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Abstract—Edge computing is an emerging architecture in 5G
networks where computing power is provided at the edge of the
fixed network, to be as close as possible to the end users. Compu-
tation offloading, better communication latency, and reduction of
traffic in the core network are just some of the possible benefits.
However, the Quality of Experience (QoE) depends significantly
on the network performance of the user device towards the
edge server vs. cloud server, which is not known a priori and
may generally change very fast, especially in heterogeneous,
dense, and mobile deployments. Building on the emergence of
standard interfaces for the installation and operation of third-
party edge applications in a mobile network, such as the Multi-
Access Edge Computing (MEC) under standardization at the
European Telecommunications Standards Institute (ETSI), we
propose MECPerf, a tool for user-driven network performance
measurements. Bandwidth and latency on different network
segments are measured and stored in a central repository, from
where they can be analyzed, e.g., by application and service
providers without access to the underlying network management
services, for run-time resource optimization.

Index Terms—Edge computing, Network measurements, 5G.

I. INTRODUCTION

5G is progressing on its way to revolutionize the way people

and objects will communicate. One of the main steps that have

been achieved is about its architecture: the formerly monolithic

core network, owned and operated by a single telco operator,

has been transformed into a virtualized flexible infrastruc-

ture, possibly multi-tenant. Furthermore, edge computing has

emerged as a paradigm to allow the execution of services and

applications as close as possible to the users, which has clear

benefits in terms of lower application latency and reduced

network traffic, compared to a cloud deployment in data

centers [1], [2]. These advantages are especially appealing to

some vertical segments, which in fact have already established

alliances to define reference architectures and harmonize ef-

forts with actors across their respective value chains: industrial

Internet [3], [4], connected vehicles [5], smart enterprise [6].

The European Telecommunications Standards Institute

(ETSI) has recognized the need for standardization in this

area and founded an Industry Study Group (ISG) on Multi-

access Edge Computing (MEC), which attracted so far more

than 100 participants [7]. The group has identified 35 use

cases of high business relevance [8], based on which they

have specified a reference architecture and open Application

Programming Interfaces (APIs), which fully embrace the on-

going softwarization trend in 5G. A MEC domain example

is illustrated in Fig. 1: edge networks are close to the User

Terminals (UTs) and include the MEC hosts, which have

a virtualized computation/storage infrastructure that can be

operated by a common Virtual Infrastructure Manager (VIM)

via the so-called Mm7 interface. Third-party service providers

can on-board their applications (MEC apps) by means of

standardized interfaces that offer interoperability with all ven-

dors of network equipment supporting ETSI MEC. The MEC

apps are managed via the Mm5 interface by a Mobile Edge

Platform Manager (MEPM), which also operates the MEC

services: these are platform-installed special applications that

provide MEC apps with information on users (e.g., location)

and infrastructure (e.g., radio network status), and also provide

means to influence operation (e.g., create traffic steering rules).

The MEC services are not illustrated in the figure because they

are only marginally relevant to this work. Finally, the MEC

orchestrator is the component in charge to take all decisions

on the lifecycle of MEC apps: when to start/stop/migrate them

or the mapping between UTs and MEC hosts.

Once an application in the UT has created a context and

a MEC app has been provisioned in the MEC host that is

deemed most suitable at the given time, there are potentially

three data paths (see Fig. 1): (1) between the UT and the

MEC app, traversing the access and networks (this is the

shortest-latency path); (2) between the UT and the cloud,

also passing through the core network and Internet; and, (3)

between the MEC app and the cloud. Which path is used for

what operation depends on the application and it is not under

the control of the telco operator. On the other hand, the ETSI

MEC does not provide a specific API or service to query the

instantaneous network-layer performance of any of the three

paths1 However, for many applications that are either latency-

1Admittedly, the standard does allow an application to specify Service Level
Agreement (SLA) guarantees upon context creation, but the way how there
are handled and what happens in case they are (temporarily) violated is left
to the equipment manufacturers.
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Fig. 1: Edge computing with ETSI MEC.

sensitive or bandwidth-intensive, it would be very useful to

have such information at hand to take appropriate decisions.

For this reason, in this work we propose a methodology to

perform network-level measurements that is integrated with

the ETSI MEC architecture.

