Time-Optimal Formation Establishment Around a Slowly Rotating Asteroid

Wei Wang∗
School of Aerospace Engineering, Tsinghua University, 100084 Beijing,
People’s Republic of China

Giovanni Mengali† Alessandro A. Quarta‡
Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy
and
Hexi Baoyin§
School of Aerospace Engineering, Tsinghua University, 100084 Beijing,
People’s Republic of China

Introduction

Asteroids’ exploration has drawn a growing interest since the early 1990s, when NASA, ESA, and JAXA successively proposed their task plans [1, 2] in which asteroids were considered a primary goal for new millennium spacecraft missions. Indeed, an in-depth analysis of asteroid samples may substantially improve the human knowledge of the Solar System evolution [3], while the exploration of near-Earth objects is meaningful for planetary defense purposes [4]. In this regard, following the tracks of the first successful sample return prober Hayabusa [5], the Japanese space prober Hayabusa-2 has successfully fired an impactor into its target asteroid 162173 Ryugu to create an artificial crater [6]. The splashing rock ash has allowed the spacecraft to collect asteroid samples placed beneath its surface [7].

Some advanced mission concepts, such as NASA Autonomous Nano-Technology Swarm (ANTS), require a collaborative framework with hierarchical (multilevel, dense heterarchy) organization and high autonomy, as well as redundant components with a certain degree of flexibility [8]. Other mission scenarios, consisting in the use of a spacecraft formation system for asteroid deflection [9–12], require an advanced (onboard) autonomous formation flying control system. In fact, from an operational standpoint, it is preferable to deploy a formation along suitable hovering [13] or periodic orbits [14, 15] around the target asteroid in order to initiate the asteroid gravity database and to chart a local geomorphologic map. When multiple spacecraft operate in close proximity, a (virtual) synthetic aperture radar can be ideally assembled [16] to improve the resolution of stereoscopic images, with a substantial reduction of the overall mission cost. In this scenario, the consensus concept guarantees a functional module distribution among the spacecraft in the formation [17, 18], in such a way as to eliminate the inherent single point of failure of the on-board system [19, 20].

So far, most of the existing literature [21, 22] has been dedicated to study the spacecraft relative motion in the presence of J2 term, i.e., the most relevant perturbation for spacecraft formations in low-Earth orbits [23, 24], whereas the problem of spacecraft relative motion around an asteroid has been rarely addressed [25, 26]. In fact, the complex weak nature of the asteroid gravity enables only a few types of stable orbits to be obtained [27], e.g. the quasi-frozen orbits [28]. For this reason the relative spacecraft dynamics around an asteroid is much more complex than that involving the J2 effect only and, in this case, the differential gravity among the formation spacecraft may induce a rapid growth of their relative distance. Especially for those long-term maintenance missions, an active control system is usually necessary to prevent the spacecraft formation from colliding with or escaping from the asteroid, and hence, a considerable fuel consumption is usually required.

The aim of this Note is to deal with the problem of time-optimal formation establishment around a slowly rotating (uniform) asteroid, whose gravity is approximated as a second-degree and second-order gravitational field (SDSOGF). Similar to the methodology used for identifying the classical J2-invariant relative orbits, two necessary conditions are analytically derived to guarantee bounded relative motion in a SDSOGF. In particular, it is shown that when the non-spherical harmonic coefficients of the asteroid gravity field are low-order small, the resulting necessary conditions are consistent with the recent literature results [29]. In this sense, since general boundedness conditions (not necessarily related to the quasi-frozen case) are provided by the proposed approach, this Note extends the results of Ref. [29]. Moreover, the discussed mathematical model introduces a method to reduce the relative (secular) drift induced by the mean eccentricity of the chief spacecraft. Based on the (analytically) obtained constraints, the problem of time-optimal formation establishment is then emphasized via an indirect approach, in which the initial (unknown) costate vector is calculated with a scaling technique to alleviate its sensitivity to the initial guess problem.

