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Abstract 

A novel strain-energy-density (SED) based fatigue criterion is here proposed to account for the effect 

of mean stress and plasticity on the uniaxial fatigue strength of plain and notched components. It is 

based on the definition of four SED components: DWel , the elastic SED associated to the stress range, 

DWel ,max , the maximum elastic SED in the stabilized cycle, DW pl , the plastic SED dissipated per 

stabilized cycle, W pl ,max , the plastic SED dissipated over the cycles until stabilization. The mean 

stress effect is incorporated in a Walker-like expression, DWel

a
Wel ,max

1-a
, while W pl ,max  is added to the 

expression of the total SED to include the effect of mean stress relaxation. An energetic approach is 

proposed to identify the condition of cycle stabilization. The coefficients of the fatigue criterion are 

calibrated using experimental fatigue data. The criterion is validated by predictions of independent 

data. 
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HCF high-cycle fatigue 

QT quenched and tempered 

SED strain energy density 

cW mean stress sensitivity factor according to Eq. (1c) 

E Young’s modulus 

N number of cycles 

Nf number of cycles to failure 

Nst number of cycles at stabilization 

R load ratio 

R notch root radius 

r0 circular control area centre position 

R1 control radius 

W strain energy density 

W  strain energy density averaged over the domain  shown in Fig. 1a 

 mean stress sensitivity factor 

a  V-notch opening half-angle 

 factor accounting for plastic work dissipated until stabilization 

C,  coefficients of Chaboche plastic material model 

 factor accounting for plastic work dissipated per cycle at stabilization 

W strain energy density range 

 stress range 

W strain energy density associated to the stress range 

DW1 material dependent fatigue strength characteristic 

DW ref  reference strain energy density used to define the convergence parameter  (Eq. (4a)) 

 convergence parameter (Eq. (4b)) 

st threshold of the convergence parameter at stabilization 

 normal stress 

0 cyclic yield strength 

YS monotonic yield strength 

N notched specimen (net) nominal stress 

 backstress tensor 

 normal strain 
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Subscripts 

a amplitude 

el elastic 

eq equivalent 

max maximum 

min minimum 

pl plastic 

 

1. Introduction 

Fatigue assessment in the presence of intricate geometries and complex loading is still an issue, which 

is nowadays more critical for the advancement of new subtractive and additive techniques which 

allow unprecedent geometrical complexities and then are subjected to unprecedent degrees of 

multiaxiality [1]. 

The concept of strain energy density (SED) has been employed to assess the fatigue behavior of 

notched components both under uniaxial [2][3] and multi-axial stresses [4][5]. Herein, the stress at 

the notch tip has been thought as the parameter governing the fatigue behavior of the overall 

structures. An energy-based criterion for assessing the high cycle multiaxial fatigue life has been 

proposed in Ref. [6]. The criterion states that the crack initiation occurs as soon as the distortion strain 

energy exceeds a critical value. A precise link present between energetic and mesoscopic approaches 

has been found in [7]. This has allowed to explore the fatigue of metals from the scale of the metal 

grains. 

It is obvious that any SED approach strictly speaking cannot be used at the tip of a sharp V-shaped 

notch since not only the stresses tend toward infinite but also the strain energy density. On the 

contrary, in a small but finite volume of material close to the notch, whichever its local shape (blunt 

notch, severe notch, re-entrant corner, crack), the energy always has a finite value and the main 

question is rather that of estimating the size of this volume. A “critical volume approach” has been 

employed in high cycle fatigue regime [8] and in low cycle fatigue [9]. A “stress field intensity 

approach”, in which the product of the equivalent stress and a weight function, has been integrated in 

a domain whose size is the material-dependent [10][11]. A large amount of results reported for multi-

axial fatigue confirmed that the notch geometry may play a significant role in influencing the cracking 

behavior and that any fatigue life or strength prediction method that only considers surface stress-

strain behavior may not be adequate for many notches of practical interest [12]. By taking into 

consideration a volume of material and not simply a point at the notch tip, may be the simpler choice 

as proposed in [13]. It has been suggested to use the mean value of the local energy to predict the 
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static and fatigue behavior of components weakened by sharp V-notches with a strongly variable 

notch angle 2a . The control radius Rc of the volume, over which the energy was averaged, depends 

on the ultimate tensile strength and the fracture toughness KIC in the case of static loads and brittle 

materials. It depends on plain specimen fatigue limit and on the threshold behavior Kth in the case 

of metallic materials under high-cycle fatigue (HCF) loads. The size of the averaging domain  for 

a notch under mode I type of loading will be here denoted as R1, as schematically indicated in Fig. 

1a. A main issue of the approach is how to properly consider the effect of the mean stress that is 

known to greatly affect the fatigue response of metallic materials. A second relevant problem is how 

to include into the fatigue calculation the effect of plastic deformation, which is responsible for mean 

stress relaxation and ratchetting as well as dissipation of strain energy. These two aspects are the 

focus of the present work. For the sake of simplicity, the present paper will address uniaxial fatigue 

only, nonetheless it might pave the way for future extensions to multiaxial loading. 

It is well established in the scientific and technical literature that the mean stress, and therefore the 

stress ratio R=min/max, exerts a marked influence on the fatigue strength of metallic materials [14]. 

There are different approaches to incorporate the mean stress effect into a strain energy-based fatigue 

criterion. The first issue that must be addressed is the definition of the variation of SED produced by 

the cyclic fluctuation of the stress-strain field. To this regard, Lazzarin et al. [15], Lin et al. [16] and 

Dallmeier et al. [17] suggested considering the variation between maximum and minimum SED 

occurring during the load cycle. In the simple case of uniaxial stress, this definition is graphically 

represented by the gray area indicated in Fig. 1b ( 0 £ R £1) and 1c ( R < 0) and expressed by the 

following equation: 

dW =

1

2E
s max

2 -s min

2( ) 0 £ R £1

1

2E
s max

2 +s min

2( ) R < 0

ì

í

ï
ï

î

ï
ï

        (1a) 

On the other hand, Koh [18] obtained a considerable improvement in the fatigue predictions by 

considering the SED associated to the stress range = max−min. In the case of uniaxial stress, 

irrespectively of the stress ratio R, the SED is graphically represented by the dashed area in Fig. 1b 

and c and takes the following mathematical expression: 

DW =
1

2E
s max -s min( )

2
=

Ds 2

2E
         (1b) 

Lazzarin et al. [15] proposed to reformulate Eq. (1a) so as to make explicit the dependency of dW  

upon the stress range  
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dW = cW
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1- R2
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          (1c) 

The correction coefficient cW  was then used in later works [19][20][21] to account for the mean-

stress effect in the fatigue calculations based on the average SED calculated for the reference case 

R=0 (whereby cW = 1). 

In contrast to this last approach, Ellyin and Kujawski [22], Lin et al. [16] and Dallmeier et al. [17] 

suggested considering only the positive SED on the base of experimental evidences that negative 

compressive stresses are much less effective than positive tensile stresses in promoting fatigue 

damage. In the case of uniaxial stress, this criterion is depicted in Fig. 1d for negative stress ratios 

and takes the following mathematical expression: 

dW+ =

1

2E
s max

2 -s min

2( ) 0 £ R £1

s max

2

2E
R < 0

ì

í

ï
ï

î

ï
ï

        (1d) 

Very recently, Roostaei et al. [23] proposed an alternative expression for dW+
 as a function of the 

maximum, mean and amplitude of the normal stress. 

