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Abstract: A molecular approach (DNA barcoding and phylogenetic analysis) using mitochondrial
COI  and  16SrRNA  genes was used to identify species in crocodile dried food
products (meat and feet) and skin sold on the Chinese market and generically labelled
as “鳄鱼” (crocodiles). All the 80 collected samples (100%) were identified at species
level and five of them were also identified at sub-species level using the  COI  gene.
Limits of the DNA barcoding approach related to the presence of sequences from
misidentified specimens on official genetic databases (Genbank and BOLD) were
encountered. The only DNA barcoding method was successfully applied for the
species identification of 47 (58.7%) samples (42 using the  COI  and 5 using the
16SrRNA  ) while the support of the phylogenetic analysis was considered in 7 (8.7%)
samples (performed using the  16SrRNA  gene). For the remaining 26 samples
(43.3%) the species identification was only achieved by phylogenetic analysis using
the  COI  gene. Three species were overall detected:  Crocodiles  siamensis  (n= 44;
55%),  C. porosus  (n= 29; 36.2%) and  Caiman crocodilus  (n= 7; 8.7%) with the sub-
species  C. crocodylus crocodylus  in 5 out of the 7 cases. Although the traceability
system of these products in China presented evident shortcomings, outcomes from this
study appeared comforting since all the three species are among the most reared for
meat production and can plausibly feed the market requests. Interestingly, only one of
these species is included among those considered by the new EU legislation on reptile
meat. Therefore, although Chinese crocodilian-based products are still not allowed to
be imported in the EU market, a future law up-dating could not be excluded
considering   the relevance of the Chinese exports for the EU  . Outcomes from this
study, other than allowing to monitor products through the whole food value chain,
contribute to enrich the scientific pool of data from which EU food imports legislation
draw upon.
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Dear Editor, 

please find enclosed the manuscript entitled “Molecular authentication of crocodile dried 

food products (meat and feet) and skin sold on the Chinese market: implication for the 

European market in the light of the new legislation on reptile meat” to be considered for 

publication in Food Control. 

The consumption of crocodiles (order Crocodylia) has worldwide grown over the years 

and, to date, crocodilian meat is appreciated in many Asian, African, Australian and 

American countries as healthy alternative to conventional livestock. Despite the development 

of farming system in which crocodiles are reared both for skin and meat production, illegal 

trades of crocodile-based products, that in the past wiped out many populations worldwide, 

are still present. Differently from other countries, the EU legislation framework specifically 

targeting reptile meat, including crocodilian, has been set up only in very recent times.   

At present, literature dealing with the molecular identification of crocodilian species in 

products sold on the market are few. In particular, to the best of our knowledge, no surveys 

on the Chinese market were performed. Although Chinese crocodilian-based products are still 

not allowed to be imported in the EU market, a future law up-dating could not be excluded 

considering the relevance of the Chinese exports for the EU. Thus, considering that DNA-

based methods can assist the monitoring of crocodile trade especially when processed 

products, difficult to identify, are involved, a molecular approach based on both DNA 

barcoding and phylogenetic analysis used COI and 16SrRNA as genetic marker was applied 

for identifying species in 60 crocodile dried food products (40 meat and20 feet) and 20 skin 

products sold on the Chinese market generically labelled as “鳄鱼” (crocodiles in English).  

All the samples (100%) were unequivocally allocated to species level and five of them were 

also identified at sub-species level using the COI gene. Limits of the DNA barcoding 

approach related to the presence of sequences from misidentified specimens on official 

genetic databases were encountered.  Three species were overall detected: C. siamensis (n= 

44; 55%), C. porosus (n= 29; 36.2%) and Caiman crocodilus (n= 7; 8.7%) with the sub-

species C. crocodylus crocodylus in 5 out of the 7 cases. The dried food products (meet and 

feet) (n=60) were mostly identified as C. siamensis (n=34; 56.7%), followed by C. porosus 

(n=21; 35%) and C. crocodylus (with the relative sub-species) (n=5; 8.3%). Skin products 

(n=20) were only identified as C. porosus (n=12; 60%) and C. siamensis (n=8; 40%). 

Although the traceability system of these products in China presented evident shortcomings, 
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outcomes from this study appeared comforting since all the three species are among the most 

reared for meat production and can plausibly feed the market requests. 

Therefore, A proper market monitoring on a continuous basis is strongly recommended 

and, in this respect, the technique used in this study could represent a valid control tool to 

face the criminality operating within illegal channels, to ensure a valid traceability system 

and to guarantee a proper consumers’ information. Also, outcomes from this study may 

contribute to enrich the scientific pool of data from which EU food imports legislation draw 

upon. 

 

The manuscript has not been published elsewhere nor is it being considered for publication 

elsewhere. All authors have approved this manuscript, agree to the order in which their names 

are listed, declare that no conflict of interests exists and disclose any commercial affiliation. 

 

Best Regards 

Jing Wen 

 

 

 



Dear Editor, we are sending you back the revised version of the manuscript/paper entitled 

"Molecular authentication of crocodile dried food products (meat and feet) and skin sold on 

the Chinese market: implication for the European market in the light of the new legislation on 

reptile meat". We are pleased for the comments received by the reviewers and we thank them 

for the tips they gave us to ameliorate the paper.  

Reviewers' comments:  

Reviewer #1: The manuscript entitled as "Molecular authentication of crocodile dried food 

products (meat and feet) and skin sold on the Chinese market: implication for the European 

market in the light of the new legislation on reptile meat" is a report to detect the crocodile 

species in the crocodile products using DNA barcoding method. I think the topic of the 

manuscript is interesting and important. Therefore, I recommend the publication after 

following minor correction:  

Abstract: The abstract is clearly and concisely written 

Introduction:  

Lines 46-47: All abbreviations (e.g. PUFA, SAF etc.) should be in full form in first time use. 

Done 

Line 135: the sequences of used primers to be included.  

The primers sequences were added. 

Materials and Methods: 

The sequences of the used primers should be included, only references are not suitable. A 

brief description of amplification and sequencing conditions should be added.  

This section has been improved as requested. 

Results:  

The authors claimed that their extracted DNA quality and quantity are good compared to 

others, however, they did not include their results.  

The results were briefly reported in this section (line 154-156). 

Discussion:  

The authors did not include any sub-section in the discussion section of the obtained results. 

Authors should discuss their results in discussion section. Authors should also discuss the 

possible reason why the COI gene-based barcode unable to amplify or identify the samples 

(S6, S32, S41, S14, S36, S50 etc.) which were tested by 16S rRNA gene-based barcode.  

Overall, the COI gene was not amplified in 12 out of the 80 analysed samples (15%). 

Based on our experience, the possibility that a molecular target could be not amplified 

in a small percentage of samples despite the good quality of the extracted total DNA is 

nothing out of the ordinary. In fact, the presence of PCR inhibitors (especially in the 

case of commercial samples) or a reduced annealing performance of the PCR primers 

may subsist. For this reason, we preliminary set up the analytical protocol by selecting 

Detailed Response to Reviewers



an alternative molecular target in case of amplification failures. However, sentence has 

been added in the discussion section to better point out this aspect (see line 245-246). 

Fig.: Label the Fig. 2 & provide the Fig. 3.  

Figure 2 caption was already provided in the manuscript. However, it has been revised.  

Figure 3 is now provided, and its caption has been revised.  

Reviewer #2: Manuscript ID: FOODCONT-D-20-02792  

Journal: Food Control Title: Molecular authentication of crocodile dried food products (meat 

and feet) and skin sold on the Chinese market: implication for the European market in the 

light of the new legislation on reptile meat. Authors: Xia Zhang, Andrea Armani, Alice 

Giusti, Jing Wen, Sigang Fan, Xiaoguo Ying  

The manuscript is focused on the monitoring of crocodile dried food products and skin sold 

on the market in two Chinese provinces. Samples were chosen proportionally according to 

the product type, however, no one was properly labeled. A molecular approach of DNA 

barcoding and phylogenetic analysis were used for species identification. As the crocodilian-

based meat products are not allowed at European market, aim of this study was also to 

contribute to enrich the scientific pool of data from which EU food imports legislation draw 

upon. It is a pilot study, as the standard method identifying crocodile-based products has not 

yet been selected. The manuscript lay out, form and content well suits the Food control 

journal and the objectives and reasons for the research are well explained. "Introduction" 

contains all the necessary information well-ordered in logical sequence. I appreciate the 

extensive separate paragraph „Discussion", which covers all aspects that could affect the 

reproducibility of the results. The objective of the paper could be of potential interest, 

however, several corrections should be accomplished, so minor revision is recommended.  

