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Abstract

The aim of this paper is to propose a distributed control architecture for a solar sail-based formation, flying
around an L2-type artificial equilibrium point in the Sun-[Earth+Moon] circular restricted three-body problem.
Two typical cases, depending on whether the formation structure is leaderless or includes a virtual leader, are
investigated. In particular, the virtual leader case is further analyzed according to whether the state information
of the virtual leader is available to all of the sails or to a part of the formation structure only. The protocols of
the consensus-based algorithms are formulated on a general directed (unidirectional) communication topology,
by exploring each available local neighbor-to-neighbor information interaction in a cooperative manner. In that
case, a synchronized formation tracking may be achieved while increasing the reliability of the formation system.
Illustrative examples show the effectiveness of the proposed approach in a typical mission scenario.

Keywords: solar sail formation, artificial halo orbit, cooperative control, consensus

Nomenclature

a = propulsive acceleration vector [ mm/s2]
e = relative position errors [ km]
E = set of edges
G = communication topology graph
I = identity matrix
L = Laplacian matrix (with entries [lij ])
m = mass, [ kg]
N = number of solar sails
n = order of Fourier series
n = sail normal vector
O = zero matrix
O = reference frame origin
r = position vector (with r = ‖r‖), [ au]
s = solar sail
t = time, [ days]
T = rotating reference frame
u = reflectivity modulation ratio
u = control input vector

∗Corresponding author

Email addresses: wei_wang@mail.tsinghua.edu.cn (Wei Wang(1)), baoyin@tsinghua.edu.cn (Hexi Baoyin(1)),
g.mengali@ing.unipi.it (Giovanni Mengali(2)), a.quarta@ing.unipi.it (Alessandro A. Quarta(2))

Published in Acta Astronautica, Vol. 169 April 2020, pp. 224–239. doi: https://doi.org/10.1016/j.actaastro.2019.10.028



V = set of vertices
W = weighted adjacency matrix (with entries [wij ])
x, y, z = components of position vector in rotating frame
x̂, ŷ, ẑ = unit vectors of rotating coordinate axes

X = state vector (with X , [rT, ṙT]
T
)

β = lightness number
θ, φ = attitude angles, [ rad]
µ = dimensionless mass of [Earth+Moon] system
ρ = relative position vector with respect to nominal halo orbit, [ km]
υ = vertex
Φ = state-transition matrix
ω = angular velocity vector (with ω = ‖ω‖), [ rad/day]

Subscripts

0 = initial value
f = final value
h = nominal halo orbit
i = ith solar sail
⊕ = [Earth+Moon]
� = Sun

Superscripts

T = transpose
· = time derivative
∧ = unit vector

1. Introduction

Halo orbits around collinear Lagrangian points enable a variety of advanced scientific missions, including
the recent China’s lunar probe Chang’e-4 [1] . In particular, continuous relay communications between
Earth and Chang’e-4, which reached the south pole region on the far side of the Moon on 3 January 2019,
has been obtained via the satellite Queqiao, which entered its Earth-Moon L2 halo orbit on 15 June 2018.
Periodic (or quasi-periodic) orbits around collinear Lagrangian points have attracted much attention of the
scientific community due to their unique merits. For example, in the Earth-Moon system, the non-Keplerian
orbits sunward of the L1 point are useful for space weather observations [2], while orbits near the L2 point
(with a sufficient out-of-plane displacement from it) facilitate constant telecommunication between the Earth
and the far side of the Moon [3, 4, 5], as in the case of Chang’e-4 mission [6]. From a heliocentric point
of view, halo orbits in the vicinity of the Sun-[Earth+Moon] L2 point naturally avoid solar eclipses (a
favorable condition for cosmic microwave measurements) , while halo orbits around the L1 point are never
shadowed by the Earth or the Moon (a favorable condition for both Earth’s sunlit hemisphere observation
and heliophysics studies [7, 8]). The halo orbits around the Sun-[Earth+Moon] L2 point have been proposed
and studied for several scientific missions [9, 10, 11]. For example, the (past) ESA Herschel and Plank space
observatories [12, 13, 14, 15], the (present) Gaia probe [16, 17, 18], and the (planned) ATHENA [19, 20] or
PLATO [21] spacecraft.

The intrinsic instability of halo orbits around collinear Lagrangian points requires effective methods for
station keeping [22] which, usually, necessitate a typical ∆V budget of a few m/s/year or a (very) low
propulsive acceleration, when a continuous-thrust propulsion system is considered in the mission design.
The low level of necessary thrust, together with the typical requirement of a long mission time to collect
a meaningful set of scientific data, make the generation of halo orbits around collinear Lagrangian point
an interesting option for a solar sail-based spacecraft [23, 24, 25, 26, 27], which exploits the natural solar
radiation pressure to generate a continuous thrust using the interaction of solar photons with a large reflecting
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surface, without any propellant consumption. After the striking success of the pioneering Japanese mission
IKAROS [28, 29], solar sailing is now considered a promising alternative to conventional (either chemical or
electric) propulsion systems [30, 31].

In addition, the use of a propellantless propulsion system, such as the solar sail or the electric solar
wind sail [32, 33], allows the collinear equilibrium point to be suitably displaced, so as to obtain a family
of Artificial Equilibrium points (AEPs), whose distance from the Earth may be varied within some limits
by properly selecting the spacecraft propulsive acceleration [5, 34]. In this context, the concept of solar sail
formation flying has been suggested as an effective means for improving the observation capability (in terms
of field of view and resolution) and reducing the overall system cost [35, 36, 37, 38]. In fact, the payload
mass of each spacecraft may be reduced by disaggregating the functional modules among different sails,
with each sail conveying the indispensable mass only. Such a mass reduction results in a significant increase
of propulsive acceleration, which in turn mitigates the demanding requirement of guaranteeing a very high
area to mass ratio in some future scientific missions. In addition, a formation enables multiple solar sails
to operate within a limited region to fulfill complex spaceborne tasks, which would be otherwise infeasible
for a single monolithic sail. By exploiting a task distribution among smaller, less-expensive spacecraft, the
sails in formation are able to interact with each other and operate in a cooperative way, so that the overall
system flexibility may be significantly enhanced [39].