The assumption of linear-elastic stress field considered so far is reasonable only in the HCF regime 

of structural metals with low fatigue‐strength‐to‐yield‐stress ratio. Ductile metals, especially in the 

low-to-medium cycle fatigue regime and in the presence of stress raisers, undergo plastic 

deformation. In general, the stress-strain state undergoes during the first loading cycles mean stress 

relaxation and ratchetting phenomena [24] [25] until stabilization of the hysteresis loop after a certain 

number of cycles. As schematically shown in Fig. 1e, the strain energy is partly accumulated and 

released during the cyclic loading in the form of elastic strain energy and partly dissipated in the form 

of plastic strain energy. Morrow [26] first observed that the dissipation of plastic work is the main 

cause of irreversible damage and fatigue failure of materials. Ellyin and Golos [27][28] first proposed 

the idea of a SED-based fatigue criterion that encapsulates both types of energy contribution 

according to the following expression: 

DWtot = dWel

+ + DWpl            (1e) 
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Where dWel

+
 is the positive elastic SED defined by Eq. (1d) and DWpl  is the plastic SED, graphically 

represented in Fig. 1e as the area comprised within the stabilized hysteresis loop. In the expression 

of the total SED, Ellyin and Golos [27][28] postulated equal contribution of elastic and plastic part 

to the fatigue damage. Dallmeier et al. [17] observed however that Eq. (1e) tends to overestimate the 

contribution of the elastic term and thus introduced a weighting coefficient to modulate its relative 

importance with respect to the plastic term.  

Ellyin [29] further extended his elastic-plastic criterion to multiaxial loading by introducing an 

appropriate multiaxial constraint factor r  to correct the contribute of the plastic SED ( r = 1 for 

uniaxial loading). Ince and Glinka [30], Liu [31], Liao and Zhu [32] extended the concept of virtual 

strain energy to elastic-plastic loading conditions. Recently, Zhu et al. [33] proposed a fatigue-creep 

damage parameter based on the concept that the component is in critical conditions when the plastic 

SED accumulated until failure equates the material toughness estimated as the product of ductility 

and strength. Furthermore, Zhu et al. [34] proposed a modified definition of the total SED 

incapsulating two mean stress correction factors. 

Even though providing satisfactory fatigue predictions in a wide variety of situations, this conceptual 

framework of the SED still leaves room for open questions, which stimulated the present work to 

attempt further improvements: 

1) The effect of mean stresses on the fatigue strength of a metallic material depends on its 

peculiar mean-stress sensitivity [35], which cannot be properly taken into account only on the 

base of energetic considerations, as also emphasized by Zhu et al [34]. 

2) As above discussed, there is no unanimous consensus as to the relative importance of elastic 

and plastic strain energy density in dictating the fatigue damage. Moreover, investigations 

done so far focused their attention only on the stabilized hysteresis loop, completely 

neglecting the stress-strain history prior to stabilization. 

3) The size R1 of the SED averaging domain  is often regarded to as a material characteristic 

inferred from linear elastic analyses in the HCF regime [36], but it is still debated if and to 

which extent the plastic deformation affects R1 and its dependency upon the number of cycles 

to failure Nf, especially in the low‐to‐medium cycle fatigue regime [37]. 

To address the aforementioned issues, the present article is aimed at devising a SED-based fatigue 

criterion able to incorporate the material-dependent mean stress sensitivity and the cyclic evolution 

of the stress-strain state occurring in smooth and notched parts subjected to uniaxial loading. This 

fatigue criterion is an evolution of the SED method proposed by Lazzarin and Zambardi [13] and 

then further developed by Berto and coworkers [38], based on the Beltrami’s definition of total SED 

averaged on a circular domain centered at distance r0 from the notch tip, as schematically illustrated 
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in Fig. 1a. The fatigue criterion must be calibrated on the basis of a certain set of material fatigue data 

and will be validated through the prediction of an independent set of fatigue experiments. For this 

purpose, a comprehensive set of fatigue data collected by the authors in [39] on two structural metallic 

alloys, namely 7075-T6 aluminum and 42CrMo4+QT (quenched and tempered) steel, will be used. 

More specifically, the fatigue experimentation carried out on these two materials also employed 

notched samples, whose optimal geometry was devised for a robust inverse determination of the SED 

control radius [37] and the critical length according to the Theory of Critical Distances [40]. The 

fatigue criterion is further validated by fatigue data carried out in [41] on a Ductile Cast Iron (DCI) 

under a broad spectrum of load ratios R, ranging from –7 to 0.5. In this way, it is possible to verify 

the validity of the fatigue criterion also under very large compressive stresses, which are not 

commonly explored in the scientific literature. 

The paper is organized as follows. Section 2 provides the theoretical background of the proposed 

fatigue criterion. Section 3 illustrates the fatigue data used to calibrate and validate the fatigue 

criterion. Section 4 describes the method adopted to get an accurate calibration of the Chaboche 

model of the material’s cyclic behavior to be incorporated into the finite element model used in 

Section 5 to estimate the plastic and elastic SED in the investigated fatigue experiments. The 

application of the fatigue criterion is discussed in Section 6. Section 7 summarizes the main 

conclusions of the paper. 

 

2. Definition of the fatigue criterion 

Among the mean stress models proposed in the technical literature [14], the Smith-Watson-Topper 

(SWT) approach [42] was the first to recognize the important role of the maximum stress in dictating 

the fatigue strength and proved to give acceptable and consistent results for a wide range of materials 

[35]. Similarly, Walker [43] first argued that the mean stress effect on the fatigue crack growth rate 

can be accounted for by expressing the crack propagation driving force not only in terms of the range 

of the stress intensity factor but also of its maximum value. He proposed to use a material-dependent 

exponent  and its complement to 1, viz. 1-, in order to modulate the relative importance of range 

and maximum value, respectively. 

The same idea was then applied by Dowling et al. [44] who modified the SWT criterion in order to 

account for the material mean stress sensitivity. In the present paper, we propose to extend the same 

concept to a SED-based fatigue criterion. In its formulation under linear-elastic conditions, here 

denoted as “M1”, the range and the maximum value of the average SED are incorporated into a 

Walker-like equation as follows: 

DWeq

M1

= DW
a
Wmax

1-a
= DW1          (2) 
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The two quantities are graphically represented in Fig. 2a by the dashed and gray areas, respectively, 

in the simple case of uniaxial stress. Importantly, based on the observations of Koh [18], M1 

incorporates the SED associated to the stress range and not the SED variation during the load cycle. 

It should be noted that, in analogy with SWT and Walker equations, Eq. (2) postulates that no fatigue 

damage will occur if the maximum normal stress is less or equal to zero, therefore it cannot be applied 

to compression-compression fatigue loading (R > 1). The over-bar sign in Eq. (2) indicates that the 

SED is averaged over the control volume  (see Fig. 1a) in the case of a non-uniform stress 

distribution occurring in the vicinity of notches. M1 is a tri-parametric fatigue criterion, in which , 

 DW1 and the control radius R1 are material constants, which are assumed to depend solely on the 

number of cycles to failure Nf; their value can be deduced from a calibration procedure based on 

experimental fatigue data as shown in the following. Values of  can conceivably vary from 0 to 1, 

viz. from full to zero mean stress sensitivity. 

Further, we propose M2 as an extension of the fatigue criterion M1 to elastic-plastic conditions 

according to the following expression: 

DWeq

M 2

= DWel

a
Wel ,max

1-a
+ DW pl + b ×W pl ,max = DW1       (3) 

The four SED components herein included are graphically represented in Fig. 2b in the case of 

uniaxial stress. The two elastic SED components, DWel  and Wel ,max , are encapsulated in the same 

fashion as in model M1. DW pl  represent the plastic SED dissipated per load cycle after stabilization 

of the hysteresis loop. To reduce as much as possible the number of parameter to be calibrated, in 

agreement with Ellyin’s findings, we propose in M2 to simply include DW pl  without any weighting 

factor. Finally, in an attempt to incorporate into the fatigue criterion also the stress-strain history prior 

to stabilization, M2 takes into account also W pl ,max , viz. the plastic work cumulatively dissipated 

during the load history from the first cycle until stabilization of the stress-strain state over the 

averaging domain . Importantly, W pl ,max  is accumulated not only during the first loading ramp, but 

over all the subsequent load cycles until stabilization occurring at the fatigue cyles denoted as Nst. To 

uniquely identify Nst, we propose to define the following reference SED: 

DWref = DWel

a
Wel ,max

1-a
+ DW pl          (4a) 

and to use it to introduce the parameter  expressing the relative variation of DW ref  between 

consecutive load cycles N and N+1: 

k =
DW ref ,N+1 - DW ref ,N

DW ref ,N

; N :  cycle index

k =k st ® Nst

        (4b) 
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As explained in the following, the curve  vs. N is determined through finite element simulations of 

the load cycle. Since the material hardening behaviour will be modelled enforcing a Chaboche 

plasticity model based on backstresses evolving exponentially with the accumulated plastic strain, 

the curve  vs. N, as schematically shown in Fig. 2c, decays asymptotically, thus full stabilization is 

never achieved. In this work, we propose an operative definition of the stabilization condition, which 

is assumed to be achieved when the convergence index  drops below a threshold value st, whose 

value will be defined in the next sections. 