Comments to the authors  

1/ Please, explain, why all samples weren´t analysed using the same method/s of 

identification and some of them were analysed by DNA barcoding, others by phylogenetic 

analysis and others by both of the methods. To achieve the European legislation allowing the 

import of the crocodile meat, one standard detection method would be needed. By Your 

opinion which one would be appropriate?  

This aspect was already discussed in section 4.2. We found that the only DNA barcoding 

approach did not allow to achieve the species level in all the samples. However, this limit 

is attributable to the presence of wrongly deposited sequences rather than the method 

itself. To answer the last question, the DNA barcoding method may be elected as 

standard method for species identification at EU level but, as reported in this study, a 

preliminary analysis aimed at evaluating the genetic database reliability and eventually 

discarding wrongly deposited sequences is needed.  

2/ Do You think that the proper labelling of the crocodilian-based products imported from 

China to Europe will be achieved in the future?  

Considering the relevance of the Chinese exports for the EU this eventuality is 

advocated. However, considering the current shortcomings involving the Chinese 



labelling system (for seafood, as well as for many other foods), we think this scenario 

will be not achieved in the short term. 

Lines 46, 47, 69: Please, write the abbreviations „PUFA", “SFA" and „IUCN" in full text, or 

write the full text in the brackets after the abbreviations.  

Done 

Lines 67, 91 and 216: Reduce, please, the number of references and choose only the most 

valid ones.  

Done  

Lines 114-118: Write in details the procedures of DNA extraction, amplification and 

sequencing. The citation of methods used is not sufficient, as the full text of the manuscript 

Zeng et al. (2019) is not freely accessible.  

This section has been improved as requested. 

Figure 2: The caption of this figure is missing. 

Figure 2 caption was already provided in the manuscript. However, it has been revised.  
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Abstract 17 

A molecular approach (DNA barcoding and phylogenetic analysis) using mitochondrial COI and 16SrRNA genes was used to identify species 18 

in crocodile dried food products (meat and feet) and skin sold on the Chinese market and generically labelled as “鳄鱼” (crocodiles). All the 80 19 

collected samples (100%) were identified at species level and five of them were also identified at sub-species level using the COI gene. Limits of 20 

the DNA barcoding approach related to the presence of sequences from misidentified specimens on official genetic databases (Genbank and 21 

BOLD) were encountered. The only DNA barcoding method was successfully applied for the species identification of 47 (58.7%) samples (42 22 

using the COI and 5 using the 16SrRNA) while the support of the phylogenetic analysis was considered in 7 (8.7%) samples (performed using 23 

the 16SrRNA gene). For the remaining 26 samples (43.3%) the species identification was only achieved by phylogenetic analysis using the COI 24 

gene. Three species were overall detected: Crocodiles siamensis (n= 44; 55%), C. porosus (n= 29; 36.2%) and Caiman crocodilus (n= 7; 8.7%) 25 

with the sub-species C. crocodylus crocodylus in 5 out of the 7 cases. Although the traceability system of these products in China presented 26 

evident shortcomings, outcomes from this study appeared comforting since all the three species are among the most reared for meat production 27 

and can plausibly feed the market requests. Interestingly, only one of these species is included among those considered by the new EU 28 

legislation on reptile meat. Therefore, although Chinese crocodilian-based products are still not allowed to be imported in the EU market, a 29 

future law up-dating could not be excluded considering the relevance of the Chinese exports for the EU. Outcomes from this study, other than 30 

allowing to monitor products through the whole food value chain, contribute to enrich the scientific pool of data from which EU food imports 31 

legislation draw upon.  32 
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Keywords 33 

Species identification, exotic meat, reptiles, EU legislation, illegal trade 34 

1. Introduction 35 

The consumption of meat from species belonging to the Order Crocodylia (crocodiles, alligators, caimans and gavials) has a millennia long 36 

tradition in rural areas and in marginalized regions (Eaton et al., 2010; Sandalj, Treydte, & Ziegler, 2016). Outside these regions, it has long 37 

provoked disagreement in most of consumers (Cawthorn & Hoffman, 2016; Huang, Tsai, Liu, Syue, & Su, 2018). However, people increasingly 38 

showed curiosity to try new “adventurous foods” (Hoffman, Crafford, Muller, & Schutte, 2003; Hoffman & Cawthorn, 2013; Ahmad Nizar, Ali, 39 

Hossain, Sultana, & Ahamad, 2018) because eating this type of unconventional meat is the “par excellence” exotic experience (Cawthorn & 40 

Hoffman, 2016; Ahmad Nizar et al., 2018; Huang et al., 2018). Edible parts of crocodiles are recognized as medicinal products rather than as 41 

food in parts of Asia and Africa. In Chinacrocodile meat is thought to promote longevity, strengthen the body, replenish Qi, relieve asthma, and 42 

treat a myriad of other ailments (Deng, Chan, Deng, & Li, 2011; Williams Williams, Moshoeu, & Alexander, 2016). However, in addition to its 43 

use as medical product, crocodilian meat is appreciated for its organoleptic features such as its flavour lying between chicken, fish and veal and 44 

for its balanced content of nutrients even better respect to that of conventional livestock (Hoffman & Cawthorn, 2013; Canto et al., 2015; 45 

Černíková et al., 2015). The meat is in fact high in protein and has a good ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acid 46 

(SFA) (Hoffman, 2008). Moreover, together with other exotic meat, it can contribute to global food security by providing high quality animal 47 

proteins (Cawthorn & Hoffman, 2016). The development of breeding programs in North, Central and South America, Africa (e.g. Zimbabwe, 48 



4 
 

South Africa, Zambia), Asia (e. g. Thailand) and Australia, where national codes of practice for crocodilian farming have been developed 49 

(Manolis & Webb, 2016), has contributed to the increasing request of crocodile meat in many areas of the world (EFSA, 2007). Moreover, in 50 

many commercial breeding programs a certain number of hatchlings must be returned to the wild allowing the restocking (Fitzsimmons et al., 51 

2002). Farming, other than reducing the hunting pressure for skin collection, have helped to consolidate the exotic meat niche in the international 52 

market (Saadoun, Cabrera, Terevinto, & del Puerto, 2014). Currently, crocodilian meat is widely consumed in Africa, Australia, Asia, US, and 53 

South America (Cawthorn & Hoffman, 2016).  54 

As regards Europe, the citizens’ practice in consuming crocodilian meat is still very limited, and the available data on to market consumption 55 

of this product are mainly aggregated with those related to the entire reptile category. Overall, imports from third countries of fresh, chilled or 56 

frozen meat and edible offal of reptiles, including crocodilian meat, have shown an upward trend over the last 10 years with an increase of over 57 

50% in the quantity imported during the period 2007-2017 and an average yearly import in the European Union (EU) of nearly 100 tons 58 

(Eurostat’s reference database for detailed statistics on international trade in goods, 2017). In Europe, it is especially imported into Belgium, 59 

Denmark, Germany, Spain, and UK (EFSA, 2007).  60 

The EU legislation framework targeting reptile meat, including crocodilian, has been set up only in very recent times (Table 1SM). This new 61 

legislative framework clearly suggests that this foodstuff is expected to acquire a certain share of the EU market in the coming years. 62 

Accordingly, reptile meat may only be imported into the EU from certain third countries, and it must be produced in plants approved to export 63 
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and properly listed (Commission Implementing Regulation EU 2019/626). Currently Chinese plants are not included in the list, but future 64 

implementations of the countries list could occur.  65 

However, it should be considered that the illegal hunting and trades of crocodiles, crocodile-based products (especially skin) and crocodiles 66 

meat have continued to date also endangering their survival in natural habitats (Meganathan Dubey, & Haque, 2009; Eaton et al., 2010; Jogayya, 67 

Meganathan, Dubey, & Haque, 2013; Meganathan, Dubey, Jogayya, & Haque, 2013; Ahmad Nizar et al., 2018). Currently, six crocodilian 68 

species are on the International Union for Conservation of Nature (IUCN) Red List as “Critically Endangered” and many other are reported as 69 

“Endangered” or “Vulnerable” (https://www.iucnredlist.org/). All living crocodiles were included in Appendix I (most species) or Appendix II 70 

of the Convention on International Trade of Endangered Species of Wild Fauna and Flora (CITES) (https://www.cites.org/). The state of 71 

Amazonas is considered the largest producer of illegal alligator meat in the world, with the main markets being Brazil and Colombia (Marioni, 72 