General Conditions for Bounded Relative Motion

Consider a spacecraft orbiting around an asteroid, which is approximated by an ellipsoid of uniform density. Assume that the asteroid rotates about its maximum axis of inertia at a constant rate nT ≪ π, where n is the mean motion of the spacecraft orbit. According to Refs. [28, 30], the averaged gravitational (perturbing) potential R in a SDSOGF can be approximated as

\[R \simeq \frac{\mu R_0^3}{2 a^3 (1 - e^2)^2} \left[C_{20} \left(\frac{3}{2} \sin^2 \tilde{\iota} - 1 \right) + 3 C_{22} \sin^2 \tilde{\iota} \cos (2 \Omega_R) \right] \] (1)

∗Research Assistant, wei_wang@mail.tsinghua.edu.cn.
†Professor, g.mengali@ing.unipi.it. Senior Member AIAA.
‡Professor, a.quarta@ing.unipi.it. Associate Fellow AIAA
§Professor, baoyin@tsinghua.edu.cn. Senior Member AIAA (corresponding author).
TIME-OPTIMAL FORMATION ESTABLISHMENT AROUND A SLOWLY ROTATING ASTEROID

where μ is the asteroid gravitational parameter, R_0 is the normalizing distance, defined as the radius of the sphere of equal volume, while C_{20} and C_{22} are the harmonic (Stokes) coefficients. In Eq. (1), the overbar ($) refers to the mean value, and $\bar{a}, \bar{e},$ and \bar{i} are, respectively, the semimajor axis, eccentricity, and inclination of the spacecraft mean orbit, while $\bar{\Omega}_R \triangleq \Omega - n_T t$, where Ω is the ascending node longitude of the spacecraft mean orbit.

Substituting Eq. (1) into the Lagrange planetary equations [31], the time-variation of the spacecraft mean orbital elements are

$$\frac{d\bar{a}}{dt} = 0$$ (2)

$$\frac{d\bar{e}}{dt} = 0$$ (3)

$$\frac{d\bar{i}}{dt} = \frac{3\bar{n} C_{22}}{(\bar{p}/R_0)^2} \sin \bar{i} \sin 2\bar{\Omega}_R$$ (4)

$$\frac{d\bar{\Omega}_R}{dt} = \frac{3\bar{n} \cos \bar{i}}{2 (\bar{p}/R_0)^2} (C_{20} + 2 C_{22} \cos 2\bar{\Omega}_R) - n_T$$ (5)

$$\frac{d\bar{\omega}}{dt} = -\frac{3\bar{n}}{8 (\bar{p}/R_0)^2} (3 C_{20} + 5 C_{22} \cos 2\bar{i} - 2 C_{22} \cos 2\bar{\Omega}_R + 10 C_{22} \cos 2\bar{\Omega}_R)$$ (6)

$$\frac{d\bar{M}}{dt} = \bar{n} - \frac{3\bar{n} \sqrt{1 - \bar{e}^2}}{8 (\bar{p}/R_0)^2} (C_{20} + 3 C_{22} \cos 2\bar{i} - 6 C_{22} \cos 2\bar{\Omega}_R + 6 C_{22} \cos 2\bar{\Omega}_R)$$ (7)

where $\bar{p} = \bar{a} (1 - \bar{e}^2)$ is the semi-latus rectum, $\bar{n} = \sqrt{\mu/\bar{a}^3}$ is the mean motion, $\bar{\omega}$ is the argument of pericenter, and \bar{M} is the mean anomaly. In particular, Eqs. (2)–(7) state that \bar{a} and \bar{e} are constants of motion, whereas the remaining elements $\bar{i}, \bar{\Omega}_R, \bar{\omega}$ and \bar{M}, which are a function of $\{\bar{a}, \bar{e}, \bar{i}, \bar{\Omega}_R\}$, have long-period and/or secular variations.