M2 is a four-parameter fatigue criterion, in which the material constants ,  DW1 and R1 are assumed 

to depend solely on the number of cycles to failure Nf. The last parameter b  is used to modulate the 

contribution of W pl ,max  and, in Section 6, will be assumed to be constant throughout the fatigue life. 

Finally, we propose a third criterion, termed M3, in which the contributions of DW pl  and W pl ,max  are 

modulated by two weighting factors that depend on the nominal load ratio R: 

DWeq

M 3

= DWel

a
Wel ,max

1-a
+d R( ) ×DW pl + b R( ) ×W pl ,max = DW1      (5) 

This more general criterion has been introduced to yield satisfactorily accurated predictions in the 

case of load scenarios with large compressive mean stresses (R<–2). The mathematical expression of 

 and  dependency upon R will be introduced in Section 6. We anticipate here that the chosen 

expressions of  and  as a function of R make M3 a a nine-parameter fatigue criterion. 

In contrast to M1, the application of M2 and M3 criteria is not straighforward, because Nst is not 

known a priori and the relation between stresses and SED is not quadratic as in the linear-elastic case. 

For this purpose, their use necessitates an iterative procedure, whose modus operandi is illustrated by 

the flow chart reported in Fig. 3. In brief, for a given fatigue life Nf and load ratio R, the four SED 

components of the fatigue criterion are calculated through finite element (FE) simulations of the 

component of given geometry and subjected to uniaxial loading. After initialization of the iteration 

index i and definition of the first guess value of the unknown stress amplitude s a

0
, the terms of Eq. 

(4) are calculated in order to determine the stabilization cycle Nst. Then the equivalent SED is 

evaluated according to Eq. (3) (M2) or Eq. (5) (M3) and used to get the next estimate of the stress 

amplitude s a

i+1
 by assuming a quadratic relation in a small neighborhood of s a

i
. This procedure is 

iterated until convergence. To reduce the number of iterations to convegence, the prediction of the 

elastic model M1 can be used as a first-guess estimate of the initial stress amplitude s a

0
; using the 

experimental data shown in the following, convergence is obtained in this way already after 2 or 3 

iterations. 
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In the next sections, experimental fatigue data will be used to calibrate and validate the above 

presented fatigue criteria. In particular, a robust determination of the material dependent parameters 

is performed by least-square fitting a number of experimental fatigue data in excess of the number of 

parameters. More specifically, the best-fit parameters are obtained through minimization of the 

following weighted sum of square residuals: 

WSSE =
s a,i -ŝ a,i( )

2

si

2

i=1

n

å           (6) 

where s a,i
is the i-th experimental fatigue strength (amplitude) for a given fatigue life, ŝ a,i  is its 

estimator, si is its standard deviation, and n is the number of data. Importantly, at least one of these 

fatigue data must be determined from a notched sample geometry, to catch the dependency upon the 

control radius R1, and at least two load ratios must be considered to capture the material mean stress 

sensitivity. In the following, M1 (tri-parameter), M2 (four-parameter), M3 (nine-parameter) will be 

calibrated with 4, 6, and 10 fatigue data, respectively. 

 

3. Experimental data 

Details regarding the material and experimental procedures used to generate the fatigue data analyzed 

in this article can be found in [39] regarding 7075-T6 and 42CrMo4+QT and in [41] for 120-90-02 

DCI. Their monotonic tensile properties are listed in Table 1. 

In [39] the fatigue characterization was carried out under alternating (load ratio R = −1) and pulsating 

(R = 0.1) axial fatigue on axisymmetric plain and V‐notched samples, whose geometry is shown in 

Figure 4a and c, respectively. V-notch depth and opening angle 2a  (see Fig. 1a) were devised in [40] 

to maximize the influence of the notch tip singular stress term and hence to minimize the sensitivity 

of the inverse search of critical distance and control radius to the experimental uncertainties. In [39] 

notches of different severity were explored by changing the notch root radius R (see Fig. 1a and 4c). 

In the sharp and blunt notch configuration, R is set equal to 0.2 mm (effective size measured by SEM 

is 0.21 mm, theoretical principal stress concentration factor Kt= 5.75) and 1 mm (Kt= 2.88), 

respectively. Since in [45] it was argued that even at the apex of the sharp notch, the stress field in 

the 7075-T6 specimens was purely linear-elastic, we investigated in this work a third notched 

geometry, termed ultra-sharp, wherein R is 0.1 mm (effective size 0.12 mm, Kt= 7.42) with the aim 

of exploring the effect of notch plasticity on the fatigue response of 7075-T6. The SN data along with 

the fit curves are shown in Figure 5a,b and 5c,d for 7075-T6 and 42CrMo4+QT, respectively. 

The experimentation was complemented in [39] by fatigue crack growth tests conducted at R=−1 and 

R=0.1 using C(T) and M(T) specimens, respectively. The outcomes in terms of crack threshold ΔKth 

are listed in Table 2. To investigate the cyclic elastic-plastic behavior of 7075-T6 and 42CrMo4+QT, 
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strain‐controlled fatigue tests were performed on axisymmetric hourglass coupons with constant 

amplitude until final failure. Further details about the experimental procedure are reported in [45]. 

Stabilized half‐life stress‐strain hysteresis loops are shown in Fig. 6a and b for 7075-T6 and 

42CrMo4+QT, respectively. A certain asymmetry of the hysteresis cycles with respect to the 

horizontal (strain) axis is evident in both materials, especially at the lowest strain amplitudes. This 

evidence stimulated in this work the development of an asymmetric Chaboche material model, which 

will be presented in Section 4. 

The fatigue characterization of 120-90-02 DCI was carried out in [41] (a M.Sc. thesis carried out 

under the supervision of prof. Fatemi, University of Toledo, USA) on axisymmetric plain and V‐

notched samples (Kt= 3.13), whose geometry is shown in Figure 4b and d, respectively. Axial fatigue 

tests were carried out using a servohydraulic testing machine under the following load ratios: −7, −3, 

−1, 0, 1/3, 0.5 (this last one only for plain samples). Fatigue lives until 5×106 cycles were explored. 

The SN displayed a knee around 1×106 cycles. The fatigue strength at this fatigue life is selected in 

this work as a case study application of the proposed fatigue criterion. The fitted SN curves are shown 

in Fig. 5e and f for plain and notched coupons, respectively. Finally, the material cyclic behavior was 

characterized through low-cycle stress-controlled fatigue tests, which will be used in Section 4 to 

determine the parameter of the asymmetric Chaboche material model. 

 

4. Chaboche kinematic hardening model 

The Chaboche nonlinear kinematic hardening model [46], with von Mises yield criterion, is 

considered in this work and the ANSYS software implementation of this model then used. Though 

more evolved models are available, such as the combined Chaboche isotropic-kinematic hardening 

[47][48][49][50][51], we did not opt for more complex formulations as they would require additional 

experimental information for the isotropic hardening component, which is here not available. 

The uniaxial formulation of the Chaboche model can be solved in closed form, obtaining a piecewise 

solution for each positive and negative phases of the loading cycle (or loading and unloading). 