In this paper we propose MECPerf, a system designed

to measure network performance metrics in a MEC-enabled

infrastructure. MECPerf is able to collect the network per-

formance on the highlighted network segments in different

ways: using active or passive techniques, or through self-

measurements of KPIs by applications. Results are stored

in a central repository so that they can be subsequently

aggregated and analyzed. The final goal is to allow application

and service providers to tune application/service execution

parameters according to the instantaneous network conditions,

which would not be available otherwise beyond the realm of

the mobile network operator.

II. RELATED WORK

Some works tried to quantitatively evaluate the benefits

achieved when computing elements are shifted in proximity

of the end users.

In [9], a fog computing architecture for the healthcare

environment is compared to a traditional cloud computing

architecture. By processing the data where they are produced,

a reduction of traffic between layers can be achieved, together

with reduced energy consumption and lower latency.

The benefits of edge computing, compared to cloud comput-

ing, were quantified by observing the response time and energy

consumption of applications in multiple scenarios (processing-

intensive and latency-sensitive) [10]. Results showed that edge

computing can bring evident performance benefits, especially

when the location of the edge node is close to the end user.

The SOUL framework shifts the computational load of

sensor-based applications to the edge in a transparent way

for programmers [11]. Micro-benchmarks have shown that

SOUL improves overhead, scalability, and power consumption

compared to the standard approaches.

In vehicle-to-pedestrian systems, cars and users’ smart-

phones periodically generate contextual information that can

be used by a collision detection algorithm to prevent dangerous

situations [12]. The study shows costs and benefits in terms

of battery consumption and processing time when migrating

tasks from the smartphones to the edge nodes. Other studies

about costs and benefits of migration of an application from

the remote cloud to the edge nodes can be found in [13] and

[14].

Latency-aware placement of service function chains has

been studied in [15]. The problem has been faced using

Integer Linear Programming (ILP) techniques, and the model

assumes that information about the capacity of links connect-

ing edge nodes and centralized cloud elements is available.

This highlights the importance of network measurement tools

like MECPerf, which are able to provide run-time informa-

tion about network conditions. The availability of network

bandwidth information on the relevant network segments is

also required in [16], where a hierarchical edge approach is

considered.

All the works mentioned assume that performance is deter-

mined exclusively by an appropriate orchestration of computa-

tion resources, generally ignoring the impact of network condi-

tions. However, in heterogeneous and dense networks, runtime

conditions could play an important role in the overall user’s

Quality of Experience (QoE), especially for applications with

stringent delay or large bandwidth requirements. Therefore, in

this work we propose to complement the outcome of the works

in the literature by incorporating real-time measurements on

network conditions through MECPerf, which is introduced

below.

III. MECPERF

MECPerf aims at collecting the network- and application-

level performance indices in a MEC system.

A. Architecture and Operation

The architecture of MECPerf is shown in Fig. 2. The system

is composed of four components: the MECPerf Client (MC)

running on UTs, the MECPerf Observer (MO) running on

MEC application servers, the MECPerf Remote Server (MRS)

running on remote servers, and the MECPerf Aggregator

(MA). MECPerf can perform measurements according to three

different operational modes: i) active measurements, ii) pas-

sive measurements through traffic analysis, iii) self-measured

indices collection. In the active measurements mode, the

MECPerf components measure general performance indices

about the network infrastructure (bandwidth and latency). In

the passive measurements mode, MECPerf receives the traffic

traces of applications running on the MEC and extracts the

performance indices obtained by each application. Finally, in

the third mode, a third-party application can measure its own

performance indices and send them to MECPerf via an open
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Fig. 2: MECPerf architecture.

interface. Not all components are involved in all the three

operational modes.

1) Active Measurements: As introduced above, an applica-

tion using computation offloading may interact at any given

time with either a MEC server or a remote server in the cloud,

in the so-called edge-cloud paradigm. Therefore, the most

relevant network segments are: i) the segment between the UT

and the MEC server; ii) the segment between the MEC server

and the remote server. By collecting the performance indices

of the first segment, it is possible to quantitatively evaluate

the suitability of a given MEC server to offer computation

offloading services to the given user, as compared to using a

remote server, resulting from the performance indices on the

second segment. In practice, these real-time data regarding

network conditions should be fused with information on, e.g.,

computation load and server usage, available to the service

provider. Each time a new measure begins, the MC interacts

with the MO to compute wireless link performance metrics,

then the MO interacts with the MRS to perform the same

measurement on the second part of the path. Finally, the

MO collects the results and sends them to the MA, which

stores the collected values in a database. MC and MO are

located in different parts of the network and are able to collect

measurements according to their own network perspective,

as previously mentioned. The MA is needed to merge the

measurements collected by multiple points of view into a

single set of network performance indices that characterize

the entire path.