Botero-Arias, & Fonseca-Junior, 2013; Carreira & Sabbag, 2015); crocodile carcasses were recorded as illegally imported from Africa to Europe 73 

(Chaber, Allebone‐ Webb, Lignereux, Cunningham, & Rowcliffe, 2010); a huge volume of illegal crocodile materials was confiscated in Kuala 74 

Lumpur (Malaysia) (Ahmad Nizar et al., 2018).  75 

The increasing consumers demand and the economic weight of some Third countries, especially China, within the EU market, might lead to a 76 

further regulatory review for the imports of crocodilian products, especially considering the traceability lacks that have been reported for 77 

Chinese food products (D’Amico et al., 2014; Armani et al., 2015a). Factually, illegal Chinese alligator meat has already appeared in the markets 78 

(Yan et al., 2005). In addition to wildlife concern, crocodile is an issue in halal foods since they are prohibited for Muslims (Cawthorn & 79 
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Hoffman, 2016). Finally, health issues related to its allergenic properties (Ballardini et al., 2017) and the presence of biological hazards, 80 

especially Salmonella spp. and Trichinella spp. as well as chemical should not be underestimated (Huchzermeyer, 1997; Pozio, Owen, Marucci, 81 

& La Rosa, 2004; EFSA, 2007; Magnino et al., 2009; Schneider et al., 2012; FDA, 2020).  82 

Based on all these premises, it is evident that proper checks at the point of entry should be performed, in order to guarantee the freely 83 

distribution of legal and safe products throughout the internal market, ensuring the traceability as well as the consumer and animal protection in 84 

accordance to the basic principles of the EU food law. In this respect, the monitoring of crocodile-based products trade can be assisted by 85 

molecular tools based on DNA analysis, especially when processed products, difficult to identify, are involved (Eaton et al., 2010). DNA based 86 

methods have been widely applied to authenticate food products with the aim to ensure their quality and safety, especially in the seafood sector, 87 

where fraudulent practices involving cases of species substitution are worldwide reported (Pardo, Jiménez, & Pérez-Villarreal, 2016). While in 88 

the past the DNA based approach in the context of meat traceability was limited (Galimberti et al., 2013), the situation has changed since many 89 

studies  aimed at meat identification have been produced in the past years (Cottenet et al., 2016; Hellberg, Hernandez, & Hernandez, 2017; 90 

Hossain et al., 2019; Cottonet, Blancpain, Chuah, & Cavin, 2020). 91 

At present studies aimed at detecting and/or identifying crocodile species in meat and skin products sold on the market are few (Yan et al., 92 

2005; Unajak et al., 2011; Kitpipit, Sittichan, & Thanakiatkrai, 2014; Ahmad Nizar et al., 2018; Ahmad Nizar et al., 2019). Moreover, to the best 93 

of our knowledge, no surveys on the Chinese market were performed, since the unique dated study dealing with Chinese market exclusively 94 

proposed a molecular method to detect the illegal presence of the endangered Chinese alligators (Alligator sinensis) in commercial meat and skin 95 
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(Yan et al., 2005). Considering the above-mentioned relevance of Chinese foodstuff’s exports for the EU, a preliminary evaluation of the 96 

national status respect to the market of crocodile-based products should be performed. For this reason, in this study a molecular approach (DNA 97 

barcoding and phylogenetic analysis) based on double genetic marker analysis (COI and 16SrRNA) was applied for identifying species in 98 

crocodile dried food products (meat and feet) sold on Chinese market generically labelled as “鳄鱼” (crocodiles in English). In addition, also 99 

skin samples were collected and analysed due to their use as medical products by the traditional medicine. By providing data on the mainly 100 

exploited crocodile species, this study may both facilitate the transparency in the market chain of crocodiles and contribute to enrich the 101 

scientific pool of data on which EU legislation draw upon.  102 

2. Materials and Methods 103 

2.1. Sampling 104 

The sampling criterion was established with the aim to have a picture as close to reality as possible of the crocodile-based products currently 105 

commercialized on the Chinese market. Crocodile skin, although not representing a food items, were also analyzed for this purpose. Therefore, 106 

sampling was conducted to include a proportional number of products per type, according to the market availability. A total of 80 samples were 107 

collected: 60 dried food products (40 meat and 20 feet) and and 20 skin samples. Sixty-four and 16 products were purchased from seafood shops 108 

in Guangzhou and Zhanjiang province (China), respectively (Table 1). All the samples were sold without reference to any species on the label. A 109 

selection of the samples collected in this study are shown in Fig. 1. The products’ price was also considered.  110 

2.2. DNA extraction, amplification and sequencing 111 
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Total DNA extraction was performed using the TIANamp Marine Animals DNA Kit (TIANGEN, China) according to the manufacturer's 112 

instructions. The qualities and quantities of the DNA from each sample were determined with a U-1800 spectrophotometer (Hitachi, Japan). The 113 

primer pair LCO1490 (5’- GGTCAACAAATCATAAAGATATTGG-3’) and HCO2198 (5’- TAAACTTCAGGGTGACCAAAAAATCA-3’) 114 

(Folmer, Black, Hoeh, Lutz, & Vrijenhoek, 1994) was used for the amplification of an expected 658 bp region of the cytochrome oxidase 115 

subunit I gene (COI). An alternative primer pair 16SFI (5’-AAAGCATTCTGCCTACACCTGAAA-3’) and 16SRI (5’-116 

TTGTGTTGGCTGCTTTAAGGCCTA-3’) (Jogayya, Meganathan, Dubey, & Haque, 2013) was used for the amplification of an expected 117 

~600bp region of the 16S ribosomal RNA gene (16SrRNA) in case of failure of the COI amplification. PCR amplification were performed using 118 

100 ng of template DNA and 50 μL master mix containing 2 μL each primer (10 μmol/L), 5 μL of 10×Ex Taq buffer (20 mmol/L Mg2+ plus), 4 119 

μL dNTP mixture (2.5 mmol/L each, TaKaRa, Japan), and 0.25 μL Ex Taq DNA polymerase (2 U/μL) (TaKaRa, Japan). PCR amplifications 120 

were carried out in a C1000 touch thermal cycler (Bio-Rad, USA). For the COI gene the amplification conditions were a denaturing step at 94 121 

°C for 3 min, 30 cycles of 42 s at 94 °C for denaturation, 30 s at 48 °C for annealing and 50 s at 72 °C for extension, and a final extension at 72 122 

°C for 10 min. Amplification conditions for the 16S rRNA gene were 94 °C for 5 min of initial denaturation followed by 30 cycles of: 123 

denaturation at 95°C for 30 s; annealing at 63°C for 30 s, extension at 72°C for 30 s and amplification ended with a 7 min final extension step 124 

followed by a 4°C hold.  The PCR products were analyzed by 1.2% agarose gel (11.5×6 cm) electrophoresis at 160 V for 30 min. The lengths of 125 

the fragments were determined by comparison with the DL2000 DNA ladder (TaKaRa, Japan). PCR products were purified with the AxyPrep™ 126 

DNA Gel Extraction Kit (Axygen, USA) and sequenced in both directions with the Applied Biosystems 3730 Automatic Sequencer. 127 
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2.3. Sequence editing and comparison with databases  128 

The sequences were analyzed with the Chromas lite v2.23 software and aligned using Editseq software (DNASTAR Lasergene Version 7.1.0) 129 

and Jellyfish v1.4 software. The final sequences were queried by Basic Local Analysis Search Tool (BLAST) selecting the program Highly 130 

similar sequences (megablast) and, in the case of COI, also by the BOLD Identification System (ID's) selecting the program Species Level 131 

Barcode Records (Ratnasingham & Hebert, 2007) against the reference sequences available on GenBank (http://www.ncbi.nlm.nih.gov) and 132 

Barcode of Life Data system (BOLD) (http://www.boldsystems.org/), respectively. A match with a sequence similarity of at least 98% was used 133 

to designate potential species identification for the COI (Hebert, Cywinska, Ball, & deWaard, 2003). As regards the 16SrRNA, a specific 134 

identification was attributed only for identity values of 99-100% (Armani et al., 2015b), due to the lower interspecific variability of this gene.  135 