Multiple and independent backstress components are superimposed to introduce a nonlinearity and 

provide enough constitutive degrees of freedom. In the present analysis, three components are 

considered: 

c = c
i

1

3

å    (7) 

Each backstress component c
i
 evolves according to the differential equation: 

dc
i
= C

i
de

pl
-g

i
c

i
dp   (8) 
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where C
i
 and g

i
 are the Chaboche material parameters, de

pl
 is the differential of the plastic strain 

e
pl

, and dp  is the accumulated plastic strain increment dp = de
pl

. By replacing dp  either with de
pl

 

or -de
pl

, Eq. (8) can be solved, just distinguishing between the positive and the negative phases 

[52][53], and, after introducing a sign term m , a unique formula can be derived [25]: 

c
i
= m

C
i

g
i

+ a
0i

- m
C

i

g
i

æ

è
ç

ö

ø
÷ exp -g

i
e

pl
- e

pl0( )    (9) 

where m = 1 for the positive loading and m = -1 instead for the negative loading phase. 

The stress s  is finally deduced from the von Mises equation, which, for the uniaxial condition, 

reduces to: 

s = ms
0
+ c    (10) 

and again m = 1 or m = -1 for the loading and unloading phases, respectively. 

In principle, s
0
 is equivalent to the material yield strength. However, a smaller value can be 

introduced (compare s
0
 in Table 3 with YS reported in Table 1) to properly model the evidence of 

hysteresis, and then relaxation or ratcheting, even with a stress amplitude smaller than the yield 

strength [25]. 

If one of the g
i
 parameter is set to zero, such the last one: g

3
= 0, as significantly considered later, 

the form of Eq. (8) gets simpler and its solution reduces to: 

c
i
= c

0i
+ C

i
(e

pl
- e

pl0
)   (11) 

This equation is valid both for the positive and the negative loading phases, indeed no absolute value 

remains in the equation, and its meaning is that the backstress is just linearly related to the plastic 

strain [54]. An equivalent result could be obviously obtained by introducing a very small g
i
 value, 

however, without a clear evidence of its role in the backstress evolution. The initial conditions for 

each backstress component c
0 i

 and the plastic strain e
pl0

 are usually set as zero at the beginning of 

the loading history. And then, in order to preserve the continuity, after any positive or negative 

loading phase, these terms assume the last value before the load inversion. 

The Chaboche model parameters are usually identified with the uniaxial analytical formulation, 

combined with experimental cyclic tests. The parameter search is generally aimed at accurately 

simulate the cyclic (stabilized) stress-strain loops. More specifically, the single highest stress 

amplitude cycle is considered to give a more robust coefficient determination, as suggested by Kumar 
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and Singh [55]. More elaborate approaches have been proposed in the literature, for example by 

additionally considering a ratcheting test, provided that this experimental data is available [25] [54]. 

Very accurate stabilized cyclic reproduction, in fact, does not imply a correct modelling of the 

ratcheting behavior [53]. 

In this work, the DCI investigated in [41] is analyzed and the Chaboche kinematic hardening model, 

with three backstress components, is fitted by considering the highest amplitude stabilized cyclic 

curve. The fitting points and the Chaboche model loading history are reported in Fig. 7a, and the 

obtained coefficient values are listed in Table 3. The initial yield stress s
0
 is not imposed, thus it is 

obtained as a parameter optimization result, such as the other coefficients. The Chaboche model is 

finally validated with a single element model in ANSYS, by imposing the same constitutive law, as 

evident in Fig. 7a. 

The third component of the Chaboche model is set with g
3
= 0, while the other parameters are left 

not imposed before the optimization. As evident below, and discussed in the literature [47], the term 

i-th with g = 0 produces the strain stabilization both in a large stress tensile test and, more 

significantly, in ratcheting tests. For this reason, the corresponding C coefficient, should be better 

set by considering a ratcheting test, as proposed by Bertini et al. [25]. In this work, the C
3
 coefficient 

is fixed by considering the ratcheting simulation presented below, after a preliminary fit, then all the 

remaining material coefficients: s
0
,C

1
,g

1
,C

2
,g

2
 are fitted again on the experimental data. 

The 7075-T6 aluminum alloy and the 42CrMo4+QT steel investigated by Santus et al. [39] have been 

also cyclically tested in the elastic-plastic regime, and again the highest strain amplitude stabilized 

curves are fitted. These fit results are shown in Figs. 1 (b) and 1 (c), both these metal alloys are tested 

by imposing a reversed strain amplitude, leading to a not fully alternating stress cycle. The slight 

asymmetry, encountered for these two materials, is easily simulated by imposing a non-zero initial 

plastic strain, as evident in the figures. This effect can be considered due to any previous strain 

experienced by the material during the manufacturing. Nevertheless, a very accurate fit is achieved 

after calibrating this initial condition and, though the stress asymmetry, the cyclic stabilization is 

obtained in a quite few load cycles. The obtained Chaboche coefficients are listed in Table 3 for all 

the three investigated materials. 

Figure 8a shows the simulation of a ratcheting test with load ratio 1/ 7R = −  and stress amplitude 

a 508MPa = , resembling a fatigue test presented below, yet with reversed minimum and maximum 

stresses. The stabilization of this ratcheting example is obtained in approximately 150 cycles and it 

is in reasonable agreement with the stabilization sequence reported by Meyer [41]. The stabilization 

rate strongly depends on the value of 3C . The third backstress follows the 3C  slope, in agreement 
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with Eq. 11. This steadily increasing term causes the counterslope of the first backstress maxima, 

while being 1 1 2 2/ /C C  , the second backstress component has a limited role, as shown in Fig. 

8b. As a consequence, the nonzero-  backstress cycles are forced to have null average, and in turn 

symmetrical cycles are obtained, finally leading to a (plastic) shakedown, as shown in details in Fig. 

8c. The stabilized cycles and the backstress components evolutions are reported also for the aluminum 

alloy and the steel investigated in this paper, as illustrated in Fig. 8 (d)-(e) and Fig. 8 (f)-(g), 

respectively. Since 1 1/C   and 2 2/C   are of similar magnitudes, for the aluminium alloy, both these 

backstress components show a significant counterslopes, and the sum of them equals the C3 slope. 

On the contrary, considering 42CrMo4+QT, the role of the backstress component 2 counterslope is 

simply null, in similarity with DCI. However, the stabilization process is quite faster due to the 

relatively higher C3 value in comparison to C1 and C2. 

 

5. Finite element modelling of the elastic-plastic stress field 

The Chaboche hardening model presented in Section 4 is here used to estimate, by finite element (FE) 

modelling, the elastic-plastic stress field and the SED in the fatigue experiments conducted on plain, 

notched and cracked specimens discussed in Section 3. 

The FE models are elaborated and solved using the ANSYS 19 commercial code. Specifically, plain 

and notched samples are analyzed using an axisymmetric model employing quadratic 8-node 

isoparametric elements (PLANE183). Figure 9a illustrates the mesh in the notch region, which was 

refined in the same fashion to that used in [37] with the purpose of better reproducing stress and strain 

gradients at the notch tip. Specifically, the convergence analyses carried out in [37] showed that the 

chosen level of mesh refinement is able to estimate SED with a relative deviation less than 10-4% 

from the estimations obtained using the maximum explored level of mesh refinement, which in turn 

was found to be in very good agreement with SED estimations published in [57] on infinitely sharp 

notched specimens. The discretization of the critical volume of radius R1 is obtained by creating a 

circular area in the FE model centered at distance r0 from the notch tip. It is thus possible to determine 

the SED directly from the subset of elements belonging to this area, thus limiting discretization errors 

as much as possible in the definition of the critical volume contour. 

The FE model of the cracked body is depicted in Fig. 9b. It employs plane strain quadratic 8-node 

elements and is devised to reproduce the configuration of a finite plate with a central through crack 

under tension. Only one quarter of the body is modelled by enforcing proper symmetry constraints. 