Consider now the relative motion of two spacecraft, referred to as chief and deputy, which fly in a SDSOGF around a target asteroid. For convenience, denote $F_x \triangleq \frac{d}{dt}\frac{dx}{dt}$, with $x = \{i, \bar{\Omega}_R, \bar{\omega}, M\}$, so that the generic F_x is a function of \bar{x} through Eqs. (4)–(7). Taking the first-order variations of Eqs. (4)–(7) yields

$$\dot{\delta i} = \frac{\partial F_x}{\partial \bar{a}} \delta \bar{a} + \frac{\partial F_x}{\partial \bar{e}} \delta \bar{e} + \frac{\partial F_x}{\partial \bar{i}} \delta \bar{i} + \frac{\partial F_x}{\partial \bar{\Omega}_R} \delta \bar{\Omega}_R$$ (8)

$$\delta \dot{\bar{\Omega}}_R = \frac{\partial F_x}{\partial \bar{a}} \delta \bar{a} + \frac{\partial F_x}{\partial \bar{e}} \delta \bar{e} + \frac{\partial F_x}{\partial \bar{i}} \delta \bar{i} + \frac{\partial F_x}{\partial \bar{\Omega}_R} \delta \bar{\Omega}_R$$ (9)

$$\delta \dot{\bar{\omega}} = \frac{\partial F_x}{\partial \bar{a}} \delta \bar{a} + \frac{\partial F_x}{\partial \bar{e}} \delta \bar{e} + \frac{\partial F_x}{\partial \bar{i}} \delta \bar{i} + \frac{\partial F_x}{\partial \bar{\Omega}_R} \delta \bar{\Omega}_R$$ (10)

$$\delta \dot{\bar{M}} = \frac{\partial F_x}{\partial \bar{a}} \delta \bar{a} + \frac{\partial F_x}{\partial \bar{e}} \delta \bar{e} + \frac{\partial F_x}{\partial \bar{i}} \delta \bar{i} + \frac{\partial F_x}{\partial \bar{\Omega}_R} \delta \bar{\Omega}_R$$ (11)

where the partial derivatives are reported in the Appendix for completeness. To prevent the chief and deputy from drifting apart, it is straightforward to impose the following constraints

$$\dot{\delta i} = 0 \quad \cap \quad \delta \dot{\bar{\Omega}}_R = 0 \quad \cap \quad \delta \dot{\bar{\omega}} = 0 \quad \cap \quad \delta \dot{\bar{M}} = 0$$ (12)

In the general case when the determinant of the coefficients matrix of the linear system represented by Eqs. (8)–(11) is different from zero, Eq. (12) only allows the trivial solution $\delta \bar{a} = \delta \bar{e} = \delta \bar{i} = \delta \bar{\Omega}_R = 0$. Thus, once the chief orbit is prescribed, the only degrees of freedom in the formation structure are $\delta \bar{\omega}$ and $\delta \bar{M}$. As a result, only a few planar formations are feasible, which may be incompatible with practical mission requirements.

Alternatively, motivated by the approach for identifying the J_2-invariant relative motion [21], the following constraints may be enforced

$$\dot{\delta i} = 0 \quad \cap \quad \delta \dot{\bar{\Omega}}_R = 0 \quad \cap \quad \delta \dot{\bar{\omega}} + \kappa \delta \dot{\bar{M}} = 0$$ (13)

where κ is a sort of correcting (dimensionless) parameter, given by [32]

$$\kappa \triangleq \frac{1 - \bar{e}}{(1 - \bar{e} - 2\bar{e}^2) \sqrt{1 - \bar{e}^2}}$$ (14)

which is introduced to (further) reduce the along-track relative drift caused by the eccentricity of the chief orbit. Substituting Eqs. (8)–(11) into Eq. (13), the general boundedness conditions for spacecraft relative motion in a SDSOGF are obtained as

$$\delta \bar{a} = \frac{\det F_x}{\det F} \delta \bar{e}, \quad \delta \bar{i} = \frac{\det F_x}{\det F} \delta \bar{e}, \quad \delta \bar{\Omega}_R = -\frac{\det F_x}{\det F} \delta \bar{e}$$ (15)
where the matrices \(\{ F, F_a, F_i, F_R \} \) are defined as

\[
F = \begin{bmatrix}
\frac{\partial F_i}{\partial a} & \frac{\partial F_i}{\partial i} & \frac{\partial F_i}{\partial \Omega_R} \\
\frac{\partial F_O}{\partial a} & \frac{\partial F_O}{\partial i} & \frac{\partial F_O}{\partial \Omega_R} \\
\frac{\partial F_o}{\partial a} + \kappa \frac{\partial F_o}{\partial i} & \frac{\partial F_o}{\partial i} + \kappa \frac{\partial F_o}{\partial \Omega_R} & \frac{\partial F_o}{\partial \Omega_R} + \kappa \frac{\partial F_o}{\partial \Omega_R} \\
\end{bmatrix}
\]