2) Passive Measurements: In the passive measurement

mode, just the MO and MA are involved. This mode is

intended for measuring performance indices related to the

execution of third-party applications running on the MEC. By

exploiting functionalities available in the ETSI MEC standard,

the MO can receive a duplicate of the traffic generated by

applications running on the MEC, from which it can extract

the desired performance indices in real-time. It must be noted

that the performance indices computed in this way are those

observed from an external point of view, which is unaware of

the application dynamics. The measured indices are periodi-

cally uploaded to the MA .

3) Self-measured Indices Collection: MECPerf offers third-

party applications the possibility to collect and report their own

metrics via an open interface provided by the MA. This is the

most accurate way to obtain the performance indices about

third-party applications, however not all application providers

could be willing to implement their own measurement meth-

ods, for various reasons. Hence, the passive measurement

mode is also needed.

B. Implementation

1) Active Measurements: MECPerf collects the following

network metrics: TCP bandwidth, UDP bottleneck capacity,

and latency, both TCP-based and UDP-based. TCP bandwidth

is just the bandwidth of a data stream transfer, as observed by

the receiver. The bottleneck capacity is defined as the capacity

of the narrowest link over a certain network path [17]. In

other words, the bottleneck capacity is an estimation of the

maximum obtainable throughput over a path. To compute the

bottleneck capacity MECPerf uses a known technique based on

UDP packets that are sent back to back [17], [18]. The latency

between two end-points is computed by sending a message and

waiting for the response, then computing the round-trip time

(RTT). Each metric can be taken for the two communication

directions. Precisely, we distinguish between uplink measures,

i.e. from the MC to the MO and from the MO to the MRS,

and downlink measures, i.e. from the MRS to the MO and

from the MO to the MC. The measurement functionalities are

provided as a Java library, which is shared between the MC,

the MO, and the MRS. The MA uses a MySQL database to

store the collected metrics, while a Python Flask server makes

them available to the application/service providers through a

REST interface. Two prototype implementations of the MC

are currently available. The first is a command-line application,

useful for automated tests, while the second is an Android app,

useful for on-site data collection guided by human operators.

In a real system, the MC should be embedded in the mobile

app running on the client device and under the control of the

application provider.

2) Passive Measurements: The performance indices that

can be collected via passive measurements are TCP bandwidth

and latency, and UDP bandwidth. For each flow directed to

one of the monitored applications, the MO stores a (timestamp,

payload size) pair for each packet, which can be then used

to compute the throughput of that flow. It must be noted

that MECPerf ignores completely the payload content. Just

for TCP flows, the MECPerf Observer is able to compute

the experienced latency by using ACK numbers of the TCP

protocol. Every time a valid ACK is seen, the MECPerf

observer finds the ACKed packet, and computes the latency

as the difference between the time of arrival of the ACK

packet and the ACKed packet. Latency is stored as couples

(timestamp, RTT) for each ACKed packet. In this case, the

timestamp is related to the packet carrying the ACK. This

feature is not available for UDP flows, as there is no way for
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an external point of view to correlate incoming and outgoing

packets without knowing details of the application internal

protocol, as UDP lacks mechanisms that can be used for such

purpose (such as flow control).

3) Self-measured Indices Collection: The collected mea-

surements are application-level bandwidth and latency. The

application that is willing to share its own performance indices

can choose which metrics to provide. Metrics are provided

via the MA REST interface with HTTP POST requests.

The measurements should be formatted as a JSON object

containing relevant fields as IPs and ports of the end-points

of the measured application, an alphanumeric identifier for the

service (e.g., YouTube, Netflix), the protocol that can either be

TCP or UDP, and finally two objects that contain uplink and

downlink measurements. These objects contain a list of (key,

value) pairs, where the key is the timestamp of the measured

value, and the value is the measured metric, which can be

either bandwidth or latency.

The code of MECPerf is open source and publicly available

on GitHub2.