To limit edge effects, the external dimension W of the body has been selected in order to bring the 

stress intensity factor relative deviation from that predicted by the Griffith crack model below 1%. In 

addition, the size of the crack length a and of the uncracked ligament W-a are selected so as to 
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reproduce the condition of small scale yielding, occurring when the crack tip plastic zone radius ry is 

sufficiently small with respect to the region of K‐dominance, viz. when the following requirement is 

satisfied [58]: 

a³ 2.5
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s
YS

æ

è
ç

ö

ø
÷

2

   (12) 

Since the model is used to reproduce also the cracked M(T) specimen configuration adopted for 

fatigue crack growth experiments under negative load ratio R, the interpenetration between crack 

faces is prevented by an array of contact elements created on the crack surface and coupled with rigid 

target elements lying on the crack symmetry plane, as shown in Fig. 9b. 

The above described FE models are used to simulate the loading history experienced by the samples 

during testing. For each loading cycle, the SED is calculated and stored by means of ad-hoc Ansys 

Parametric Design Language scripts. Specifically, the range (maximum value) of elastic SED is 

estimated for each element lying in the control volume starting from element results in terms of range 

(maximum value) of stress and elastic strain components. In addition, the accumulated plastic SED 

per cycle is computed in each element by internal Ansys routines. These elemental SED components 

are finally used to compute the corresponding SED components averaged over the control volume. 

To provide the reader with a clear picture of the stress-strain response occurring during the 

investigated fatigue experiments, the axial stress and strain components at the notch apex and in the 

smooth samples are extracted from the FE results. It is found that, in the HCF regime, the stress 

distribution is purely elastic in 7075-T6, also in the sharpest notch configuration. As shown in Fig. 

10a, a small plastic zone arises at the tip of the sharp and ultra-sharp notch only at stress amplitudes 

leading to fatigue failure after 106 cycles or even fewer. 

On the contrary, the stress distribution in 42CrMo4+QT and DCI is elastic-plastic in plain and 

notched samples even in the HCF regime. This evidence is well depicted in Fig. 10b-d and e-g for 

42CrMo4+QT and DCI, respectively; here, the simulations are conducted at stress amplitudes 

corresponding to the longest fatigue considered in the present work, viz. 107 and 106 for 

42CrMo4+QT and DCI, respectively. When 42CrMo4+QT is tested under fully reversed axial 

loading (R=−1), there is an immediate stabilization of the elastic-plastic hysteresis loop. Conversely, 

under R=0.1, the initial loading ramp results in accumulation of plastic deformation, followed by an 

elastic shakedown in smooth (Fig. 10b) and blunt-notched (Fig. 10c) specimens already during the 

first unloading ramp. On the contrary, in the sharp-notched specimen (Fig. 10d), mean stress 

relaxation occurs over some tens of cycles until stabilization. 

DCI displays a behavior similar to 42CrMo4+QT when tested under R=−1 (Fig. 10f) and R=0 (Fig. 

10g), apart from some evidences of ratchetting occurring in the plain sample at R=0. Fig. 10e refers 
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to elastic-plastic conditions arising under very large compressive minimum stresses (R=−7), but is 

representative also of all the conditions characterized by negative compressive mean stresses (R<−1): 

both plain and notched samples require many loading cycles before stabilization, with a pronounced 

mean stress relaxation occurring in the notched coupon. 

When a notched component experiences a remote load cycle with nonzero mean stress, relaxation 

occurs with a trend which resembles a controlled strain test, despite of a ratcheting component [56]. 

The stabilized cycle mean stress depends on the material parameters, and on 3C  in particular, thus 

the tuning of this coefficient is crucial. Whenever 3C  is relatively low, an almost complete relaxation 

is obtained. On the contrary, a large value of 3C  results in plastic shakedown with significant nonzero 

mean stress. As shown in Fig. 10e-g, two trends were observed for DCI: the mean stress either reduces 

almost to zero when the shakedown is plastic, or just remains unchanged in the case of elastic 

shakedown. More specifically, the plastic shakedown occurs under compression loading, whereas the 

elastic shakedown takes place under tensile loading due the smaller stress amplitude. On the contrary, 

an intermediate mean stress stabilization was observed for 42CrMo4+QT with sharp notch. Finally, 

for 7075-T6, the stress amplitudes of the pulsating fatigue tests are quite low, thus not inducing any 

shakedown. 

From the above discussion, it is clear that a sound application of criteria M2 (Eq. (3)) and M3 (Eq. 

(5)) necessitates a clear identification method of the cycle index Nst at which stabilization has taken 

place. The energetic approach expressed by Eq. (4) has the advantage of being representative of the 

overall situation occurring in the control volume , hence not limited to the notch apex along the 

axial direction as the plots of Fig. 10. Moreover, these plots indicate an evolution of the stress-cycles 

in terms of both stress and strain extremes; this makes cumbersome the definition of a convergence 

criterion based on stresses or strains considered separately. Figure 11a,b,c illustrates the evolution of 

the convergence parameter  as a function of the cycle index N in the explored specimen geometries 

for 7075-T6, 42CrMo4+QT and DCI, respectively. It can be noted that, for material, geometry and 

loading configurations resulting in an immediate stabilization of the hysteresis loop,  drops below 

the limiting value of 5×10-4 already after the first cycle. Interestingly, in the case of the plane DCI 

sample tested under R=−7, this threshold condition is achieved after 180 cycles, in agreement with 

similar observations reported in Section 4. Consequently, in the remaining part of this article, fatigue 

predictions will be done considering st=5×10-4, as also indicated in the flowchart of Fig. 3. 

 

6. Results and discussion 
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The parameters of the fatigue criteria calibrated in the HCF regime are listed in Table 4. Their 

application is shown in Figure 12, 13 and 14 and in Tables 5, 6 and 7 for 7075-T6, 42CrMo4+QT 

and DCI, respectively. The fatigue data indicated in Tables 5, 6 and 7 as "self-consistency tests" were 

used to calibrate the corresponding fatigue criteria. First, the outcomes of the linear-elastic criterion 

M1 will be presented and then those of the elastic-plastic criteria M2 and M3. 

 

6.1 Linear-elastic fatigue criterion M1 

The tri-parameter fatigue criterion M1 is calibrated for the three investigated materials according to 

the least-square method expressed by Eq. (6). Specifically, four fatigue data are used, two of them 

referring to the plain specimen geometry, the remaining two to the sharpest available notch 

configuration in agreement with the outcomes of our recent work [37], showing that the sensitivity 

of the control radius inverse search to experimental uncertainties declines with decreasing notch root 

radius. These fatigue data are obtained under fully-reversed (R=−1) and pulsating (R=0 or R=0.1) 

axial loading. The best-fit coefficients are listed in Table 4. Interestingly, the mean-stress-sensitivity 

factor  is about 0.5 for 7075-T6 (a very similar value is indicated in [44] for the Walker coefficient 

of the same material) and DCI, while for 42CrMo4+QT it takes an unusually high value representative 

of very low mean stress sensitivity. Table 5a, 6a, and 7a compare the experimental HCF data with 

the predictions of the fatigue data used for the calibration (self-consistency test) and of the remaining 

independent fatigue tests (validation test). The stress field is assumed linear-elastic also in the cracked 

configurations used to estimate Kth. It can be noted that the absolute relative error for 7075-T6 

(Table 5a) is very low (below 5%) for all the experiments apart from the C(T) specimen tested at 

R=0.1. In 42CrMo4+QT (Table 6a), the absolute relative error is very low (below 3%) only in the 

self-consistency tests, while it takes larger values in the validation tests (up to 10%). In particular, the 

difficulty of linear-elastic fatigue calculation methods in accurately predicting the fatigue strength of 

the blunt notched specimen at both stress ratios was already found in [37] [39] [45]. The fatigue 

predictions of DCI (Table 7a) are accurate (absolute relative error below 7%) for load ratios 

comprised in the range -1£ R £1, whereas larger discrepancies (up to 24%) are found for R=−3 and 

R=−7. 