2.4 Phylogenetic analysis and species identification 136 

A phylogenetic analysis was performed on both the COI and the 16SrRNA genes. To do this, all the species from Alligatoridae, Crocodylidae 137 

and Gavialidae families were searched on the Reptile Database (www.reptile-database.org). Subsequently, for all the retrieved species all the 138 

available COI and 16SrRNA sequences were searched on GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and, in the case of the COI gene, 139 

also from BOLD (Table 2SM). For each gene, all the retrieved sequences were first aligned with Geneious R7 software (Kearse et al., 2012) and 140 

those that did not match with the COI and 16SrRNA fragment analysed in this study (section 2.2) were discarded. Thus, two distinct genetic 141 

datasets were constructed, one for COI and one for 16SrRNA, containing the retained sequences (Table 2SM) and the sequences obtained from 142 

this study. Both the datasets were used to construct a Neighbor-Joining (NJ) phylograms using the Kimura 2-parameter model (Kimura, 1980) 143 
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with 1000 bootstrap re-samplings in MEGA-X (Kumar, Stecher, Li, Knyaz, & Tamura, 2018). Where available, five representative sequences 144 

for each species were used. 145 

3. Results  146 

3.1 Samples collection: market price and labelling 147 

The crocodile products collected in this study were characterized by relatively high prizes. Meat and feet products were sold at variable price 148 

of 320, 380, 440, 560 RMB (~79, 108, 138US$)/kg and even 720 RMB (~177 US$)/kg, respectively. The prices variability was only related to 149 

the different shops in which the products were sold. In addition, no correlation exists between price, information reported on the label and 150 

species identified by the molecular analysis (see section 3.3). In fact, all the products collected in this survey only reported on the label the 151 

generic Chinese name “鳄鱼” (crocodiles in English) referring to the taxonomical group (order Crocodylia). The Chinese terms 鳄鱼肉, 鳄鱼皮, 152 

鳄鱼爪 were used on the labels of crocodile meat, skin and feet, respectively.  153 

3.2 DNA extraction, amplification, sequencing, and sequence editing 154 

Although a certain degree of DNA degradation, low average DNA concentrations and low purity was reported for crocodile processed 155 

products (Eaton et al., 2010; Ahmad Nizar et al., 2018), our results revealed a good DNA quality and concentration, as  for all the collected 156 

samplesthe spectrophotometric analysis confirmed medium high yield and quality (A260/A280 and A260/A230 ratio >2.0) for all the collected 157 

samples (data not shown). Therefore, as expected, all the 80 DNA samples produced at least one amplicon suitable for sequencing and one 158 
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readable sequence. In particular, the COI gene was successfully amplified from 68 samples (35 meat, 16 feet, and 17 skin samples) while the 159 

16SrRNA gene from 12 samples (5 meat, 4 feet and 3 skin samples). All the COI sequences were 658 bp in length, corresponding to 100% of the 160 

expected amplicons. Also, all the 16SrRNA sequences reached 100% of the expected amplicon length (ranging from 544 to 546 bp due to the 161 

presence of species-specific insertions and deletions). For both the genes, the sequences were conventionally grouped together if identical. In 162 

particular, five sequences group were obtained from COI and five from 16SrRNA. Samples from each group were detailed in Table 1. 163 

3.3 Sequences comparison with genetic databases and phylogenetic analysis 164 

3.3.1 COI gene. As reported in Table 1, the sequences belonging to the group 1 (40 samples) showed a 100% identity value with three 165 

sequences (EU621816, EF581859 and MH999467) from C. siamensis (Crocodylidae) using both BLAST and BOLD IDs systems. Both the 166 

sequences belonging to the group 2 (15 samples) and the group 3 (7 samples) showed 100% and 99.85% identity value with sequences deposited 167 

as C. siamensis; additionally, identity values ranging from 98.92% to 99.85% (group 2) and 98.77% 100% (group 3) with sequences deposited as 168 

C. porosus were observed. According to Srikulnath, Thongpan, Suputtitada, & Apisitwanich (2012), which has proved that the complete mtC 169 

DQ353946 sequence (matching with group 2 and 3) might be an intraspecific variation of C. porosus instead of C. siamensis, it was highly 170 

probable that sequences from group 2 and group 3 were C. porosus. However, given the high identity value with the sequence NC_008795 171 

which was reported as C. siamensis, it was not possible unequivocally to allocate the sequences to a species only the basis of the sequence 172 

comparison. The sequences belonging to the group 4 (4 samples) and the group 5 (2 samples) were identified as C. crocodylus (Alligatoridae) 173 

using both BLAST and BOLD IDs systems with identity values of 98-99.43% and 98.93-99.24%, respectively. In particular, the group 5 was 174 
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allocated to the sub-species C. crocodylus crocodylus (Table 2), while the group 4 was not possible  identified at the sub-species level since the 175 

BOLD analysis also showed identity values higher than 98% with C. crocodylus chiapasius (Table 1). To further investigate the results obtained 176 

by the sequences comparison a phylogenetic analysis was conducted. To do this a preliminary selection of the sequences were performed and 21 177 

species were considered for the COI and 16SrRNA sequences retrieving. For C. crocodylus, also the 4 valid sub-species were included (Table 178 

2SM) on the basis of the outcomes of the sequences’ comparison. All the BOLD available sequences were mined from Genbank, so they were 179 

considered once with the Genbank accession number (Table 2SM). Of the 410 initially retrieved sequences for COI, 364 were retained in the 180 

genetic dataset (Table 2SM). The NJ phylograms essentially confirms the results obtained for the groups 1, 4 and 5 by the sequences 181 

comparison. Sequences from group 1 clustered with sequences from C. siamensis that showed a 100% identity during databases comparison, 182 

including the sequence EF581859, which was proved to belong to the real C. siamensis (Srikulnath et al., 2012), and separately from the cluster 183 

containing the sequence DQ353946 which according to the same study was actually C. porosus. Sequences from group 4 were clearly identified 184 

as C. crocodyus crocodylus as clustering with sequences from group 5 within the cluster containing C. crocodylus crocodylus sequences 185 

(JN311638-40) and separately from the C. crocodylus chiapasius cluster (Fig. 2). As regards the groups 2 and 3, the cluster containing the mtC 186 

sequence from properly identified C. siamensis (EF581859) and in which sequences from group 1 were located, was separated from both the 187 

cluster containing C. porosus sequences (HM490354-56 and AJ810453) and the cluster containing sequences from group 2 and group 3, which 188 

actually appeared to include intraspecific variation of C. porosus. In addition to the mtC sequence DQ353946 which was already proved to be C. 189 

porosus instead of C. siamensis (Srikulnath et al., 2012), also the mtC NC_008795 seems to belong to C. porosus in this study. Therefore, 190 
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samples from group 2 and group 3 probably belonged to C. porosus. The analysis of the deposited sequences showed that the sequences 191 

MH999467, EF581859 and EU621816 were true C. siamensis, while DQ353946, NC 008795 and DQ273698 may be intra-specific variation of 192 

C. porosus (Fig. 2). Additionally, the sequences deposited as private on BOLD and reported as C. crocodylus chiapasius (Table 1) probably 193 

belonged to misidentified specimens.  194 

3.3.2 16SrRNA gene. The BLAST analysis conducted on the sequences belonging to the group 1 (3 samples) showed a 100% identity value 195 

with C. siamensis (Table 1). The sequences belonging to the group 2 (3 samples), the group 3 (1 sample) and the group 4 (3 samples) were 196 

instead identified as C. porosus since the unique C. siamensis sequence matching with them was the mtC DQ353946 (intraspecific variation of 197 

C. porosus) (see section 3.3.1) (Table 1). Finally, sequences from group 5 (2 samples) showed a 100% identity value with C. crocodylus. For the 198 

phylogenetic analysis, of the 98 initially retrieved sequences for COI, 43 were retained in the genetic dataset (Table 2SM).  The NJ phylogram 199 

constructed with 16SrRNA sequences (Fig. 3) confirmed the outcomes of the BLAST analysis and especially proved that sequences belonging to 200 

the group 2, 3 and 4 were C. porosus (mtC DQ353946 and mtC NC_008795 were both proved to be C. porosus instead of C. siamensis in 201 

previous sections).   202 

3.4 Final species identification of the collected samples 203 

All the collected samples (100%) were finally identified at species level and five of them were also identified at sub-species level using the 204 

COI gene (Table 2). The only DNA barcoding approach successfully applied for the species identification of 47 (58.7%) samples (42 using the 205 

COI and 5 using the 16SrRNA) while the support of the phylogenetic analysis was considered in 7 (8.7%) samples (performed using the 206 
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16SrRNA gene). For the remained 26 samples (32.5%) the species identification was only achieved by the means of the phylogenetic analysis 207 

(performed using the COI gene). C. siamensis, C. porosus (Crocodylidae) and C. crocodylus (Alligatoridae) were identified in 55% (n=44), 208 