(16)

\[
F_a = \begin{bmatrix}
\frac{\partial F_i}{\partial e} & \frac{\partial F_i}{\partial i} & \frac{\partial F_i}{\partial \Omega_R} \\
\frac{\partial F_O}{\partial e} & \frac{\partial F_O}{\partial i} & \frac{\partial F_O}{\partial \Omega_R} \\
\frac{\partial F_o}{\partial e} + \kappa \frac{\partial F_o}{\partial i} & \frac{\partial F_o}{\partial i} + \kappa \frac{\partial F_o}{\partial \Omega_R} & \frac{\partial F_o}{\partial \Omega_R} + \kappa \frac{\partial F_o}{\partial \Omega_R} \\
\end{bmatrix}
\]

(17)

\[
F_i = \begin{bmatrix}
\frac{\partial F_i}{\partial a} & \frac{\partial F_i}{\partial i} & \frac{\partial F_i}{\partial \Omega_R} \\
\frac{\partial F_O}{\partial a} & \frac{\partial F_O}{\partial i} & \frac{\partial F_O}{\partial \Omega_R} \\
\frac{\partial F_o}{\partial a} + \kappa \frac{\partial F_o}{\partial i} & \frac{\partial F_o}{\partial i} + \kappa \frac{\partial F_o}{\partial \Omega_R} & \frac{\partial F_o}{\partial \Omega_R} + \kappa \frac{\partial F_o}{\partial \Omega_R} \\
\end{bmatrix}
\]

(18)

\[
F_R = \begin{bmatrix}
\frac{\partial F_i}{\partial a} & \frac{\partial F_i}{\partial i} & \frac{\partial F_i}{\partial \Omega_R} \\
\frac{\partial F_O}{\partial a} & \frac{\partial F_O}{\partial i} & \frac{\partial F_O}{\partial \Omega_R} \\
\frac{\partial F_o}{\partial a} + \kappa \frac{\partial F_o}{\partial i} & \frac{\partial F_o}{\partial i} + \kappa \frac{\partial F_o}{\partial \Omega_R} & \frac{\partial F_o}{\partial \Omega_R} + \kappa \frac{\partial F_o}{\partial \Omega_R} \\
\end{bmatrix}
\]

(19)

Using the constraints given by Eq. (15), the secular growth of spacecraft relative distance can be suitably mitigated. Moreover, since the motion near a certain special orbits, e.g., the frozen [33] and quasi-frozen orbits [28, 30], is linearly stable, these typical trajectories are usually suggested for spacecraft formation flying [29, 33, 34]. Therefore, if some flexibility is allowed in specifying the chief nominal orbit, such a degree of freedom may be used to initialize a passive relative motion that is adequate for formation flying around the target asteroid. In what follows, the boundedness conditions for relative motion around a quasi-frozen orbit will be recovered.

According to Ref. [28], a perfect frozen orbit does not exist in a SDSOGF, because the argument of periapsis \(\tilde{\omega} \) always exhibits a nonzero variation; see Eq. (6). However, some quasi-frozen orbits, whose value of \(\tilde{i} \) and \(\tilde{\Omega}_R \) are both stationary, can still be obtained. For example, taking into account Eqs. (4)–(5), when \(\nu_T < 3 \bar{a} R_0^2 (2 C_{22} - C_{20}) / (2 \bar{e}^2) \), the conditions \(d\tilde{i} / dt = d\tilde{\Omega}_R / dt = 0 \) give [29, 30]

\[
\tilde{\Omega}_R = \frac{\pi}{2}, \quad \tilde{i} = \arccos \left[\frac{2 \nu_T \bar{p}^2}{3 \bar{a} R_0^2 (C_{20} - 2 C_{22})} \right]
\]