The study of spacecraft formation flight is usually addressed by means of a leader-follower formation
architecture [36, 38, 40], in which the leader moves along a predefined (nominal) trajectory, and the followers
track the leader with some given (possibly time-varying) offset. In that case, the feature of the formation
system is defined by specifying the behavior of the leader alone, while the information flow goes from
the leader to the followers, without any feedback [41, 42, 43]. Such a topological structure introduces an
inherent vulnerability, because the leader is a single point of failure for the whole system so that, when the
follower is subject to strong perturbations, the formation may hardly be maintained. In most studies on
the maintenance of a spacecraft formation, the leader state is assumed to be available to each follower, even
though this is usually unrealistic due to small communication bandwidths and range limitations. In practice,
only a part of the formation has usually access to the state of the reference point and those spacecraft may
have not a directed path to all of the other formation agents.

Recently, the design of solar sail [40] (or electric solar wind sail [44, 45]) formation flying around displaced
orbits has been analyzed using a consensus-based control law, which uses a coordinated cooperative control
algorithm to guarantee a given formation geometry [46, 47, 48]. The aim of this paper is to extend the concept
of consensus-based control to a solar sail formation structure flying around an L2-type AEP in the Sun-
[Earth+Moon] circular restricted three-body problem. In particular, two different cases are investigated,
depending on whether the formation structure is leaderless or it includes a virtual leader. In the latter
case the information of the virtual leader state may be available to all of the sails or to a part of the
formation structure only. The protocols of the consensus-based algorithms are formulated on a general
directed (unidirectional) communication topology, by exploring every available local neighbor-to-neighbor
information interactions in a cooperative manner. In that case, a synchronized formation tracking can be
achieved while the reliability of the formation system is strengthened.

This paper is organized as follows. Section 2 illustrates the procedure for generating an L2-type AEP in
the Sun-[Earth+Moon] circular restricted three-body problem using a solar sail-based spacecraft. Section 3
presents an approximate analytical solution to the nominal orbit via Fourier series expansions, while Sections
4 and 5 develop the formation design, and the solar sail coordinated control strategies by accommodating
information interactions among the spacecraft to account both for the leaderless case, and the virtual-leader
case. The proposed method is then validated in Section 6 by numerical simulations. Finally, some concluding
remarks are given in Section 7.

2. Generation of L2-type artificial equilibrium points

Consider a flat, perfectly reflecting [49, 34], solar sail s with a total reflective area As, which moves
within the Sun-[Earth+Moon] system. The solar sail is equipped with a reflectivity control device, which
comprises a number of sufficiently small Electrochromic Material Panels (EMPs) of total area Ap, whose
optical coefficients may be changed with the application of a suitable electric voltage. In particular, let the
area covered with the switched-off EMPs be denoted by Aoff [40]; see Fig. 1.
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Figure 1: Conceptual scheme of a solar sail with Electrochromic Material Panels.

According to the simplified mathematical model discussed by Mu et al. [50], each EMP acts as a perfectly
absorbing (or perfectly reflecting) medium in a power-off (or power-on) mode. Therefore, the magnitude of
the sail propulsive acceleration can be modulated, within a suitable range, by selecting the working state of
the EMPs between the high reflectivity mode (power-on), and the low reflectivity mode (power-off). Taking
into account the results of Ref. [50], the solar sail propulsive acceleration vector a can be written as

a =
β Gm�

2 r2
�s

(r̂�s · n̂) [u r̂�s + 2 (1− u) (r̂�s · n̂) n̂] (1)

where G is the universal gravitational constant, m� is the Sun’s mass, r�s is the Sun-sail vector (with
r�s , ‖r�s‖ and r̂�s , r�s/r�s), n̂ is the unit vector normal to the sail plane in the direction opposite to
the Sun, and β is the sail lightness number [34], defined as the ratio of the maximum propulsive acceleration
magnitude of a perfectly reflecting sail to the (local) solar gravitational acceleration. In Eq. (3), u , Aoff/As
is the reflectivity modulation ratio which, in this simplified model, is assumed to range with continuity
between 0 (when all of EMPs are in power-on mode) and umax , Ap/As ≤ 1 (when all of EMPs are in
power-off mode). Accordingly, the control variables are the reflectivity modulation ratio u, and the normal
unit vector n̂. Note that in the special case of u = 0, Eq. (1) reduces to the formula describing an ideal
solar sail [49, 34] (in which all of the incoming photons are specularly reflected), whereas if u = umax = 1,
the solar sail acts as a flat black-body of area As (all of the incoming photons are absorbed).

Assuming that the [Earth+Moon] system, of mass m⊕, covers a circular orbit around the Sun with radius
r⊕ , 1 au, the motion of the (massless) solar sail-based spacecraft can be described in a synodic reference
frame T (O; x̂, ŷ, ẑ), with origin at the center-of-mass O of the Sun-[Earth+Moon] system, which rotates
synchronously with the revolution of the [Earth+Moon] around the Sun with an angular velocity ω. In
this frame, the unit vector x̂ points towards the [Earth+Moon] center-of-mass, ẑ lies in the direction of the
angular velocity vector ω, while the plane (x̂, ŷ) coincides with the ecliptic plane; see Fig. 2.

The components of the sail normal unit vector n̂ can be expressed, as a function of two attitude angles
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Figure 2: Synodic reference frame and solar sail thrust vector angles.

{θ, φ}, as
[n̂]T = [cos θ cos φ, cos θ sin φ, sin θ]

T
(2)

where θ ∈ [−π/2, π/2] rad is the angle between the direction of n̂ and the (x̂, ŷ) plane, while φ ∈
[−π/2, π/2] rad is the angle (measured counterclockwise) between the direction of x̂ and the projection
of n̂ onto (x̂, ŷ); see Fig. 2.