36.2% (n=29) and 8.7% (n=7) of the samples, respectively. Five out of the 7 C. crocodylus were also identified at sub-species level as C. 209 

crocodylus crocodylus. The dried food products (meet and feet) (n=60) were mostly identified as C. siamensis (n=34; 56.7%), followed by C. 210 

porosus (n=21; 35%) and C. crocodylus (with the relative sub-species) (n=5; 8.3%). Skin products (n=20) were only identified as C. porosus 211 

(n=12; 60%) and C. siamensis (n=8; 40%).  212 

4. Discussion 213 

4.1 Samples collection: price and labelling analysis 214 

The prices of the products analysed in this study seemed to agree with previous data referring to 2004 and could be related to the fact that, in 215 

China, crocodile meat is considered a delicacy and luxury food item (Xubing & Rui, 2004). This is also demonstrated by the fact that in the two 216 

of the most prestigious restaurants in the Bangkok area specialise in crocodile meat dishes many of the customers are Chinese citizens 217 

(https://www.fatg.com.au/meat-game/meat-products/crocodile). As regards the products’ labelling, it is easily understandable that the utilization 218 

of the generic umbrella term “crocodile” is not appropriate to accurately described the species belonging to the aforesaid taxa. This evidence still 219 

highlights the lack of a proper labelling and traceability system for the Chinese food chain (Armani et al., 2012; Xiong et al., 2016; Wen et al., 220 

2017; Zeng et al., 2019). Indeed, these shortcomings were also highlighted in the labelling system of Chinese seafood products imported to EU 221 

https://www.fatg.com.au/meat-game/meat-products/crocodile
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(D’Amico et al., 2014) so that, in a context of potential entry in the Community market, the labelling system should be properly revised and 222 

harmonised with EU requirements (see section 4.4).  223 

4.2 Selection of the molecular markers and limits of the DNA barcoding approach 224 

Mitochondrial DNA (mtDNA) is a good target for phylogenetic reconstruction at several taxonomic levels (Avise, 2000; Rastogi et al., 2007; 225 

Panday, Jha, Thapa, Pokharel, & Aryal, 2014) and complete mtDNAs have been so far published for crocodilian species (Janke & Arnason, 226 

1997; Janke, Erpenbeck, Nielsson, & Arnason, 2001; Wu et al., 2003; Yan, Feng, Li, & Wu, 2010; Man, Yishu, Peng, & Xiaobing, 2011; 227 

Srikulnath et al., 2012). Opposed to crocodile food products, literature dealing with the molecular identification of crocodilian species from 228 

tissue or blood samples is wide (Fitzsimmons et al., 2002; Li, Wu, Ji, Yan, & Amato, 2007; Meganathan, Dubey, & Haque, 2009; Eaton et al., 229 

2010; Man et al., 2011; Srikulnath et al., 2012; Jogayya et al., 2013; Bloor, Ibánez, & Viloria‐ Lagares, 2015; Shirley, Villanova, Vliet, & 230 

Austin, 2015). In this taxon, the effectiveness of the mitochondrial cytochrome b gene (cytb) as species-specific marker has been established for 231 

a long time (Yan et al., 2005; Meganathan et al., 2009; Unajak et al., 2011; Srikulnath et al., 2012). Short fragments from this gene were 232 

proposed for the analysis of commercial meat products (Yan et al., 2005; Unajak et al., 2011; Ahmad Nizar et al., 2019). Other mitochondrial 233 

genes have been proved as equally efficient for this purpose; Srikulnath et al. (2012), which constructed and compared distinct phylograms using 234 

the complete cytb, and the COI, proved that the two molecular markers produced similar tree topologies. The standard COI barcoding region for 235 

identifying the members of animal kingdom proposed by Hebert et al. (2003) was successfully used for detecting crocodile species in bushmeat 236 

(Eaton et al., 2010) and for distinguishing threatened species in India (Meganathan, Dubey, Jogayya, & Haque, 2013). Meganathan et al. (2013) 237 
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affirmed that the use of COI as molecular marker for crocodiles had been restricted due to lack of reference sequences respect to cytb. However, 238 

the higher taxonomic coverage of genetic databases observed in the last years, and the growing confidence of the scientific community in the 239 

Barcode of Life Data (BOLD) system (http://www.boldsystems.org/) may act as incentive for selecting COI as elective marker.  240 

Among mitochondrial genes, also the 16SrRNA was proved as effective for forensic identification of crocodile species; in particular, Jogayya 241 

et al. (2013) projected two primer pairs for the amplification of two partial 16SrRNA sequences of six crocodile species which should be later 242 

combined to obtain a larger region (⁓1290 bp) showing a sufficient inter-species variability. Recently, Ahmad Nizar et al. (2018) affirmed that 243 

an analytical approach based on the use of two molecular markers provides better security because if one is broken down, the alternative target 244 

can complement the missing target. Factually, the double-gene approach in crocodile species identification had been also previously applied by 245 

other authors (Unajak et al., 2011; Bloor, Ibánez, & Viloria‐ Lagares, 2015Bloor et al., 2015; Shirley, Villanova, Vliet, & Austin, 2015Shirley et 246 

al., 2015). For all the above-mentioned reasons, we chose to select two distinct molecular marker such as COI and 16SrRNA for identifying 247 

crocodile species. The 16SrRNA was selected as alternative marker given its well-known higher conservation degree respect to other 248 

mitochondrial genes (Hebert et al., 2003), and this aspect could increase the possibility to amplify DNA from a broader range of species 249 

especially in case of COI gene amplification failure. In fact, also in this study we were not able to amplify the COI from all the samples.  250 

In this study, the only DNA barcoding approach did not allow to unequivocally identify all the samples at species level (section 3.4). Based 251 

on the observed results, these shortcomings were not to be attributed to the method itself, given the fact that both the selected markers showed an 252 

inter-species variability that allowed to discriminate species within this taxon. However, the presence in official databases of sequences from 253 
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misidentified specimens could make less reliable, or even distort, the analysis outcomes. The taxonomic inconsistencies of official databases 254 

were already highlighted by other studies dealing with DNA barcoding (Vella, Vella, Karakulak, & Oray, 2017; Giusti et al., 2019). Therefore, 255 

the preliminary sequences analysis and the construction of reliable internal datasets represent fundamental steps before approaching this method.  256 

4.3 Crocodilian species identification: conservation status and farming  257 

Overall, data arising from this study showed the similar market situation that was described fifteen years ago. Crocodilian meat available on 258 

Chinese market belonged to farmed crocodiles and particularly the Saltwater crocodile (C. porosus) and the Siamese crocodile (C. siamensis) 259 

(Yan et al., 2005). The Saltwater crocodile is considered as least concern according to the IUCN Red List (iucnredlist.org) and it is one of the 260 

most widely distributed of all crocodilians, ranging from southern India and Sri Lanka, throughout southeast Asia, east through the Philippines to 261 

Micronesia, and down through Indonesia, Papua New Guinea and the Solomon Islands to northern Australia (Webb, Manolis, & Brien, 2010). 262 

This species represents the focus of crocodilian farming in Australia and it is also farmed in Papua New Guinea and in a number of Asian 263 

countries (Cawthorn & Hoffman, 2016).   264 

The Siamese crocodile, native to the most of Southeast Asia regions, is already extirpated in the wild or nearly extinct from 99% of its 265 

original range except Cambodia due to threat from human disturbance, habitat occupation and illegal capture. It was even believed that the 266 

species was almost or completely extinct in the wild in 1992 (Simpson & Bezuijen, 2010). Therefore, this species is critically endangered in wild 267 

while it is reared extensively in Thailand and Cambodia (Cawthorn & Hoffman, 2016). Since both the above-mentioned species found in this 268 
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study are currently widely farmed, it is highly plausible that illegal trade channels were not involved and that the analysed products belonged to 269 

reared specimens. 270 

The Saltwater and the Siamese crocodiles are furthermore widely raised together (Fitzsimmons et al., 2002; Srikulnath et al., 2012). Hybrids 271 

between these two species naturally occur as they remain fertile in captivity and, in many farms, they have been intentionally hybridized 272 

(Fitzsimmons et al., 2002; EFSA, 2007; Srikulnath et al., 2012). The Saltwater crocodile/Siamese crocodile hybrids are significantly reared in 273 

Africa (Zimbabwe, South Africa) (EFSA, 2007) and Asia (Thailand, Bangladesh) (Srikulnath et al., 2012; Hossain, Jaman, Ahmed, Rahman, & 274 