The approach followed so far is then extended to the medium cycle fatigue regime for 7075-T6 and 

42CrMo4+QT. For this purpose, the parameters of Eq. (2) are calibrated from the plain and the sharp‐

notch fatigue data taken at different fatigue lives Nf. Figure 12a and 13a (solid lines) shows the 

dependency of the criterion parameters a  and W1  upon Nf. The control radius R1 is plotted in Fig. 

12b and 13b (solid lines) as a function of Nf. Interestingly, the mean stress sensitivity (1-a ) and R1 

decline with longer fatigue lives. Figure 12c and 13c (solid lines) shows the predicted SN curves for 
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the self-consistency tests, Figure 12d and 13d (solid lines) for the validation tests. It can be noted for 

7075-T6 that the agreement with the experimental data is very good, apart from the predictions of the 

samples tested under R=0.1 at short fatigue lives ( Nf £ 5 ´105). While the self-consistency tests for 

42CrMo4+QT are in very good agreement with the experimental data, there is a significant 

underestimation and overestimation of the blunt specimens tested under R=−1 and R=0.1, 

respectively (see Fig. 13d). 

From the analysis of the elastic-plastic stress field discussed in Section 5, it is clear that the 

aforementioned discrepancies should be mainly ascribed to the deviation of the actual stress-strain 

field from the assumption of linear-elastic material response. If we want to further improve the 

already satisfactory predictions of the proposed fatigue criterion, we need to consider the actual 

elastic-plastic stress distribution. 

 

6.2 Elastic-plastic fatigue criteria M2 and M3 

The four-parameter fatigue criterion M2 is calibrated for 7075-T6 and 42CrMo4+QT according to 

the least-square method expressed by Eq. (6). Specifically, six fatigue data are used, four of them are 

the same as in Section 6.1, the remaining two are the crack growth thresholds determined at R=−1 

and R=0.1. The approach followed for the calibration is different in the two materials: since the plain 

and notched fatigue data of 7075-T6 are in linear elastic regime, the three parameters in common 

with M1, viz. a , W1  and R1, are kept the same as in M1. Therefore, the crack thresholds data are 

used exclusively to calibrate the plastic parameter . Conversely, in 42CrMo4+QT, all six fatigue 

data are refer to elastic-plastic conditions, therefore they are fully recalibrated. The best-fit parameters 

are listed in Table 4. Interestingly, the exponent a  takes now for 42CrMo4+QT a more usual value 

of about 0.4, the control radius R1 reduces by more than one half with respect to M1. For both 

materials, even though greatly differing in absolute value, the plastic parameter  takes a negative 

value. This outcome is very interesting, as it indicates that the relaxation of tensile mean stresses 

occurring for -1£ R £1 in the first cycles until stabilization is beneficial to the fatigue response and 

therefore the accumulated plastic work Wpl ,max
, thanks to the negative sign of , contributes to reduce 

the equivalent SED DWeq

M 2
. The HCF predictions listed in Table 5b and 6b indicate a further accuracy 

improvement, especially for 42CrMo4+QT, where the RMS relative error declines from 6.1% to 

1.7%, mainly thanks to the more accurate fatigue calculation of the blunt specimens (validation test). 

The extension of M2 criterion to the medium cycle fatigue regime is not straightforward, as its robust 

calibration necessitates a number of fatigue tests in excess with respect to those available in this 

fatigue regime, wherein a fracture mechanics parameter representative of the crack growth resistance 
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is not clearly defined. In a first attempt to overcome this limitation, we decided to extend the value 

of , calibrated in the HCF regime, to the entire fatigue life interval. The elastic-plastic calibration is 

thus limited to the parameters a , W1  and R1. As expected, for 7075-T6 (Fig. 12a and b, dashed lines), 

the M2 parameters significantly differ from the M1 ones only at fatigue lives shorter than 5 ´105
, 

while for 42CrMo4+QT (Fig. 13a and b, dashed lines), the difference is remarkable throughout the 

fatigue life. As shown in Fig. 12c and d (dashed lines), there is a slight improvement in the prediction 

of the fatigue strength of 7075-T6 samples tested under R=0.1. The self-consistency tests in 

42CrMo4+QT (Fig. 13c, dashed lines) lead to predictions very similar to M1, apart from the plain 

samples tested under R=−1, whereas the validation tests of the blunt notched variants (Fig. 13d, 

dashed lines) are in significantly better agreement with the experimental data. 

The calibration of the elastic-plastic fatigue criterion is performed for DCI in a different way, mainly 

for two reasons. First, no crack threshold data are available for this material. Therefore, the calibration 

must be based on plain and notched specimen geometries, only. When calibrating M2 with fatigue 

data referring to plain and notched specimens tested at R=−1, 0, 1/3 (positive or null mean stress), 

the best-fit value of the plastic parameter  is −0.105. This value is close to that found for 

42CrMo+QT and its negative sign is coherent with the above observation that the relaxation of tensile 

mean stresses is beneficial to the fatigue strength. However, when the so calibrated criterion M2 is 

used for fatigue calculation at R < -1, it results in inconsistent predictions. From one side, this is not 

surprising, because we expect that the relaxation of compressive mean stresses is detrimental to the 

fatigue behavior, implying a change in the sign of  in this fatigue regime. On the other hand, 

unexpectedly, we found that not only  but also the weighting factor of DW pl  must change for R < -1

. This stimulated the definition of the criterion M3 able to extend M2 to load scenarios with negative 

mean stresses. Specifically, we introduce a further weighting factor , which along with  is assumed 

to be a function of the load ratio R. In particular, a sigmoidal variation of proposed according to the 

following hyperbolic functions: 

d R( ) = Tanh d1 ×R + d2( )

b R( ) = b1 ×Tanh b2 ×R + b3( )+ b4

         (13) 

Importantly, the function d R( ) = Tanh d1 ×R + d2( ) is intentionally limited to the range -1£d R( ) £1

, as we found that just a sign change in DW pl  is necessary to achieve satisfactory predictions in the 

regime R < -1. To calibrate the nine-parameter fatigue criterion M3, the plain and notched fatigue 

data at R = −7, −3, −1, 0, 1/3 are used. The best-fit coefficients are listed in Table 4. The variation of 

 and  as a function of R is plotted in Fig. 14b. Interestingly, the sign change of  occurs across of 

the zero mean stress condition ( R = -1), while that of  takes place approximately around R = -2 . 
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The outcomes of the fatigue criterion M3 are listed in Table 7b and compared in graphical form with 

those of the elastic criterion M1 in Fig. 14a. It can be noted that M3 yields predictions very similar 

to M1 for zero-positive mean stresses ( -1£ R £1), while the improvement obtained by incorporating 

the plastic SED components is significant in the compressive mean stress regime ( R < -1). 

Accordingly, the maximum absolute error declines from 24% to 7%. Figure 14a reports also the 

predictions based on the cW approach (Eq. (1c)), adopted to correct the plain and notched fatigue 

strength at R=0 for different load ratios. This method works well in the regime -1£ R £1, while the 

discrepancies from the experimental data is significant in the compressive mean stress regime. 

To conclude, the negative constant value of  and the unitary value of  found in DCI in the positive 

mean stress regime yields a further validation of the M2 criterion successfully applied to 7075-T6 

and 42CrMo4+QT in the same R interval. Additional scientific scrutiny is necessary to further support 

the evidence found in this paper that the plastic work DW pl  dissipated per cycles is beneficial to the 

fatigue response at very negative R values. Perhaps, this should be imputed to the assumption taken 

in the present paper that the remaining criterion parameters, viz. a , W1  and R1, are independent of 

R. 