For convenience, a dimensionless set of units is now introduced, such that the total mass of the primaries
(m� +m⊕), the Sun-[Earth+Moon] reference distance (r⊕), and the universal gravitation constant (G) are
all unitary. Accordingly, the rotational period of the synodic frame is T = 2π/ω ≡ 2π, the O-Sun distance
is rO� = µ r⊕ ≡ µ, the O-[Earth+Moon] distance is rO⊕ = (1−µ) r⊕ ≡ (1−µ), where µ , m⊕/(m⊕ +m�) =
3.05425× 10−6 is the dimensionless mass of the [Earth+Moon] system. In particular, since the Sun’s mass
can be written in a dimensionless form as m� = (1 − µ) (m� + m⊕) ≡ (1 − µ), the solar sail propulsive
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acceleration vector a, given by Eq. (1), becomes

a =
β (1− µ)

2 r2
�s

(r̂�s · n̂) [u r̂�s + 2 (1− u) (r̂�s · n̂) n̂] (3)

Therefore, the solar sail (dimensionless) equation of motion is

r̈ + 2ω × ṙ =
∂ Ω

∂ r
+ a (4)

where r is the O-sail position vector, a is given by Eq. (3), Ω is the effective potential function, while

[ω]T = [0, 0, 1]
T

(5)

is the angular velocity vector and
[r]T = [x, y, z]T (6)

is the sail position vector. With the aid of Fig. 2, the potential function Ω can be written as

Ω ,
x2 + y2

2
+

1− µ
r�s

+
µ

r⊕s
(7)

where the Sun-sail distance r�s and the [Earth+Moon]-sail distance r⊕s , ‖r⊕s‖ are given by

r�s =

√
(x+ µ)

2
+ y2 + z2 (8)

r⊕s =

√
(x+ µ− 1)

2
+ y2 + z2 (9)

In the simple case of a = 0, Eq. (4) presents five equilibrium points, that is, the five classical equilibrium
points {L1, L2, L3, L4, L5} of the circular restricted three-body problem, among which L2 is the (unstable)
collinear point along the Sun-[Earth+Moon] line past the [Earth+Moon] system. Assuming n̂ = r̂�s = x̂, a
suitable value of the sail lightness number β allows the L2 equilibrium point to be displaced along the x̂-axis
of the synodic reference frame T , such as to obtain a sort of L2-type artificial equilibrium point (AEP) [5].
In other terms, when the propulsive acceleration balances both the celestial body gravitational pull and the
centrifugal force along the Sun-[Earth+Moon] line, a new family of collinear AEPs are generated.

Bearing in mind Eq. (3), when n̂ = x̂ and r�s = (x + µ) x̂, the dimensionless propulsive acceleration
vector becomes

a =
β (1− µ) (2− u)

2 (x+ µ)2
x̂ (10)

whereas the dimensionless potential function of Eq. (7) reduces to

Ω =
x2

2
+

1− µ
x+ µ

+
µ

|x+ µ− 1|
(11)

Therefore, the position x = xAEP of the L2-type AEP along the x̂-axis is obtained by enforcing the conditions

ṙ = 0, r̈ = 0, r = xAEP x̂ (12)

with xAEP > (1− µ). Substituting Eq. (11) into Eq. (4), the result is a single scalar equation

xAEP −
(1− µ) [1− β (1− u/2)]

(xAEP + µ)
2 − µ

(xAEP + µ− 1)
2 = 0 (13)

whose solution gives the position of the L2-type AEP along the x̂-axis.
For a given value of sail lightness number β and reflectivity modulation ratio u, the location of the AEP

requires the determination of the root xAEP of Eq. (13), which can be obtained using standard numerical
algorithms. For example, when u = 0.4 and β = 0.01, Eq. (13) gives xAEP ' 1.009. On the other hand, for
a given value of xAEP > (1− µ) and u, the required sail lightness number can be obtained from Eq. (13) as

β =
(xAEP + µ)2

[
(1− µ)/(xAEP + µ)2 + µ/(µ− 1 + xAEP)2 − xAEP

]
(1− u/2) (1− µ)

(14)

The function β = β (xAEP, u) of Eq. (14) is illustrated in Fig. 3 for u = {0, 0.4, 1}. Note that, as expected,
the condition β = 0 gives the position, along the x̂-axis, of the classical L2 Lagrangian point.
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Figure 3: Required sail lightness number as a function of xAEP and u; see Eq. (14).

3. Nominal trajectory selection

The reference halo orbit around the L2-type AEP is here designated as the nominal trajectory. Never-
theless, other types of periodic or quasi-periodic orbits (e.g. Lissajous orbits) may also be chosen as the
nominal trajectory, depending on the specific scientific mission requirements. In general, the properties of
the dynamical system modeled by Eqs. (3)–(9) are highly dependent on the characteristics of the solar sail
propulsive acceleration vector a, that is, on u and on the components of the normal unit vector n̂; see
Eq. (3).

According to Refs. [24, 51], there exists a large family of halo orbits when the sail attitude is maintained
fixed in the rotating reference frame T . In the following analysis, the nominal trajectory will be obtained
under the condition n̂ ≡ r̂�s, that is, with the assumption that the solar sail normal vector always lies along
the Sun-sail line. This happens in a Sun-facing condition, which can be maintained in a passive way by
shaping the sail structure with a slightly conical form (with its apex directed sunward) [52, 53]. A Sun-facing
condition can also be obtained using a Sun-pointing smart dust [54, 55, 56, 57], that is, a millimeter-scale
solar sail [58] whose external surface is covered by an electrochromic reflective film. Accordingly, Eqs. (3)–(9)
give

ẍ− 2 ẏ − x = − (1− µ) [1− β (1− u/2)] (x+ µ)[
(x+ µ)

2
+ y2 + z2

]3/2 − µ (x+ µ− 1)[
(x+ µ− 1)

2
+ y2 + z2

]3/2 (15)

ÿ + 2 ẋ− y = − (1− µ) [1− β (1− u/2)] y[
(x+ µ)

2
+ y2 + z2

]3/2 − µ y[
(x+ µ− 1)

2
+ y2 + z2

]3/2 (16)

z̈ = − (1− µ) [1− β (1− u/2)] z[
(x+ µ)

2
+ y2 + z2

]3/2 − µ z[
(x+ µ− 1)

2
+ y2 + z2

]3/2 (17)

The linearized form of Eqs. (15)–(17) [59], or the third-order approximation obtained with the aid of
Lindstedt-Poincaré perturbation method, is usually used to identify the artificial halo orbits in the neigh-
borhood of the L2-type AEP point [24, 60]. However, in both cases the obtained solution gives rise to a
remarkable deviation from the nominal trajectory when the (dimensionless) propagation time exceeds about
one half period (T/2 = π). For this reason, an alternative approach is advisable. In this context, the
differential correction method [26, 61, 62] is firstly adopted to identify the artificial halo orbit around the
designed L2-type AEP point, whose position is obtained with a given value of the pair {β, u}. For example,
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the families of halo orbits around L2-type AEPs with u = 0.4 and β = {0, 0.005, 0.01, 0.015} are shown in
Fig. 4.
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Figure 4: Families of halo orbits around L2-type AEPs with u = 0.4 and β = {0, 0.005, 0.01, 0.015}.