Uddin, 2013).  275 

The spectacled caiman, a species that is mainly found in Central and South America, From Oaxaca, Mexico, to Central and South America to 276 

Paraguay River and Argentina (Saadoun et al., 2014), was instead for the first time found in crocodile meat products sold on the Chinese market. 277 

Even though it is still mainly bred for obtaining skins, the production of meat from Caiman spp. is considered for long time an alternative to 278 

increase the farmer’s income (Cossu, Gonzáles, Wawrzkiewicz, Moreno, & Vieites, 2007). In this respect, the spectacled caiman is highly reared 279 

in Colombia and Brazil, while other caiman species such as the yacare caiman (C. yacare) and the broad-snouted caiman (C. latirostris) are 280 

more exploited in Bolivia and Argentina, respectively (Cawthorn & Hoffman, 2016). In 2015, farms in South America produced meat and skin 281 

of yacare caimans with an estimated value of approximately $900,000 USD per year (Carreira & Sabbag, 2015). Moreover, C. crocodilus is also 282 

highly reared for meat production in Taiwan, because its meat is particularly appreciated as pale and tender with a characteristic mild taste 283 

(Huang et al., 2018) and for this reason it is highly plausible that, also in this case, farmed specimens were involved in the meat products 284 
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analysed in this study. It is equally plausible that, for all the three found species, we were dealing with products imported from other Asian 285 

countries (e. g. Thailand) or from Australia, due to the fact that the attempting to develop crocodile farming in China has been unsuccessful (Guo 286 

et al., 2018). Thailand is in fact the leader in crocodile farming since 1990s, especially exporting skins to Europe and meat to Asian countries; 287 

Australia, whose crocodile industry is increasingly growing, seriously produced for the Asian market since 2011, when a crocodile-meat-export 288 

agreement with the Chinese government was signed (https://www.fatg.com.au/meat-game/meat-products/crocodile). However, our hypothesis 289 

could not be undoubtedly assumed given the inadequacy of the traceability system that trace back products to their origin. Furthermore, we do 290 

not have to forget that caiman meat still represents the largest illegal crocodile trade in the world (Marioni et al., 2013) and the eventual presence 291 

of illegal products on the national market should not be excluded. In this context, the implementation of a legislation specifically addressed to 292 

products identification through the whole food value chain is highly advocated.  293 

Knowing the product origin could also allow to select products coming from more sustainable productions such as ranching or harvesting 294 

instead of farming. Ranching is in fact a rearing that depends on the presence of a sustainable wild population in which collections of eggs or 295 

hatchlings are regulated by quotas established by wildlife authorities. This system contributes to the replenishment of the wild population by the 296 

restocking of a certain percentage of the animals reared in captivity (Magnino et al., 2009; Marioni et al., 2013). 297 

4.4 Crocodilian species identification: implication for the EU market in the light of the current legislation 298 

With the enactment of the Regulation (EU) 2017/625, where the scope of the previous EU official controls regulations was expanded to the 299 

entire agri-food chain, a relevant focus was addressed to lay down requirements for the entry into the EU of consignments of animals and goods 300 
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from third countries in order to ensure their compliance with EU in the area of food and food safety. With this mind, the imports data and market 301 

share of certain unconventional products of animal origin (such as reptiles, including crocodiles) were also considered (Table 1SM). In the 302 

Commission Delegated Regulation (EU) 625/2019 the reptile meat was defined as the edible parts, either unprocessed or processed, derived 303 

from authorised farmed reptiles. Three crocodile (Crocodylus johnstoni, C. niloticus, C. porosus) and one alligator (Alligator mississippiensis) 304 

species were included in the category, together with other reptilian taxa (Commission Delegated Regulation EU 625/2019). However, the future 305 

inclusion of other crocodilian species cannot be excluded on condition that they are authorised in accordance with Regulation (EU) 2015/2283 306 

on novel food and listed in the relative Commission Implementing Regulation (EU) 2017/2470. Therefore, although crocodilian products from 307 

China are still not included, the current relevance of Chinese exports for EU market might lead to might lead to a further regulatory review for 308 

the imports of crocodilian products, also in term of marketed species. Among the species found in this study only C. porosus is currently 309 

reported in the approved list of reptiles and allowed to be imported (Commission Delegated Regulation EU 625/2019); however, considering the 310 

current commercial relevance of C. siamensis in South-east Asia, it is not excluded that also this species will be authorised as novel food 311 

(Regulation EU 2015/2283) once imports from China are considered. Therefore, data from this study could produce useful data to on crocodile 312 

specie that could be considered for importation in future, in analogy with what regularly happens for seafood. The official lists of seafood must 313 

be in fact updated on the basis of trade inputs and in response to the expansion of the variety of species, present, in transit or permanently 314 

introduced on the national market (Tinacci, Giusti, Guardone, Luisi, & Armani, 2019). It should be however pointed out that Chinese 315 

government should first improve its traceability system to comply with EU legislation (Regulation EU 1169/2011) since the outcomes from this 316 
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study highlighted substantial shortcomings (see section 4.1). In addition, also EU legislation on biological and chemical risks management 317 

should be complied.  318 

Conclusions 319 

This study represents the first aimed at investigating crocodile food products (meat and feet) and skin on the Chinese market. Overall, the 320 

average prices of the collected products confirmed that, while in rural areas wild bushmeat represents an important protein and additional income 321 

source, in urban areas it often represents a luxury food. Consequently, this unconventional item may be particularly subjected to fraudulent 322 

practices that can affect not only the consumers’ right of making a conscious choice but can also hamper the fair trade facilitating the illegal 323 

commerce. The outcomes of this study appeared comforting respect to the data regarding the illegal hunting practices which have over the years 324 

strongly wipe out many crocodilian populations worldwide, since all the species found in the analysed products are reported among the most 325 

reared for meat production. However, a proper market monitoring on a continuous basis is strongly recommended especially in the presence of a 326 

too vague labelling system such as those applied to the products analysed in this study. Finally, this study highlighted the marketing of products 327 

belonging to a species not even considered in the EU list of reptiles, showing that the molecular approach not only allow to support products 328 

traceability but also provide useful data that can be used for the continuous improvement of the EU legislations.  329 
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Figures caption 340 

Fig. 1. Dried crocodile food products analyzed in this study. a-c = dried skin; d-f = dried feet; g-j = dried meat. Bar = 2 cm. 341 

Fig. 2. NJ phylogram created in MEGA-X (Kumar et al., 2018) with COI sequences. The evolutionary distances were computed using the 342 

Kimura 2-parameter method (Kimura, 1980) and are in the units of the number of base substitutions per site. 343 

Fig. 3. NJ phylogram created in MEGA-X (Kumar et al., 2018) with 16SrRNA sequences. The evolutionary distances were computed using 344 

the Kimura 2-parameter method (Kimura, 1980) and are in the units of the number of base substitutions per site. 345 
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Figure 1. Dried crocodile food products analyzed in this study. a-c = dried skin; d-f = dried feet; g-j = dried meat. Bar = 2 cm. 552 
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Table 1. COI and 16SrRNA DNA barcoding results; samples from which identical sequences were obtained were grouped together.  DQ353946* 560 

(mitochondrion complete) might be the intraspecific variation of C. porosus according to Srikulnath et al. (2012). 561 

Molecular target Group samples 
ID values 

(Genbank) 
ID values (BOLD) 

mtCOI 

1 

S1-S5, S7-10, 

S15, S18, S21-

S24, S31, S33-

S35, S42-43, 

S57-75 

100% Crocodylus 

siamensis 

(MH999467; 

EF581859; 

EU621816) 

100% Crocodylus 

siamensis 

(MH999467; 

EF581859; 

EU621816) 

2 

S11-13, S30, 

S37-40, S44-47, 

S76-78 

100% C. 

siamensis 

(DQ353946*) 

100% C. siamensis 

(NC_008795; 

DQ353946*) 

98.94-99.85% 

Crocodylus 

porosus 

(DQ273698; 

NC_008143; 

HM490344; 

AJ810453; 

EU621815) 

98.92-99.85% 

Crocodylus 

porosus 

(DQ273698; 

EU621815; 

HM490344-63; 

NC_008143; 

AJ810453) 

3 
S19-20, S25-28, 

S49 

98.78-100% 

Crocodylus 

porosus 

(DQ273698; 

NC_008143; 

HM490344; 

AJ810453; 

EU621815) 

98.77-100% 

Crocodylus 

porosus 

(DQ273698; 