Desirably, the proposed method will be extended in the future to multi-axial loading conditions. Some 

points of special attention can be here anticipated: (i) the size of the SED control radius depends on 

the loading mode [20][21], therefore we expect that the extended formulation of M1, M2, M3 criteria 

must include this issue; (ii) since the reference SED DW ref  used to identify the stabilization condition 

must be averaged over domains of mode-dependent size, we expect an analogous dependency of the 

number of cycles at stabilization Nst; (iii) more sophisticated hardening rules must be adopted to 

capture the complex evolution of the yield surface under mixed-mode conditions, especially in the 

presence of out-of-phase loading. 

 

7. Conclusions 

A novel SED based fatigue criterion has been proposed to account for the effect of mean stress and 

plasticity on the uniaxial fatigue strength of plain and notched components. This criterion is based on 

the definition of four SED components: DWel , the elastic SED associated to the stress range, DWel ,max

, the maximum elastic SED in the stabilized cycle, DW pl , the plastic SED dissipated per stabilized 

cycle, W pl ,max , the plastic SED cumulatively dissipated over the cycles until stabilization. The mean 

stress effect is incorporated in a Walker-like expression, DWel

a
Wel ,max

1-a
, while W pl ,max  is added to the 

expression of the total SED to include the effect of the mean stress relaxation. An energy-based 

approach has been proposed to identify the condition of cyclic stabilization. The cyclic plastic 
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behavior has been modelled according to the kinematic hardening rule proposed by Chaboche, 

wherein one of the g
i
 parameter is set to zero to a achieve strain stabilisation in ratcheting and 

relaxation loading conditions. The proposed fatigue criteria have been calibrated and validated using 

experimental fatigue data collected on 7075-T6, 42CrMo4+QT, and 120-90-02 DCI. The following 

conclusions can be drawn from the present investigation: 

1) In the HCF regime, the stress field remains linear elastic for 7075-T6, even at very sharp 

notches. Conversely, in 42CrMo4+QT and 120-90-02 DCI the stress cycling turns into an 

elastic-plastic regime, even in plain and blunt-notched specimens. 

2) A purely linear-elastic formulation of the proposed fatigue criterion (M1) yields very accurate 

predictions in the medium-to-high cycle fatigue regime of 7075-T6. When applied to 

42CrMo4+QT and 120-90-02 DCI, the fatigue tests used for model calibration are represented 

with high accuracy, whereas the error in the prediction of validating tests is larger, viz. 10% 

for 42CrMo4+QT (blunt-notched specimens), and 24% for 120-90-02 DCI (tests under very 

large compressive minimum stresses). The elastic-plastic formulations of the criterion (M2 

and M3) yields a much better assessment of validation tests, as it is capable of encapsulating 

the effect of plastic SED dissipation and mean stress relaxation. This last aspect represents a 

specific point of novelty of the present paper, as, to the best knowledge of the authors, none 

of the SED-based fatigue criteria proposed so far addressed the issue of the load history prior 

stabilization. 

3) The effect of the mean stress relaxation produced by the elastic-plastic redistribution of the 

stress field is effectively taken into account in M2 and M3 by the SED component W pl ,max  

weighted by a factor . Its effect changes across the zero mean stress condition, more 

specifically is beneficial for -1£ R £1 and detrimental for R < -1. 

4) The SED term DW pl  can be directly incorporated into the expression of the total SED in the 

range -2 £ R £1 without any weighting factor . Its role under very large compressive 

minimum stresses ( R < -2) seems to be beneficial to the fatigue strength and deserves further 

scientific investigation. Apart from that, an elasto-plastic model (M2) assuming  constant 

and =1 is suitable for elastic-plastic fatigue calculations in the commonly encountered range 

-1£ R £1. 

5) While the proposed models yield satisfactorily accurate estimations under uniaxial fatigue, 

their further validation and modification need to be further investigated under more complex 

multiaxial loading conditions. 
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Figures 

 

  

  

 

Fig. 1. (a) strain energy density averaging domain  ahead of the notch root. (b) and (c) definition of 

the strain energy density associated to the stress range, in contrast to strain energy density range for 

positive and negative stress ratio, respectively (d) definition of positive strain energy density (e) 

Elastic and plastic part of strain energy density. 

 

R

R
1

(a)

W
r

0
+ R

1

r
0

= R
p - 2a

2p - 2a

2a

s

smax

smin

emin

dW

e

(b)
emax

DW

0 £ R £ 1

s

smax

smin

emin

emax

DW

e

(c)

dW

R < 0
s

smax

smin

emin

emax

dW +

e

(d)

dW

R < 0

s

e

dWel

+

DWpl

smax

smin

emin emax

(e)



 28 

 

 

Fig. 2. Definition of strain energy density components considered in the fatigue criterion under (a) 

linear elastic and (b) elastic plastic conditions. (c) Convergence criterion to estimate the number of 

cycles Nst until stabilization of the elastic-plastic stress-strain field. W pl ,max  is the plastic strain energy 

accumulated until stabilization at Nst. 
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Fig. 3 Flow chart illustrating the application of the elastic-plastic fatigue criteria M2 and M3. 
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Fig. 4. Geometry of the specimens used to collect the fatigue data elaborated in the present paper. (a) 

and (b) plain, (c) and (d) notched specimens. (a) and (c) were used for 7075-T6 and 42CrMo4+QT, 

(d) and (d) for 120-90-02 DCI. In (c) the nominal notch root radius R is 1 mm, 0.2 mm and 0.1 mm 

for blunt, sharp and ultra-sharp notches, respectively. 
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Fig. 5. SN Wöhler curves of the investigated materials. (a) and (b) 7075-T6, (c) and (d) 

42CrMo4+QT, (e) and (f) 120-90-02 DCI. (a) and (c) load ratio R = −1, (b) and (d) R = 0.1. (e) plain, 

(f) notched samples. 

 

  

Fig. 6. Stabilized hysteresis loops at half fatigue life. d is the diametrical strain amplitude imposed 

during the strain-controlled tests. 
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Fig. 7. Chaboche model fit of the largest stabilized cycle for (a) ductile cast iron investigated by 

Meyer [41]. (b) 7075-T6 aluminum alloy and (c) 42CrMo4+QT steel by Santus et al. [39].  
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Fig. 8. Ductile cast iron: (a) Ratcheting simulation with stabilization trend; (b) Backstress evolutions 

and interaction between the first and the third components; (c) Detailed view of the backstress 

stabilized cycles. 7075-T6 aluminum alloy: (d) Stabilizing ratcheting example; (e) significant 
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counterslopes of both nonzero-backstress components. 42CrMo4+QT steel: (d) Ratcheting example 

with evidence of faster stabilization; (f) again counterslope of a single nonzero-backstress component. 

 

 

 

Fig. 9. FE models of (a) notched specimens and (b) fracture mechanics specimens. 
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Fig. 10. (a) Plastic zone size ahead ultra-sharp and sharp notched specimens of 7075-T6 as a function 

of the stress amplitude. Evolution of the stress-strain cycle with fatigue life in (b)-(d) 42CrMo4+QT 

steel and (e)-(g) ductile cast iron at HCF stress amplitudes. 

 

  

 

Fig. 11. Convergence criterion for the three investigated materials to estimate the number of cycles 

at stabilization Nst. (a) 7075-T6, (b) 42CrMo4+QT, (c) DCI. 
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Fig. 12. Fatigue criteria applied to 7075-T6 aluminum alloy. Dependency of (a) criteria material 

parameters and (b) control radius upon the number of cycles to failure. Comparison of criteria 

predictions with experimental data (c) used and (d) not-used to calibrate the material parameters. The 

plastic parameter  is taken independent of Nf and equal to –4.5. 

 

  

  

Fig. 13. Fatigue criteria applied to 42CrMo4+QT steel. Dependency of (a) criteria material parameters 

and (b) control radius upon the number of cycles to failure. Comparison of criteria predictions with 
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experimental data (c) used and (d) not-used to calibrate the material parameters. The plastic parameter 

 is taken independent of Nf and equal to –0.0848. 