The non-integrability nature of Eqs. (15)–(17) prevents the artificial halo orbit from any analytical (exact)
representation. However, as will be shown later, the solar sail formation control system requires an explicit
description of the nominal trajectory. To this end, paralleling the procedure described in Ref. [63], a Fourier
series-based solution with a least-square technique is now proposed to estimate the nominal trajectory with
a reduced computational effort. The nominal trajectory is represented with an approximate trigonometric
polynomial as

rh =

n∑
k=0

[ck cos (k ωh t) + sk sin (k ωh t)] (18)
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where ωh is the angular frequency of the nominal halo orbit, and rh is the (dimensionless) position vector
of a generic point h at time t, with [rh]T , [xh, yh, zh]

T
; see Fig. 5. In Eq. (18), ` , {ck, sk} is the set of
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Figure 5: L2-type AEP and nominal trajectory.

coefficients to be evaluated. For a given order n of the truncated series (18), the value of ` may be found
using an unconstrained least-square procedure, with the minimization index defined as

` = arg min

{∫ Th

0

‖X −Xh‖2 dt

}
(19)

where X , [rT, ṙT]
T

is the state vector along the trajectory, and Th , 2π/ωh is the period of the nominal
halo orbit.

4. Solar sail formation design

Having analyzed the generation (and analytical approximation) of the nominal trajectory, we are now in
a position to study the relative motion of a solar sail-based spacecraft formation. Let ρi , ri − rh denote
the relative dimensionless position vector of the ith solar sail si with respect to the corresponding point h on
the nominal trajectory. In particular, the nominal trajectory is obtained with an assigned value of both the
sail lightness number β = βh, and the reflectivity modulation ratio u = uh. Note that the approximation of
the vector rh is given by Eq. (18). Moreover, let r�h and r⊕h denote the position vectors from the Sun and
the Earth to the generic point h on the nominal trajectory, respectively; see Fig. 6.

The dimensionless relative equation of motion of the spacecraft si, in the rotating reference frame T , can
be written as

ρ̈i + 2ω × ρ̇i =
∂ Ωi
∂ ri

− ∂ Ωh
∂ rh

+ ai − ah (20)

where ah is the propulsive acceleration vector required by the sail at point h to follow the nominal trajectory
with a Sun-facing attitude, that is

ah =
βh (1− µ) (1− uh/2)

r2
�h

r̂�h (21)
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Because the solar sails operate in the neighbourhood of the nominal trajectory, the relative distance ρi , ‖ρi‖
is much smaller than r�h , ‖r�h‖. Moreover, the magnitude of the relative unit normal vector ∆ n̂i ,
n̂i− n̂h, and the relative reflectivity ratio ∆ui , ui−uh are both negligible at first-order. Accordingly, the
relevant terms in Eq. (20) can be linearized around those of the nominal trajectory as

ai ' ah +
∂ ah
∂ r�h

ρi +
∂ ah
∂ n̂h

∆ n̂i +
∂ ah
∂ uh

∆ui (22)

∂ Ωi
∂ ri

' ∂ Ωh
∂ rh

+
∂2 Ωh
∂ r2

h

ρi (23)

where

∂ ah
∂ r�h

=
βh (1− µ)

r3
�h

{
uh
2

[
(r̂�h n̂

T

h) + (n̂h · r̂�h) I3 − (n̂h · r̂�h)
(
r̂�h r̂

T

�h

)]
+ 2 (1− uh)

[
(n̂h · r̂�h) (n̂h n̂

T

h)− 2 (n̂h · r̂�h)
2 (
n̂h r̂

T

�h

)]}
(24)

∂ ah
∂ n̂h

=
βh (1− µ)

r2
�h

{uh
2

(
r̂�h r̂

T

�h

)
+ (1− uh)

[
2 (n̂h · r̂�h)

(
n̂h r̂

T

�h

)
+ (n̂h · r̂�h)

2 I3
]}

(25)

∂ ah
∂ uh

=
βh (1− µ)

r2
�h

[
1

2
(n̂h · r̂�h) r̂�h − (n̂h · r̂�h)

2
n̂h

]
(26)

∂2 Ωh
∂ r2

h

=
(1− µ)

r3
�h

(
3 r̂�h r̂

T

�h − I3
)

+
µ

r3
⊕h

(
3 r̂⊕h r̂

T

⊕h − I3
)

+ diag (1, 1, 0) (27)

The nominal trajectory around the L2-type AEP is designed assuming the solar sail normal vector to lie
along the Sun-sail line, hence

[n̂h]T ≡ [r̂�h]T = [xh + µ, yh, zh]
T

(28)

[r̂⊕h]T = [xh + µ− 1, yh, zh]
T

(29)

Recalling Eq. (2), the attitude angles necessary for the nominal trajectory are written as

θh = arcsin (n̂h · ẑ) , φh = arcsin [(n̂h × ẑ) / ‖n̂h × ẑ‖ · x̂] (30)

where n̂h is given by Eq. (28). Accordingly, the relative normal vector ∆ n̂i in Eq. (22) can be further
linearized as

∆ n̂i '
∂ n̂h

∂ [θh, φh]
[∆ θi, ∆φi]

T
(31)
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where ∆ θi , θi − θh and ∆φi , φi − φh are the relative sail attitude angles, while the Jacobian matrix is

∂ n̂h
∂ [θh, φh]

=

− sin θh cos φh − cos θh sin φh
− sin θh sin φh cos θh cos φh

cos θh 0

 (32)

Substituting Eqs. (22)–(32) into Eq. (20), the (dimensionless) linear differential equation of the relative
motion of the ith sail si, with respect to the generic point h on the nominal trajectory, can be written in a
compact form as

ρ̈i + 2Mv ρ̇i + Mp ρi = Mh ui (33)

where

Mv ,

0 −1 0
1 0 0
0 0 0

 (34)

Mp , −
∂2 Ωh
∂ r2

h

− ∂ ah
∂ r�h

(35)

Mh ,

[
∂ ah
∂ n̂h

∂ n̂h
∂ [θh, φh]

,
∂ ah
∂ uh

]
(36)

while ui is the control input of the generic solar sail si, defined as

ui , [∆ θi, ∆φi, ∆ui]
T

(37)

In the analysis to follow, cooperative strategies for the formation system described by Eq. (33) will be
designed such that all of the solar sails in formation reach consensus as t→ +∞.