NC_008143; 

HM490344-63; 

AJ810453; 

EU621815) 

99.85% 

Crocodylus 

siamensis 

(DQ353946*) 

99.85% 

Crocodylus 

siamensis 

(DQ353946*; 

NC_008795) 

4 S51-52, S55-56 

99.09-99.22% 

Caiman 

crocodylus 

crocodylus 

98.98-99.43% 

Caiman 

crocodylus 

crocodylus (private 
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(JN311638; 

JN311640) 

sequences) 

98-98.12%  

Caiman 

crocodylus 

chiapasius (private 

sequences) X 

5 S79-80 

98.03-99.06% 

Caiman 

crocodylus 

crocodylus 

(JN311638; 

JN311640) 

98.81-99.24% 

Caiman 

crocodylus 

crocodylus (private 

sequences) 

16S rRNA 

1 S6, S32, S41 

100% Crocodylus 

siamensis 

(EF581859) 

- 

2 S14, S36, S50 

99.63% 

Crocodylus 

siamensis 

(DQ353946*) 
- 

99.63% 

Crocodylus 

porosus 

(DQ273698) 

3 S16 

100% Crocodylus 

siamensis 

(DQ353946*) 

- 
99.27-100% 

Crocodylus 

porosus 

(DQ273698; 

NC_008143; 

AJ810453) 

4 S17, S29, S48 

99.82% 

Crocodylus 

siamensis 

(DQ353946*) 

- 
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99.45-99.82% 

Crocodylus 

porosus 

(DQ273698; 

NC_008143; 

AJ810453) 

5 S53-54 

100% Caiman 

crocodylus 

(AJ404872) 

- 
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Table 2. Final species identification of the collected samples. The used molecular marker and the analytical method were reported. 577 

sample type sample code n gene analytical tool Identified species 

meat 

S41 1 16SrRNA DNA barcoding Crocodylus siamensis 

S42-S43 2 COI DNA barcoding Crocodylus siamensis 

S44-S47 4 COI phylogenetic analysis Crocodylus porosus 

S48 1 16SrRNA DNA barcoding + phylogenetic analysis Crocodylus porosus 

S49 1 COI phylogenetic analysis Crocodylus porosus 

S50 1 16SrRNA DNA barcoding + phylogenetic analysis Crocodylus porosus 

S51-S52 2 COI phylogenetic analysis Caiman crocodylus crocodylus 

S53-S54 2 16SrRNA DNA barcoding Caiman crocodylus 

S55-S56 2 COI phylogenetic analysis Caiman crocodylus crocodylus 

S57-S75 19 COI DNA barcoding Crocodylus siamensis 

S76-S78 3 COI phylogenetic analysis Crocodylus porosus 

S79-S80 2 COI DNA barcoding Caiman crocodylus crocodylus 

feet 

S1-S5 5 COI DNA barcoding Crocodylus siamensis 

S6 1 16SrRNA DNA barcoding Crocodylus siamensis 

S7-S10 4 COI DNA barcoding Crocodylus siamensis 

S11-S13 3 COI phylogenetic analysis Crocodylus porosus 

S14 1 16SrRNA DNA barcoding + phylogenetic analysis Crocodylus porosus 

S15 1 COI DNA barcoding Crocodylus siamensis 

S16-S17 2 16SrRNA DNA barcoding + phylogenetic analysis Crocodylus porosus 

S18 1 COI DNA barcoding Crocodylus siamensis 

S19-S20 2 COI phylogenetic analysis Crocodylus porosus 

skin 

S21-S24 4 COI DNA barcoding Crocodylus siamensis 

S25-S28 4 COI phylogenetic analysis Crocodylus porosus 

S29 1 16SrRNA DNA barcoding + phylogenetic analysis Crocodylus porosus 

S30 1 COI phylogenetic analysis Crocodylus porosus 

S31 1 COI DNA barcoding Crocodylus siamensis 

S32 1 16SrRNA DNA barcoding Crocodylus siamensis 

S33-S35 3 COI DNA barcoding Crocodylus siamensis 

S36 1 16SrRNA DNA barcoding + phylogenetic analysis Crocodylus porosus 

S37-S40 4 COI phylogenetic analysis Crocodylus porosus 

 578 



1. Crocodile species in Chinese food (meat and feet) and skin were molecularly verified. 

2. 100% of the samples were identified although limits of DNA barcoding were encountered. 

3. Crocodylus siamensis (55%), C. porosus (36.2%) and Caiman crocodilus (8.7%) were found. 

4. Only one species is currently allowed to be imported into EU among those detected 

5. EU food imports legislation may draw upon from data obtained from this study. 
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Responses to Technical Check Results



 

 

Fig. 1. Dried crocodile food products analyzed in this study. a-c = dried skin; d-f = dried feet; g-j = 

dried meat. Bar = 2 cm. 
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Table 1SM. Current EU legislation dealing with reptile meat 

EU Legislative reference Article (point) Legislative text 

Commission Delegated Regulation (EU) 2019/625 

2 (15) 

“Reptiles” means animals belonging to the species Alligator mississippiensis, Crocodylus 

johnstoni, Crocodylus niloticus, Crocodylus porosus, Timon Lepidus, Python reticulatus, Python 

molurus bivittatus or Pelodiscus sinensis. 

2 (16) 

“Reptile meat” means the edible parts, either unprocessed or processed, derived from farmed 

reptiles, which are, when applicable, authorised in accordance with Regulation (EU) 2015/2283 

and listed in Commission Implementing Regulation (EU) 2017/2470 

3 (a) 

Animals and goods which are required to come from third countries or regions thereof 

included in the list referred to in Article 126(2)(a) of Regulation (EU) 2017/625. Consignments 

of the following animals and goods intended for human consumption shall enter the Union only 

from a third country or region thereof included in the list for those animals and goods laid down 

in Articles 3 to 22 of Implementing Regulation (EU) 2019/626. a) products of animal origin, 

including reptile meat and dead whole insects, parts of insects or processed insects, for which 

Combined Nomenclature codes (‘CN codes’) have been laid down in Chapters 2 to 5, 15 and 16, 

and Harmonised System codes (‘HS codes’) under headings 1702, 1806, 2102, 2103, 2105, 2106, 

2202, 2301, 2822, 2932, 3001, 3002, 3501, 3502, 3503, 3504, 3507, 3913, 4101, 4102, 4103, 

4110 and 9602 of Part Two of Annex I to Regulation (EEC) No 2658/87, when these products are 

intended for human consumption. 

Commission Implementing Regulation (EU) 2019/626 19 

List of third countries authorised for the entry into the Union of reptile meat. Consignments of 

reptile meat intended for human consumption shall only be authorised for the entry into the 

Union if they come from Switzerland, Botswana, Vietnam, South Africa or Zimbabwe. 

Commission Implementing Regulation (EU) 2019/627 73 

Ante-mortem and post-mortem inspection of reptiles. Article 11 shall apply to the ante-mortem 

inspection of reptiles. Articles 12, 13 and 14 shall apply to the post-mortem inspection of reptiles. 

For the purpose of Article 13 (a)(i), a reptile will be considered as 0,5 livestock units. 

Commission Implementing Regulation (EU) 2019/628 

24 

Model official certificate for the entry into the Union for placing on the market of reptile meat 

intended for human consumption. To meet the certification requirements laid down in Articles 

88, 89 and Article 126(2)(c) of Regulation (EU) 2017/625, the model official certificate set out in 

Part XII of Annex III to this Regulation shall be used for the entry into the Union 

for placing on the market of reptile meat intended for human consumption. 

33 

Transitional provisions. Consignments of products of animal origin accompanied by the relevant 

certificates issued accordance with Regulation (EC) No 2074/2005, Regulation (EU) No 

211/2013 and Implementing Regulation (EU) 2016/759 may be accepted for the entry into the 

Union until 13 March 2020 provided that the certificate was signed before 14 December 2019. 

Until 13 March 2020, […] and consignments of reptile meat, insects and other products of 

animal origin referred to in Article 26 may enter the Union without certificate set out in Annex 

III of this Regulation. 

