. (16), and u1 is the active control due to the grid voltage modulation (which is assumed to be 

sufficiently small) in the form 

1 1−u = BK X , [ ]0 0 0 1 1 0 TB = , [ ]1 1 0 0 0 0 0kK = ,               (18) 

where k1 ≥ 0 is the control (proportional) gain. The stability of the controlled system depends on the eigenvalues of 

the matrix H1=M-BK1, and the eigenvalues of the matrix H1 depend on the value of the control gain k1. 

As previously discussed, the relative orbit is fully unstable, due to the existence of a positive real eigenvalue 

3 2η λ= + , so that only by eliminating such an eigenvalue the relative trajectory may become stable. A correspondence 

between the pair of eigenvalues 3,4η  and the value of k1 is shown in Fig. 6. For a given system (ρ, z, ω), there exists 

a minimum (or critical) gain k1 that changes 3,4η  from 2λ±  into 2iω± . As for the other two pairs of eigenvalues, 

the values of 1,2η  are unchanged, i.e., 1,2 0η = , while the values of 5,6η  slightly change when k1 is increased, but are 

still imaginary, which makes no difference in terms of stability. 

a b  

Fig.6 Relationship between the pair of eigenvalues η3,4 and the value of k1: ρ = 0.2r⊕, z = 0.04r⊕, ω = 0.72ϖ; a variation of the real part of 

the eigenvalues η3,4; c variation of the imaginary part of the eigenvalues η3,4. 
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The active control is the first step to stabilize the relative motion, because there are still zero eigenvalues in the 

controlled system, in which the system stability depends on the initial values of the relative motions. Therefore, the 

active control can successfully transform the fully unstable trajectory into a stable or locally unstable one. As shown 

in Fig.4a and 4b, the system with a lower angular velocity has a wider feasible range of angle ϕ , but, at the same 

time, a wider unstable range caused by the positive real eigenvalues. An active control is therefore indispensable and 

contributes to enable the feasible range of stability, which extends the admissible region of E-sail-based formation. 

Fig.7 reports an example of the effects of the active control. In this simulation, ρ = 0.2r⊕, z = 0.04r⊕, ω = 0.72ϖ, the 

initial values of the relative motion is [ ]0 0; ∆ ∆ r r  = [0;0;100;0;0;0]T, and the original eigenvalues of the system are 

1,2 0η = , 7
3,4 5.8176 10η −= ± ⋅ , 6

5,6 2.0008 10 iη −= ± ⋅ , which indicates a fully unstable motion. Using an active control 

with a gain 13
1 4 10k −= ⋅ , the eigenvalues of the controlled system become 1,2 0η = , 7

3,4 1.701 10 iη −= ± ⋅  ,

6
5,6 2.0089 10 iη −= ± ⋅  and the relative trajectory is stable, as is shown in Fig.7. 

 

Fig.7 Stable relative trajectory by the active control: ρ = 0.2r⊕, z = 0.04r⊕, ω = 0.72ϖ. 

IV.II. Feedback Control for Locally Unstable Relative Trajectory 

Since a slight deviation from the initial values generates an increase over time in the along-track component, a 

closed-loop control with only the feedback from Δy is proposed in this subsection as the second step to stabilize the 

locally unstable relative trajectory. The controller is constructed as  

2 2u = BK X , [ ]2 20 0 0 0 0kK =                       (19) 
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where k2 ≥ 0 is a control gain. 

For exemplary purposes, a comparison of the natural local unstable relative trajectory and the controlled one is 

plotted in Fig.8. In this simulation, ρ = 0.2r⊕, z = 0.004r⊕, ω = 0.76ϖ, the initial values of the relative motion is 

[ ]0 0; ∆ ∆ r r =[0;10;10;0;0;0]T, and the simulation time is 200 periods. As is indicated in Fig.8, with a feedback control 

applied in the along-track component in which k2 = 2∙10-16, the relative orbit can be bounded in a long mission time of 

about 20 years. 

a b  

Fig.8 Comparison of the naturally and controlled local unstable relative trajectories: ρ = 0.2r⊕, z = 0.004r⊕, ω = 0.76ϖ; a natural relative 

trajectory which is unstable in y-direction; b controlled relative trajecory which is bounded in all directions. 

V. Conclusions 

This paper has focused on the E-sail-based formation flying in (heliocentric) non-Keplerian displaced orbits. In 

particular, the paper proposes a global investigation about the maintenance of a circular displaced orbit, analyses the 

linearized dynamics of relative motion, and proposes a possible control strategy for stabilization. Starting from a 

refined thrust model of the E-sail propulsive acceleration vector, the linearized equations of relative dynamics are 

developed based on the requirements necessary for a displaced orbit maintenance. The linear stability of the relative 

motions is analyzed using the eigenvalue decomposition, where a positive real eigenvalue means an unstable relative 

motion, but zero eigenvalue means an uncertain stability, which also depends on the initial values. To deal with it, an 

active control is proposed to stabilize the unstable relative motion by changing the topology of the relative motion, 

and a closed-loop feedback control is proposed to make the along-track direction motion bounded. The simulation 

results indicate a high accuracy of the linearized relative dynamical model and a good performance of the extra-control 

strategies. 

The natural extension of this work is to obtain an analytical solution of the linearized relative motions of E-sail-

based spacecraft in a formation structure. Such a study may be accomplished, for example, by reducing the dynamical 



 15 / 17 
  

models into a two-degrees-of-freedom system with the Routh reduction method.  
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