5. Cooperative formation control

Distributed coordinated control algorithms are now considered for a formation structure with N ≥ 3
solar sail-based spacecraft, relying on local neighbor-to-neighbor interactions. In case of data transmission
through local sensing [64, 65], the solar sails in a formation are likely to be equipped by sensors with a
limited field of view only, which induce unidirectional communication topologies. To model such a behavior,
the information exchange among the spacecraft in the formation is assumed to be characterized by a generic
directed graph [66].

According to the procedure discussed in Ref. [63], a few pertinent concepts of algebraic graph theory [66]
are first briefly summarized for the sake of completeness. A directed graph G consists of a finite non-empty
vertex set V , {υ1, . . . , υN}, an edge set E , {(υ1, υ2) , . . . , (υN−1, υN )} ⊆ V ×V, and a weighted adjacency
matrix W = [wij ] ∈ RN×N . An edge (υi, υj) ∈ E in a directed graph implies that the information flows
from vertex υi to υj , but not necessarily vice versa. When there is an edge from vertex υi to vertex υj ,
then υi is defined as the parent vertex, while υj is defined as the child vertex. The generic entry of a
weighted adjacency matrix W is wij > 0, ∀ (υj , υi) ∈ E with i 6= j, and wii = 0. The Laplacian matrix

L = [lij ] ∈ RN×N associated with W is defined such that lij = −wij and lii =
N∑
j=1

wij ,∀ i 6= j. A rooted

directed spanning tree is constituted by edges that connect all the vertices; see Fig. 7. Note that a directed
graph has a rooted spanning tree if and only if there exists at least one vertex having a directed path to all
of the other vertices. Finally, the topology is assumed to be fixed throughout the paper and the Laplacian
matrix L is constant.

In modeling the topology of the solar sail relative motion, each sail is represented by a vertex, while
the interactions between two generic sails are characterized by a weighted directed edge. In the next sec-
tions, distributed control strategies will be developed in both the leaderless case and the virtual-leader case
respectively, such that the overall consensus will be reached.
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Figure 7: Schematization of a directed topology graph including a rooted spanning tree.

5.1. Leaderless case

Consider first the case in which a centralized leadership is absent and the solar sail-based spacecraft
in formation are required to maintain a desired relative configuration. Such a sort of leaderless formation
structure is said to follow a behavior approach [67], which is typical in cluster flight or swarm missions [68,
69, 70], where the control law is designed for each vehicle such that the solar sails have a common formation
center c. In this case, more flexibility, reliability, and robustness can be guaranteed than those in a centralized
leader-follower configuration [41].

Let {ρci, ρ̇ci} ∈ R3 ×R3, with i = 1, . . . , N , be the desired relative state of the solar sail si with respect
to the formation center c; see Fig. 8. If subscript j 6= i denotes the sail sj , a consensus (the control objective)
is said to be reached when

(ρi − ρci)→ (ρj − ρcj)→ ρc ∩ (ρ̇i − ρ̇ci)→ (ρ̇j − ρ̇cj)→ 03 (38)

where ρc is the relative position vector of the formation center with respect to the point h on the nominal
(artificial halo orbit) trajectory; see Fig. 8. In this case, the formation center is assumed to be initially
unspecified. Indeed, it is determined by all of the solar sails through a negotiation process.

For convenience, introduce the auxiliary vectors qi , ρi−ρci and q̇i , ρ̇i− ρ̇ci, so that Eq. (38) can be
rewritten as

qi → qj → ρc ∩ q̇i → q̇j → 03 (39)

and assume a cooperative control law in Eq. (33), defined as

ui = M−1
h

ρ̈ci + 2Mv ρ̇i + Mp ρi − α q̇i −
N∑
j=1

wij
[(
qi − qj

)
+ γ

(
q̇i − q̇j

)] (40)

where {α, γ} ∈ R+, and the matrices Mp, Mv, and Mh are given by Eqs. (34)–(36).
Theorem 1: Using the control law (40) with the solar sail formation structure represented by Eq. (33),

consensus (that is, conditions (39)) is asymptotically achieved if the topology graph G includes (at least) a
spanning tree, and the coefficient γ satisfies

γ > max
{i |Re (λi)<0}

√√√√√ 2

|λi| cos

[
π

2
− arctan

−Re (λi)

Im (λi)

] (41)

where λi is the ith eigenvalue of matrix −L.
Proof: With the control input of Eq. (40), the second-order differential equation for qi can be written

as

q̈i + α q̇i +

N∑
j=1

wij
[(
qi − qj

)
+ γ

(
q̇i − q̇j

)]
= 03 (42)
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Figure 8: Schematic illustration of the leaderless solar sail formation structure.

which can be collected into a compact state-space form by introducing the auxiliary vector q , [qT
1 , . . . , q

T

N ]
T
,

i.e.
[q̇T, q̈T]

T
= (Q⊗ I3) [qT, q̇T]

T
(43)

where ⊗ denotes the Kronecker product, and the matrix Q ∈ R2N×2N is defined as

Q ,

[
ON IN
−L −α IN − γ L

]
(44)

The eigenvalues of Q are found by enforcing the condition det (η I2N −Q) = 0, which leads to

det
[(
η2 + αη

)
IN + (1 + γ η) L

]
= 0 (45)

The roots of Eq. (45) are calculated by solving η2 + αη = λi (1 + γ η), and the eigenvalues of Q are given
by

ηi± =
γ λi − α±

√
(γ λi − α)

2
+ 4λi

2
(46)

If there exists a spanning tree in the communication topology, then −L has a simple zero eigenvalue, while
all other eigenvalues have negative real parts [65]. In this case, it can be drawn from Eq. (46) that all of the
eigenvalues of Q have negative real parts, i.e. Re (ηi) < 0, and the system is asymptotically stable if the
inequality in Eq. (41) holds true.

Having discussed the conditions under which a consensus may be reached, another important problem
is to find the equilibrium state for the solar sails. To that end, consider the linear system represented by
Eq. (43), whose state-transition matrix is

e(Q⊗I3) t = e(Q t)⊗I3 = eQ t ⊗ I3 (47)
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As is shown in Ref. [65], as t→ +∞ the following relationship holds

lim
t→+∞

eQ t =

[
1N p

T 1
α1N p

T

ON ON

]
(48)

where 1N ∈ RN denotes the column vector of all ones, and p ∈ RN is a left eigenvector of the matrix −L
associated with eigenvalue 0, such that p · 1N = 1. According to Eqs. (43), (47) and (48), it follows that

q → [(1N p
T)⊗ I3] qc +

1

α
[(1N p

T)⊗ I3] q̇c, q̇ → 03N (49)

where qc , [qT
c1, . . . , q

T

cN ]
T

is the initial value of q.
Let pi be the ith component of the left eigenvector p, it can be verified from Eq. (49) that the final

position vector ρc of the formation center c relative to the generic point h on the nominal trajectory is

ρc = lim
t→+∞

q =

N∑
i=1

pi

(
qci +

1

α
q̇ci

)
(50)

which amounts to stating that consensus is guaranteed in the sense of the conditions given by Eq. (39). 2
Note that with the control law given by Eq. (40), the final location of the formation center is defined by a

weighted average of the initial states of all solar sails. Theorem 1 also indicates that (ρi−ρj)→ (ρci−ρcj).
Therefore, ρci and ρcj can be selected so as to acquire a desired separation between the solar sails si and
sj .