C. Compatibility with NFV-based Architectures

During the second 5GCity hackathon [19], we implemented

the MECPerf components as virtual machines, which were

then wrapped as virtual network functions (VNFs) and used

to build a network service (NS). The VNFs were built using the

5GCity SDK, a tool to develop VNFs compatible with cutting

edge technologies for managing and orchestrating 5G/NFV

infrastructures, such as Openstack Virtualized Infrastructure

Manager (VIM) and Open Source Management and Orches-

tration (MANO), which is the ETSI-hosted project to develop

an NFV Management and Orchestration software stack aligned

with ETSI NFV.

IV. EXPERIMENTS

In this section we provide some preliminary results of mea-

surement campaigns that we ran using the MECPerf Active

Measurements mode.

A. Validation

The implementation of the latency and bandwidth mech-

anisms was experimentally validated in a controlled setup.

2https://github.com/MECPerf/MECPerf

We installed the MECPerf components on two machines

connected to the same network at the University of Pisa. More

precisely, we deployed the MO on the first machine (Host 1)

and the MA, the MRS, and the REST server on the second one

(Host 2). Finally, we used a smartphone connected to the same

university network via Wi-Fi to run the client application. The

experimental setup is summarized in Fig. 3. We introduced

artificial delay and bandwidth restrictions between the two

hosts, and we then verified if the measured values were

consistent with the set ones. To this purpose, we used tc-

netem, which configures the traffic control policies on the

kernel packet scheduler [20], [21]. More precisely, for latency

tests, artificial delays were applied to the outgoing interface of

Host 2. Instead, for bandwidth tests, rate limits were applied

to the outgoing interface of Host 1 and Host 2 for uplink

and downlink tests respectively. The results presented in the

following are the average of ten repetitions.

Fig. 4 shows the latency measured between the MO and

the MRS when using increasing artificial delay values, from

0 ms up to 200 ms. Substantial differences between the delay

applied and the measured latency cannot be observed.

To validate the bandwidth estimation mechanisms, we ap-

plied an artificial rate limit rpkt to the outgoing interfaces of

Host 1 and Host 2, depending on the direction of the test to be

carried out. Observed values cannot be directly compared with

the applied bandwidth limitations, as the latter ones operate

at the data link layer while the bandwidth in MECPerf is

measured at the application layer. If a rpkt limit is imposed at

the data link layer, the bandwidth available at the application

layer should be equal to

rapp =
Lapp

Lpkt

· rpkt (1)

where Lpkt is the total length of data link packets and Lapp

is the amount of application-layer data in each packet.

UDP bandwidth tests were configured to send datagrams

with a payload of 1024 bytes (Lapp = 1024B). As Lapp is

smaller than MTU−Hip−Hudp, where Hip and Hudp are the

lengths of the IPv4 and the TCP headers, we can assume that

UDP packets were not fragmented. Finally, the packet length

of each UDP datagram can be computed as

Lpkt = Lapp +Hudp +Hip +Heth + Teth (2)

where Hudp is the length of the UDP header, Heth is the

length of the Ethernet header, and Teth is the length of the

Ethernet trailer.

In TCP tests, a stream of bytes is sent in a short amount

of time. As a consequence, we considered each TCP packet

filled at its maximum capacity, which is equal to the maximum

transmission unit (MTU) minus the space reserved for the

headers. Thus, the Lapp is supposed to be equal to

Lapp = MTU −Hip −Htcp (3)

where Htcp is the length of the TCP header. For TCP, we

considered Lpkt equal to

Lpkt = MTU +Heth + Teth (4)
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(a) Uplink UDP latency test
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(b) Uplink TCP latency test
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(c) Downlink UDP latency test

0 20 40 60 80 100 120 140 160 180 200
Additional delay (ms)

0

25

50

75

100

125

150

175

200

RT
T 

(m
s)

Additional delay
TCP RTT measured

(d) Downlink TCP latency test

Fig. 4: Validation tests for UDP and TCP RTT estimation mechanisms.
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(a) Uplink UDP bandwidth test
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(b) Uplink TCP bandwidth test
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(c) Downlink UDP bandwidth test
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(d) Downlink TCP bandwidth test

Fig. 5: Validation tests for UDP and TCP bandwidth estimation mechanisms.

The following values were considered: 1500 bytes for the

MTU, 20 bytes for IP and TCP headers, 8 bytes for the UDP

header, 14 bytes for the Ethernet header, and 4 bytes for the

Ethernet trailer. In the end, rapp = 0.957 · rpkt for UDP and

rapp = 0.962 · rpkt for TCP.