 

  

Fig. 14. Fatigue criteria applied to ductile cast iron. (a) Comparison of predictions according to M1, 

M3 and cW
 approach (Eq. (1c)) with experimental data. (b) Dependency of M3 plastic parameters 

upon load ratio R. 

 

Tables 

Table 1. Monotonic tensile properties based on three replicated tests. Standard error corresponds to 

1σ uncertainty band. 

Material E (GPa) YS (MPa) U (MPa) T.E. (%) 

7075-T6 70.5±0.2 531±7 595±6 10.0±0.7 

42CrMo4+QT 206±5.9 727±14 875±15 17.6±2.5 

120-90-02 DCI 174 644 1006 9.1 

E: Young’s modulus, YS: 0.2% yield stress, U: ultimate tensile strength, T.E.: total elongation 

 

Table 2. Fatigue crack growth threshold from experiments conducted in [39]. 

Material Sample geometry Load ratio R Kth (MPa m0.5) 

7075-T6 M(T) -1 4.2 

C(T) 0.1 2.5 

42CrMo4+QT M(T) -1 9.1 

C(T) 0.1 7.2 
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Table 3. Chaboche best-fit coefficients of the investigated metal alloys. 

Material E(GPa)  n  s
0
(MPa) 

1 MPaC  
1  C

2
(MPa) 

2  C
3
(MPa) 3  

7075-T6 70.5 0.33 373 153700 865 154700 1201 5270 0 

42CrMo4+QT 206 0.30 367 81750 353 83990 2882 12160 0 

120-90-02 DCI 174 0.27 243 153000 312 849700 60960 1800 0 

 

Table 4. Best-fit coefficients of the fatigue models of the investigated metal alloys.  

Material Nf Model  DW1 (mJ/mm3) R1 (mm)   

7075-T6 3×107 
M1 0.529 0.380 0.0539 - - 

M2 0.529 0.380 0.0539 –4.50 - 

42CrMo4+QT 1×107 
M1 0.861 1.142 0.0447 - - 

M2 0.395 0.759 0.0175 –0.0848 - 

120-90-02 

DCI 
1×106 

M1 0.512 0.597 0.0572 - - 

M3 0.319 0.565 0.0265 

b1=–0.056 

b2=50.1 

b3=50.1 

b4=–0.049 

d1=19.4 

d2=38.8 

 

Table 5a. High‐cycle fatigue strength predictions (Nf = 3×107) for 7075‐T6 according to linear-elastic 

model M1. The highest absolute errors are marked in bold. 

Model Test Geometry R 
Exp. a (MPa) / 

Kth (MPa m0.5) 

St.dev. 

(MPa) 
Estimation Err. (%) 

M1 

Self-

consistency 

Plain 
-1 159 5.2 160 0.6 

0.1 116 9.4 110 –5.2 

Ultra-sharp 

(R0.1) 

-1 38.2 2.19 37.3 –2.4 

0.1 24.9 1.46 25.6 2.8 

Validation 

Blunt (R1) 
-1 62.3 2.86 63.6 2.1 

0.1 45.0 2.72 43.7 –2.9 

Sharp 

(R0.2) 

-1 42.0 2.69 40.1 –4.5 

0.1 27.0 1.43 27.5 1.9 

MT -1 4.2 - 4.30 2.4 

CT 0.1 2.5 - 2.95 18 

Max abs. error (%) 18 

RMS error (%) 6.4 

 

Table 5b. High‐cycle fatigue strength predictions (Nf = 3×107) for 7075‐T6 according to elastic-

plastic M2 model. For comparison purpose, the errors marked in bold refer to the same estimations 

indicated in Table 5a. 

Model Test Geometry R 
Exp. a (MPa) / 

Kth (MPa m0.5) 

St.dev. 

(MPa) 
Estimation Err. (%) 

M2 

Self-

consistency 

Plain 
-1 159 5.2 160 0.6 

0.1 116 9.4 110 –5.2 

Ultra-sharp 

(R0.1) 

-1 38.2 2.19 37.3 –2.4 

0.1 24.9 1.46 25.6 2.8 

MT -1 4.2 - 4.45 6.0 

CT 0.1 2.5 - 2.65 6.0 

Validation 

Blunt (R1) 
-1 62.3 2.86 63.6 2.1 

0.1 45.0 2.72 43.7 –2.9 

Sharp 

(R0.2) 

-1 42.0 2.69 40.1 –4.5 

0.1 27.0 1.43 27.5 1.9 

Max abs. error (%) 6.0 
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RMS error (%) 3.9 

 

Table 6a. High‐cycle fatigue strength predictions (Nf = 1×107) for 42CrMo4+QT according to linear-

elastic M1 model. The highest absolute errors are marked in bold. 

Model Test Geometry R 

Exp. a 

(MPa) / 

Kth (MPa 

m0.5) 

St.dev. 

(MPa) 
Estimation Err. (%) 

M1 

Self-

consistency 

Plain 
-1 390 20.7 378 –3.1 

0.1 337 5.3 338 0.3 

Sharp 

(R0.2) 

-1 87.5 2.93 88.8 1.5 

0.1 80.5 2.65 79.5 –1.2 

Validation 

Blunt (R1) 
-1 163 12.1 146 –10 

0.1 119 3.71 131 10 

MT -1 9.1 - 8.3 –8.8 

CT 0.1 7.2 - 7.4 2.8 

Max abs. error (%) 10 

RMS error (%) 6.1 

 

Table 6b. High‐cycle fatigue strength predictions (Nf = 1×107) for 42CrMo4+QT according to elastic-

plastic M2 model. For comparison purpose, the errors marked in bold refer to the same estimations 

indicated in Table 6a. 

Model Test Geometry R 

Exp. a 

(MPa) / 

Kth (MPa 

m0.5) 

St.dev. 

(MPa) 
Estimation Err. (%) 

M2 

Self-

consistency 

Plain -1 390 20.7 400 2.5 

0.1 337 5.30 337 0.0 

Sharp 

(R0.2) 

-1 87.5 2.93 86.9 –0.6 

0.1 80.5 2.65 
80.3 –0.3 

MT -1 9.1 - 9.1 0.2 

CT 0.1 7.2 - 7.0 –3.1 

Validation Blunt (R1) -1 163 12.1 159 –2.7 

0.1 119 3.71 119 –0.1 

Max abs. error (%) 3.1 

RMS error (%) 1.7 
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Table 7a. High‐cycle fatigue strength predictions (Nf = 1×106) for 120-90-02 ductile cast iron 

according to linear-elastic M1 model. The highest absolute errors are marked in bold. 

Model Test Geometry R Exp. a (MPa)  Estimation Err. (%) 

M1 

Self-

consistency 

Plain 
-1 306 320 4.6 

0 244 228 –6.6 

Notched 
-1 127 125 –1.6 

0 84.5 89.0 5.3 

Validation 

Plain 

-7 508 629 24 

-3 386 448 16 

1/3 180 187 3.9 

0.5 167 162 –3.0 

Notched 

-7 273 245 –10 

-3 189 175 –7.4 

1/3 76.4 73.0 –4.5 

Max abs. error (%) 24 

RMS error (%) 10 

 

Table 7b. High‐cycle fatigue strength predictions (Nf = 1×106) for 120-90-02 ductile cast iron 

according to elastic-plastic M3 model. For comparison purpose, the errors marked in bold refer to the 

same estimations indicated in Table 7a. 

Model Test Geometry R Exp. a (MPa) Estimation Err. (%) 

M3 

Self-

consistency 

Plain 

-7 508 525 3.3 

-3 386 360 –6.7 

-1 306 306 0 

0 244 235 –3.7 

1/3 180 185 2.8 

Notched 

-7 273 256 –6.2 

-3 189 199 5.3 

-1 127 124 –2.4 

0 84.5 91.4 8.2 

1/3 76.4 74.8 –2.1 

Validation Plain 0.5 167 169 1.2 

Max abs. error (%) 8.2 

RMS error (%) 4.5 

 