5.2. Virtual-leader case

In some scientific missions, such as those involving synthesizing interferometers [39, 70], it is necessary
to prescribe the state relative to some reference point for each vehicle, and treat the entire formation as a
single entity [42, 71]. In those cases, a reference point plays the role of virtual leader (v) of the solar sail
formation structure, around which a desired relative configuration can be formed by properly designing the
cooperative control strategy. To that end, a distributed control algorithm gives good performance especially
when the state of the virtual leader cannot be known precisely due to the limitations on the communication
bandwidth and the sensing range. Such a control system will now be designed in two different subcases,
depending on whether i) all of the sails or ii) only a subgroup of the sails can share information of the virtual
leader state.

Let ρv denote the position vector of the virtual leader v relative to the generic point h on the nominal
trajectory, and {ρvi, ρ̇vi} ∈ R3 × R3 be the desired relative state of the ith solar sail si with respect to
the virtual leader; see Fig. 9. In contrast to the leaderless case, the position vector ρv is here specified in
advance and is possibly time-varying. The goal of the cooperative control law is to drive each solar sail
in formation toward the desired relative trajectory, while guaranteeing a group synchronization during the
maneuver, viz.

ρi − ρvi → ρj − ρvj → ρv ∩ ρ̇i − ρ̇vi → ρ̇j − ρ̇vj → ρv (51)

5.2.1. Full access to the virtual leader state

When the information of the virtual leader state is available to all of the solar sails, the consensus protocol
is designed as

ui = M−1
h

ρ̈v + ρ̈vi + 2Mv ρ̇i + Mp ρi − σ (ei + ζ ėi)−
N∑
j=1

wij [(ei − ej) + ζ (ėi − ėj)]

 (52)

where the parameters {σ, ζ} ∈ R+, while the position error and the velocity error of the sail si are ei ,
ρi − ρv − ρvi and ėi , ρ̇i − ρ̇v − ρ̇vi, respectively.
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Figure 9: Schematic illustration of the virtual-leader solar sail formation flying.

Theorem 2: Using the control law given by Eq. (52) for the solar sail-based formation structure described
by Eq. (33), consensus (that is, ei → ej → 03 and ėi → ėj → 03) is asymptotically achieved if the topology
graph G includes (at least) a spanning tree and the coefficient ζ satisfies

ζ > max
i=1,...,N

√√√√√ 2

|νi| cos

[
π

2
− arctan

−Re (νi)

Im (νi)

] (53)

where νi = −σ + λi is the ith eigenvalue of − (σ IN + L).
Proof: Using the control law (52) and bearing in mind the relative motion dynamics given by Eq. (33),

the differential equation for the position error ei can be written as

ëi + σ (ei + ζ ėi) +

N∑
j=1

wij [(ei − ej) + ζ (ėi − ėj)] = 0 (54)

By introducing the auxiliary vector e , [eT
1 , . . . , e

T

N ]
T
, a compact form of Eq. (54) is given by

[ėT, ëT]
T

= (E⊗ I3) [eT, ėT]
T

(55)

where the matrix E ∈ R2N×2N is defined as

E ,

[
ON IN

− (σ IN + L) −ζ (σ IN + L)

]
(56)
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The eigenvalues of E are

ξi± =
ζ νi ±

√
ζ2 ν2

i + 4 νi
2

(57)

Paralleling the approach in the leaderless case, it is straightforward to see that each eigenvalue ξi (with
i = 1, . . . , N) has a negative real part if Eq. (53) is satisfied, which implies ei → 03 and ėi → 03. In
particular, a synchronized transition, i.e. ei → ej → 03 and ėi → ėj → 03, can be guaranteed when the
information exchange topology has a spanning tree due to the state feedback couplings among the sails [65].

2

5.2.2. Partial access to the virtual leader state

The cooperative control algorithm given by Eq. (52) assumes the virtual leader state to be available
to each solar sail, which is usually unrealistic in practice. Considering the fact that the solar sail-based
spacecraft usually conveys a rather limited payload and communication instrument mass, it is possible that
the information of the virtual leader state can only be measured by the onboard sensors of a part of the
sails in formation, and these sails may not have a directed path to all the others.

Such a circumstance necessitates an alternative algorithm accounting for the general case where only a
part of formation have access to the virtual leader state. To this end, the consensus strategy is proposed in
the form

ui = M−1
h

{
ρ̈vi + 2Mv ρ̇i + Mp ρi +

1
N∑
j=0

wij

N∑
j=1

wij
[(
ρ̈j − ρ̈vj

)
− δ (ei − ej)− κ (ėi − ėj)

]

+
1

N∑
j=0

wij

wvi (ρ̈v − δ ei − κ ėi)

}
(58)

where {δ, κ} ∈ R+, wi0 > 0, ∀ i = 0, . . . , N , if the sail si has access to the state of the virtual leader and
wi0 = 0 otherwise. Note that the virtual leader is treated as a virtual solar sail with index 0.

Theorem 3: Using the control law of Eq. (58) for the solar sail-based formation system described by
Eq. (33), consensus (that is, ei → ej → 03 and ėi → ėj → 03) is asymptotically achieved if the virtual
leader v is the root that has a path to each solar sail in formation.