Bandwidth limitations were introduced with values of rpkt

in the 10-200 KB/s range. Fig. 5 compares the observed

bandwidth with the expected rapp value. When high rapp

values are considered, it can be noticed that TCP rates are

slightly lower than the ones obtained in the corresponding

UDP tests. This can be explained as the effect of the TCP

slow-start mechanism, which slightly reduces the average

throughput. Differences, between the measured bandwidth and

the applied rapp limits, are below 3%.

B. Evaluation

We run a small-scale experimental evaluation of MECPerf

on a real network. The key network performance indices were

collected on both a wireless segment and a wired one using

MECPerf. Collection of performance indices was carried out

every 30 s for approximately four hours. The MC was executed

on a normal PC, connected via Wi-Fi to a LAN of the Univer-

sity of Pisa, Italy. On the same LAN, the MO was executed

on a standard PC operating as a possible edge server. The

MRS was executed on an Amazon AWS EC2 instance [22].

The MRS was physically located in the USA, east coast.

TCP bandwidth was measured using 1 MB payloads, thus the

obtained results can be representative of applications/services

characterized by a communication scheme where the amount

of transferred data is, on average, of such size.

Fig. 6 shows the observed TCP bandwidth and RTT, on

the two segments in both directions. On the left-hand side of

Fig. 6a and 6b, the bandwidth on the MC-MO segment is

greater than the bandwidth on the MO-MRS segment. This

part corresponds to a period where the number of people

in the building was rather small, and the load on the Wi-

Fi access point was light. After approximately 25 minutes,

the number of people in the building started to increase,

because of a meeting involving approximately 60 persons. The

increased load on the Wi-Fi infrastructure makes the observed

downlink bandwidth on the MC-MO segment smaller than the

bandwidth on the MO-MRS segment (Fig. 6b). In particular,

the latter remains almost constant as the amount of traffic

produced by the increased amount of people does not saturate

the wired 10 Gbps links of the LAN. In the uplink direction

this phenomenon is less evident (Fig. 6a), even though the

difference between the first 25 minutes and the remaining

period is still visible.

In practice, during the first period the bottleneck on the

whole path is somewhere in the wired part, whereas during

the second period the bottleneck is represented by the wireless

access. Let us suppose that a bandwidth intensive application

can be relocated from the remote cloud to the edge. During the

first period, relocating the application in proximity of the users

may bring some benefits. On the contrary, during the second

period migrating the application is not going to provide any

advantages, as the bottleneck is on the wireless access.

Fig. 6c and 6d show the situation in terms of TCP RTT. Also

in this case, the impact caused by the increased number of peo-

ple is still visible. However, for a latency-sensitive application,

migrating close to the users may still bring some benefits (the

latency on the MC-MO segment is always much better than

the latency on the other segment). In this specific case, this

may also be due to the fact that the remote cloud is reached

via a trans-continental connection, and thus characterized by

a significant latency.

V. DISCUSSION AND CONCLUSION

We see three possible business scenarios where the proposed

methodology, an hence MECPerf, can be exploited by vertical

players. First, a vertical-telco cooperation scenario, where
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Fig. 6: Experimental results.

the vertical installs MEC apps on MEC hosts which em-

bed application-specific measurement modules. These modules

send real-time streams of data to a collecting module in the

core network, which is queried by the MEC orchestrator to

take decisions and adapt the deployment of MEC apps so

as to best fit the application-dependent KPIs, as opposed to

relying merely on platform-related metrics. In this scenario

the telco operator benefits from accurate measurements from

the applications, and the vertical is provided with a better

operation, and in the end higher QoE for its users. Second,

if the vertical uses an edge-cloud application, i.e., one that

implements computation offloading from the UT to either the

edge or the cloud, then having real-time measurements from

both the MEC hosts and the remote data center allows to tune

more accurately migration or load balancing between the two.

Third, we foresee that a third party may offer measurements

as a service, by on-boarding MEC apps with the only purpose

of gathering network-level measurements between MEC hosts

and UTs, likely using active probing. This way, vertical service

providers may take proactive decisions on whether a given

context can or cannot be created for a UT at a given time,

independent from guarantees that could be provided by the

telco operator.
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