Part XII 
MODEL OFFICIAL CERTIFICATE FOR THE ENTRY INTO THE UNION FOR PLACING ON 

THE MARKET OF REPTILE MEAT INTENDED FOR HUMAN CONSUMPTION 

 

e-component
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Table 2SM. COI and 16SrRNA sequences (all available and retailed in this study) from Alligatoridae, Crocodylidae and Gavialidae species (www.reptile-

database.org). *mitochondrion complete sequences 

  COI sequences 16SrRNA sequences 

Family Species (common designation) all (AN) all (n)  retailed (AN)  retailed (n) all (AN) all (n) retailed (AN) retailed (n) 

Alligatoridae  Alligator mississipiensis 

(American alligator) 

JN090131 1 JN090131 1 - 0 - 0 

Alligator sinensis 

(Chinese alligator) 

AF511507* 1 AF511507* 1 AF511507* 1 AF511507* 1 

Caiman crocodilus 

(-) 

EU621814 

GQ144467 

HM490389-90 

KF771220 

AJ404872* 

NC_002744* 

7 EU621814 

GQ144467 

HM490389-90 

KF771220 

AJ404872* 

NC_002744* 

7 AY233138 

DQ916160 

EU621804 

AJ404872* 

NC_002744* 

5 

 

AJ404872* 

NC_002744* 

2 

Caiman crocodilus crocodilus 

(Spectacled caiman) 

EU260450-60 

JN311638-41 

15 

 

JN311638-41 4 - 0 - 0 

Caiman crocodilus fuscus  

(Brown caiman) 

EU260416-43 

EU260447-49 

31 

 

- 0 - 0 - 0 

Caiman crocodilus chiapasius 

(-) 

EU260444-46 

GQ144468-71 

JN311624-29 

13 

 

GQ144468-71 

JN311624-29 

10 - 0 - 0 

Caiman crocodilus apaporiensis 

(Rio Apaporis caiman) 

- 0  0 - 0 - 0 

Caiman latirostris 

(Broad-snouted caiman) 

GQ144477-82 

JN311630-36 

KX954053-89 

MH161370 

51 GQ144477-82 

JN311630-36 

KX954053-89 

MH161370 

51 AY239139 

KX954015-51 

38 

 

- 0 

Caiman yacare 

(Jacaré caiman) 

GQ144472-76 

JN311651-62 

KF771229 

17 GQ144472-76 

JN311651-62 

KF771229 

17 - 0 - 0 

Melanosuchus niger 

(Black caiman) 

GQ144599-602 

JN313382 

KU986330 

MH161368 

7 GQ144599-602 

JN313382 

KU986330 

MH161368 

7 AY239140 

KX954052 

2 

 

- 0 

Paleosuchus palpebrosus 

(Cuvier's dwarf caiman) 

GQ144627-28 

MH161366 

AM493870* 

KJ920382* 

NC_009729* 

6 GQ144627-28 

MH161366 

AM493870* 

KJ920382* 

NC_009729* 

6 AY239141 

AM493870* 

KJ920382* 

NC_009729* 

4 

 

AM493870* 

KJ920382* 

NC_009729* 

3 

Paleosuchus trigonatus EU260461 8 GQ144629-31 7 AY239142 3 AM483869* 2 

e-component
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(Schneider's dwarf caiman) GQ144629-31 

JN313381 

MH161365 

AM483869* 

NC_009732* 

 JN313381 

MH161365 

AM483869* 

NC_009732* 

AM483869* 

NC_009732* 

 NC_009732* 

Crocodylidae Crocodylus acutus 

(American crocodile) 

KF273834-41 

KY994087-88 

KY994090 

KY994093-94 

GQ144571 

MH273685 

JF502241* 

HM636894* 

NC_015647* 

18 KF273834-41 

KY994087-88 

KY994090 

KY994093-94 

GQ144571 

MH273685 

JF502241* 

HM636894* 

NC_015647* 

18 JF502241* 

HM636894* 

NC_015647* 

3 JF502241* 

HM636894* 

NC_015647* 

3 

Crocodylus cataphractus 

(Slender-snouted crocodile) 

GQ144572-81 

NC_010639* 

EF551000* 

12 GQ144572-81 

NC_010639* 

EF551000* 

12 AY239147 

NC_010639* 

EF551000* 

3 

 

NC_010639* 

EF551000* 

2 

Crocodylus intermedius 

(Orinoco crocodile) 

KX454157-60 

JF502242* 

NC_015648* 

HM636895* 

7 KX454157-60 

JF502242* 

NC_015648* 

HM636895* 

7 AY239146 

JF502242* 

NC_015648* 

HM636895* 

4 

 

JF502242* 

NC_015648* 

HM636895* 

3 

Crocodylus johnstoni 

(Australian freshwater crocodile) 

HM490387-88 

NC_015238* 

HM488008* 

4 HM490387-88 

NC_015238* 

HM488008* 

4 NC_015238* 

HM488008* 

2 NC_015238* 

HM488008* 

2 

Crocodylus mindorensis 

(Philippine crocodile) 

NC_014670* 

GU144287* 

2 NC_014670* 

GU144287* 

2 NC_014670* 

GU144287* 

2 NC_014670* 

GU144287* 

2 

Crocodylus novaeguineae 

New Guinea crocodile 

JF502240* 

NC_015651* 

HM636896* 

3 JF502240* 

NC_015651* 

HM636896* 

3 JF502240* 

NC_015651* 

HM636896* 

3 JF502240* 

NC_015651* 

HM636896* 

3 

Crocodylus palustris 

(Mugger crocodile) 

HM490323-43 

GU144286* 

HM488007* 

NC_014706* 

24 HM490323-43 

GU144286* 

HM488007* 

NC_014706* 

24 HM921186 

GU144286* 

HM488007* 

NC_014706* 

4 

 

GU144286* 

HM488007* 

NC_014706* 

3 

Crocodylus porosus 

(Estuarine crocodile) 

EU621815 

HM490344-63 

AJ810453* 

DQ273698* 

NC_008143* 

24 EU621815 

HM490344-63 

AJ810453* 

DQ273698* 

NC_008143* 

24 AY770542 

AJ810453* 

DQ273698* 

NC_008143* 

4 

 

AJ810453* 

DQ273698* 

NC_008143* 

3 

Crocodylus rhombifer 

(Cuban crocodile) 

MH273686-87 

JF502247* 

JX292787* 

5 MH273686-87 

JF502247* 

JX292787* 

5 AY239145 

JF502247* 

JX292787* 

4 

 

JF502247* 

JX292787* 

NC_024513* 

3 



NC_024513* NC_024513* NC_024513* 

Crocodylus siamensis 

(Siamese crocodile) 

EU62816 

MH999467 

EF581859* 

DQ353946* 

NC_008795* 

5 EU62816 

MH999467 

EF581859* 

DQ353946* 

NC_008795* 

5 EU621806 

EF581859* 

DQ353946* 

NC_008795* 

4 

 

EF581859* 

DQ353946* 

NC_008795* 

3 

Osteolaemus tetraspis 

(African dwarf crocodile) 

EU159834-66 

GQ144603-26 

JN090128 

JX627008-10 

JX627012 

JX627014-17 

JX627019-23 

JX627026 

JX627028-33 

JX627038 

JX627040 

JX627042 

JX627044-45 

JX627047 

JX627050-51 

JX627059-60 

JX627063 

JX627065-66 

KM406125-26 

KM406129-34 

KM406136-44 

KM406146-50 

MH161367 

AM493868* 

EF551001* 

NC_009728* 

117 EU159834-66 

GQ144603-26 

JN090128 

JX627008-10 

JX627012 

JX627014-17 

JX627019-23 

JX627026 

JX627028-33 

JX627038 

JX627040 

JX627042 

JX627044-45 

JX627047 

JX627050-51 

JX627059-60 

JX627063 

JX627065-66 

KM406125-26 

KM406129-34 

KM406136-44 

KM406146-50 

MH161367 

AM493868* 

EF551001* 

NC_009728* 

117 AY239148 

AM493868* 

EF551001* 

NC_009728* 

4 

 

AM493868* 

EF551001* 

NC_009728* 

3 

Tomistoma schlegelii 

(False gharial) 

JN090129 

MH161364 

AJ810455* 

NC_011074* 

4 JN090129 

MH161364 

AJ810455* 

NC_011074* 

4 AY239150 

AJ810455* 

NC_011074* 

3 

 

AJ810455* 

NC_011074* 

2 

Gavialidae Gavialis gangeticus 

(Indian gharial) 

HM490364-86 

MH161369 

MH273966 

AJ810454* 

AB079596* 

28 HM490364-86 

MH161369 

MH273966 

AJ810454* 

AB079596* 

28 AY239149 

GQ398138 

AJ810454* 

AB079596* 

NC_008241* 

5 

 

AJ810454* 

AB079596* 

NC_008241* 

3 



NC_008241* NC_008241* 

Total   410  364  98  43 

 