Proof: With the control input of Eq. (58), it can be derived from Eq. (33) that

N∑
j=0

wij (ρ̈i − ρ̈vi) =

N∑
j=1

wij
[(
ρ̈j − ρ̈vj

)
− δ (ei − ej)− κ (ėi − ėj)

]
+ wi0 (ρ̈v − δ ei − κ ėi)

=

N∑
j=0

wij
[(
ρ̈j − ρ̈vj

)
− δ (ei − ej)− κ (ėi − ėj)

]
(59)

Let εi ,
N∑
j=0

wij (ei − ej), and recall the identity ρi − ρvi − ρj + ρvj = ei − ej . Then Eq. (59) becomes

ε̈i + δ ε̇i + κ εi = 0 (60)

Since δ > 0 and κ > 0, it follows from Eq. (60) that εi → 03 and ε̇i → 03 as t → +∞. For convenience,

introduce the vector l , [l10, . . . , lN0]
T ∈ RN , with li0 = −wi0, and let L̃ , [0T

N , 0; L, l] ∈ R(N+1)×(N+1) be

the extended Laplacian matrix involving the virtual leader. It is straightforward to verify that
(
L̃⊗ I3

)
ẽ→

03N and
(
L̃⊗ I3

)
˙̃e→ 03N , where ẽ , [eT

0 , e
T]

T
. Note that for the virtual leader, the state errors e0 ≡ 03

and ė0 ≡ 03. If the virtual leader has a path to each solar sail, then the information exchange topology
involving the virtual leader includes a rooted spanning tree, which further results in ei → ej → e0 = 03 and
ėi → ėj → e0 = 03. 2
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In contrast to the case in which the virtual leader state is accessible to all of the solar sails, Eq. (58)
requires the acceleration of the neighbor sail, which may be calculated by numerical differentiation when
onboard measurement is unavailable. For example, in the simplest case, ρ̈j on the right side of Eq. (58)

can be approximated by
(
ρ̇j [k + 1]− ρ̇j [k]

)
/τ , where k is the discrete-time index, and τ is the sampling

interval. Other sampling algorithms can also be adopted such as the Runge-Kutta method.

6. Mission application

To illustrate the performance of the proposed cooperative control laws, a formation mission scenario
consisting of three solar sails (N = 3) around an artificial halo orbit centered at the Sun-[Earth+Moon]
L2-type AEP is now discussed. The nominal trajectory is obtained with uh = 0.4 and βh = 0.01. In this
example, the solar sail relative trajectories with respect to the formation center track a projected circular
orbit (PCO) with a radius R , 10 km. Accordingly, for the leaderless case (see Fig. 8), the PCO parametric
representation of the sail si (with i ∈ {1, 2, 3}) is assumed to have the following algebraic form

ρci = (R/r⊕) [0, cos (ωh t+ ϕi) , sin (ωh t+ ϕi)]
T

(61)

whereas for the virtual-leader case (see Fig. 9) the PCO parametric representation is

ρvi = (R/r⊕) [0, cos (ωh t+ ϕi) , sin (ωh t+ ϕi)]
T

(62)

where ϕi = (2/3) (i− 1)π is the phase angle of the PCO.
In this case, the approximation of the nominal trajectory by a 6th-order Fourier series (n = 6) is

illustrated in Fig. 10, while the dimensionless coefficients {ck, sk} of Eq. (18), evaluated in the least-square
sense, are listed in Tab 1.
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Figure 10: Nominal trajectory: approximate form (circles) vs. the numerical solution (solid line).

The accuracy of the 6th-order Fourier series approximation is confirmed by Fig. 11, which shows the time
variation of the dimensionless (distance) error ∆r̃ , (‖r‖ − ‖rh‖) / ‖r‖. According to Fig. 11, the maximum
value of |∆r̃| is less than 5× 10−7, indicating a good accuracy of the analytical approximation.

6.1. Leaderless case

Consider first the leaderless case in which a centralized leadership is absent and the formation center
is not a priori specified. To evaluate the controller performance of Eq. (40), introduce the error indices
eij , qi − qj and ėij , q̇i − q̇j , with initial values reported in Tab. 2.
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Table 1: Coefficients of the 6th-order Fourier series approximation of the nominal trajectory, see Eq. (18).

k ck sk
0

[
1.0070, 3.0854× 10−8, 1.7412× 10−3

]T
[0, 0, 0]

T

1
[
2.0039× 10−3, 3.3922× 10−7, 5.3430× 10−3

]T [
−2.2928× 10−9, −6.5287× 10−3, 1.2619× 10−7

]T
2

[
6.5432× 10−5, −5.3794× 10−8, −5.3612× 10−4

]T [
1.9804× 10−9, 5.2543× 10−4, −3.2178× 10−8

]T
3

[
−2.2999× 10−5, 3.5717× 10−8, 1.0509× 10−4

]T [
−1.8103× 10−9, −1.0514× 10−4, 1.4718× 10−8

]T
4

[
6.8071× 10−6, −6.7082× 10−9, −2.4949× 10−5

]T [
−1.8024× 10−9, 2.5228× 10−5, −9.8589× 10−9

]T
5

[
−2.0513× 10−6, 2.1746× 10−8, 6.5864× 10−6

]T [
−1.7928× 10−9, −6.7798× 10−6, −8.8916× 10−9

]T
6

[
5.6290× 10−7, −2.2537× 10−9, −1.8496× 10−6

]T [
1.7893× 10−9, 1.8775× 10−6, −8.9881× 10−9

]T
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Figure 11: Dimensionless distance error of the 6th-order Fourier series-based approximation with respect to the numerical
solution.

Table 2: Initial errors of three solar sails in the leaderless case.

eij0 · x̂ [ km] eij0 · ŷ [ km] eij0 · ẑ [ km] ėij0 · x̂ [ m/s] ėij0 · ŷ [ m/s] ėij0 · ẑ [ m/s]
i = 1, j = 2 1 2.5 −2 1× 10−3 −2× 10−3 2× 10−3

i = 2, j = 3 −2.5 −1.5 2.5 −1× 10−3 2× 10−3 −2× 10−3

i = 3, j = 1 1.5 −1 −0.5 −1× 10−3 1× 10−3 2× 10−3

The information exchange topology characterizing the mutual interaction of the three solar sails is as-
sumed to follow a cyclic pursuit structure, as is illustrated in Fig. 12. In this case, the weighted adjacency
matrix W is given by

W =

 0 8× 104 0
0 0 8× 104

8× 104 0 0

 (63)

For a favorable control performance (in terms of convergence time and tracking accuracy), the dimen-
sionless parameters in Eq. (40) are selected as α = 2.5 × 102 and γ = 5 × 10−3. Note that γ satisfies the
constraint of Eq. (41), i.e. γ > 4.1× 10−3.

The position and velocity errors of the three solar sails are shown in Fig. 13 and Fig. 14 respectively,
while the time variations of the (relative) control variables ∆ θi, ∆φi and ∆ui are shown in Fig. 15.

Figure 16 illustrates the relative transfer trajectories of the three sails, whose initial positions are denoted
with the star. It may be seen from the figures that with the control law (40), all errors converge to zero
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Figure 12: Information exchange topology of the three solar sails in the leaderless case.

within 1.5 days and a good synchronization is maintained along the whole maneuver. Moreover, the final
consensus guarantees a similar transition time to all of the solar sails, which is a crucial point for practical
applications.

6.2. Virtual-leader case

Consider now the case where a virtual leader v is included in the solar sail-based formation structure.
The initial conditions of the three solar sails are slightly different from the desired trajectories, with the
initial errors listed in Tab. 3. The location of the virtual leader has a small (constant) bias relative to the
nominal trajectory. In the following examples, it is assumed that [ρv]T = [1, 0, 0]

T
km and [ρ̇v]T = 03 . In

particular, illustrative examples will be discussed to verify the proposed control laws that account for the
two previous subcases, where the virtual leader state is either accessible to all of the solar sails or to a subset
of sails (that is, a part of the formation structure).

Table 3: Initial errors of three solar sails in the virtual-leader case.

ex0 [ km] ey0 [ km] ez0 [ km] ėx0 [ m/s] ėy0 [ m/s] ėz0 [ m/s]
s1 1 −2.5 2 1× 10−3 −2× 10−3 2× 10−3

s2 2.5 −2 −1 −1× 10−3 2× 10−3 −2× 10−3

s3 −2.5 2 1 −1× 10−3 1× 10−3 2× 10−3

6.2.1. Full access to the virtual leader state

When all of the solar sails in formation have access to the data from the virtual leader v, the commu-
nication topology is illustrated in Fig. 17, where the information flows among the three spacecraft follow a
cyclic pursuit pattern. In this case, the weighted adjacency matrix W is given by

W =

0 1 0
0 0 1
1 0 0

 (64)
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Figure 13: Time history of the position errors eij in a leaderless case.

The performance of the controller described by Eq. (52) is governed by the dimensionless parameters
{σ, ζ}, whose values are chosen as σ = 105 and ζ = 6.4 × 10−3. Note that ζ satisfies the constraint of
Eq. (53), i.e. ζ > 4.47× 10−3.

To illustrate the performance of the control law given by Eq. (52), the time variations of the relative
position and velocity errors are plotted in Fig. 18 and Fig. 19, for a time interval of 2.5 days. The corre-
sponding time histories of the required control variables ∆ θi, ∆φi and ∆ui are shown in Fig. 20, while the
relative trajectories of the three sails are illustrated in Fig. 21. It can be seen that the transient errors of
the three solar sails gradually converge to zero after about 1.5 days.

6.2.2. Partial access to the virtual leader state

The control law given by Eq. (58) is now validated for the case in which the virtual leader state is
available to only a part of the solar sail formation structure. Without loss of generality, only the solar sail
s1 is now assumed to have access to the virtual leader state, see Fig. 22. The initial errors take the same
value as those reported in Tab. 3, and the weighted adjacent matrix is given by Eq. (64).

The parameters in Eq. (58) are selected as δ = 105 and κ = 7 × 102, and the weight of the directed
edge between the virtual leader and the sail s1 is w10 = 1. A first-order Eulerian differentiation method is
adopted in the simulation, and the sampling interval is chosen to be τ = 5× 10−4 day.

The position and velocity errors of the three sails are illustrated in Fig. 23 and Fig. 24 respectively, while
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Figure 14: Time history of the velocity errors ėij in a leaderless case.

the control input ui is shown in Fig. 25. The relative trajectories of the three sails are illustrated in Fig. 26.
Note that, even in this case of partial access to the virtual leader state, the steady state errors of the three
sails converge all to zero, while consensus is guaranteed during the whole transition phase.

The illustrative examples show that, to maintain a formation with a 10-km size, a propulsive acceleration
with a magnitude of 0.05 mm/s2 is required for each solar sail. Such a performance level is achievable by
current technology.
The previous theorems on the cooperative formation control do not take into account any constraint on
the initial errors, which however significantly affect the magnitude of the control input ∆ui. In particular,
for a fixed set of control parameters, an actuator saturation may occur when the magnitude of the initial
errors exceeds some maximum value (to be found by simulation). For this reason the choice of the control
parameters is usually the output of a trial and error procedure. Nevertheless, some general remarks may
simplify the design. For example, in the leaderless case it is preferable to choose a small value of γ in Eq. (40)
to mitigate the saturation problem. In the virtual leader case, instead, the numerical simulations suggest to
decrease ζ in Eq. (52) and decrease κ in Eq. (58), when a saturation of control input occurs.
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Figure 15: Time history of the control input ∆ui of the three solar sails, see Eq. (40).

7. Conclusions

The problem of solar sail cooperative formation flying around L2-type artificial Equilibrium point or-
bits in the Sun-[Earth+Moon] system has been investigated. A truncated Fourier series has been used to
parameterize the artificial halo orbit in an explicit (albeit approximate) form, which is used as a nominal
trajectory for the solar sail-based formation. Distributed control strategies have been proposed to account
for two typical cases, according to whether the formation system is leaderless or accommodates a virtual
leader. The latter case has been further discussed when the state information of the virtual leader is available
to all of the solar sails or to a part of the formation structure only.

The constitution and maintenance of the solar sail-based formation relies on the consensus protocols that
are formulated on a general directed communication topology with local neighbor-to-neighbor information
networks. Such a cooperative formation structure drives each solar sail toward a desired trajectory in a
coordinate way, so that the synchronized formation tracking can be achieved while improving the formation
reliability.

Illustrative examples have shown that the proposed consensus-based algorithms also guarantee a time-
balanced maneuver. Compared with a leader-follower topological structure, more flexility and robustness
among the formation is incorporated both for the leaderless and the virtual-leader case, in the sense that
onboard sensors with a limited field of view can be implemented, and data package loss for some interaction
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Figure 16: Relative trajectories of the three solar sails in a leaderless case (star denotes initial position).
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links can be accounted for.
A natural extension of this work is the study of smart dust-based formation flying around a conventional

spacecraft (a sort of mother-ship), which covers a halo orbit around the two collinear Lagrangian points
near the [Earth+Moon] system. In that case, however, the small capability of those spacecraft to modulate
the thrust vector and communicate with the neighbouring spacecraft, poses challenging constraints on the
design of a cooperative control law.
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ėx ėy ėz
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