(20)

The quasi-frozen orbits satisfying Eq. (20) are linearly stable in the \((\tilde{i}, \tilde{\Omega}_R) \) phase space, despite the argument of periapsis \(\tilde{\omega} \) has a constant secular rate; see Eq. (6). Note that, apart from the quasi-frozen orbits represented by Eq. (20), there also exist other families of stable orbits such as the prograde equatorial orbits [28]. Moreover, it is possible to get orbits with constant (on average) eccentricity and argument of pericentre by removing the constraint of frozen attitude of the orbital plane with respect to the asteroid [35, 36].

Consider now the formation flying of two spacecraft, where the chief moves along a nominal quasi-frozen orbit, while the deputy flies nearby. When evaluated with the parameters given by Eq. (20), Eqs. (1)–(3) imply that \(\partial F_i / \partial \bar{a} = \partial F_i / \partial e = \partial F_i / \partial \Omega_R = 0 \). In that case, Eq. (19) provides \(\text{det} F_R = 0 \), and thus Eq. (15) gives \(d\Omega_R = 0 \). Accordingly,
the degenerated form of boundedness condition given by Eq. (15) can be rewritten as

\[
\delta \bar{a} = \frac{\partial F_{\Omega n}}{\partial \delta} \left(\frac{\partial F_{\dot{\omega}}}{\partial \delta} + \kappa \frac{\partial F_{\dot{\delta}}}{\partial \delta} \right) - \frac{\partial F_{\Omega n}}{\partial \bar{a}} \left(\frac{\partial F_{\dot{\omega}}}{\partial \bar{a}} + \kappa \frac{\partial F_{\dot{\delta}}}{\partial \bar{a}} \right) \delta \bar{e} \tag{21}
\]

\[
\delta \bar{i} = \frac{\partial F_{\Omega n}}{\partial \delta} \left(\frac{\partial F_{\dot{\omega}}}{\partial \delta} + \kappa \frac{\partial F_{\dot{\delta}}}{\partial \delta} \right) - \frac{\partial F_{\Omega n}}{\partial \bar{a}} \left(\frac{\partial F_{\dot{\omega}}}{\partial \bar{a}} + \kappa \frac{\partial F_{\dot{\delta}}}{\partial \bar{a}} \right) \delta \bar{e} \tag{22}
\]

In particular, if the eccentricity of the chief orbit is sufficiently small, it is reasonable to neglect the terms including \(\epsilon^2 \) in Eqs. (11)–(16), when substituting them into Eqs. (21)–(22). The result is

\[
\delta \bar{a} = \frac{7 C_{20} (1 + 5 \cos^2 \bar{i}) - 3 C_{22} (7 + 33 \cos^2 \bar{i})}{2 (\bar{a}/R_0)^2 + 7 C_{20} (1 + 4 \cos^2 \bar{i}) - 14 C_{22} (3 + 4 \cos^2 \bar{i})} \bar{\bar{a}} \bar{\bar{e}} \tag{23}
\]

\[
\delta \bar{i} = \frac{16 (\bar{a}/R_0)^2 + 7 C_{20} (1 - 3 \cos^2 \bar{i}) - 42 C_{22} (1 - \cos^2 \bar{i})}{4 (\bar{a}/R_0)^2 + 14 C_{20} (1 + 4 \cos^2 \bar{i}) - 28 C_{22} (3 + 4 \cos^2 \bar{i})} \bar{\bar{e}} \tag{24}
\]

Note that, when the harmonic coefficients \(\{C_{20}, C_{22}\} \) are first-order small, Eqs. (23)–(24) coincide with the results discussed in Ref. [29], which are obtained with a perturbed Hamiltonian via Delaunay elements for quasi-frozen orbits. Moreover, if the nominal orbit is nearly circular, the conditions given by Eqs. (23)–(24) are consistent with the results of Ref. [29]. Finally, for the case \(C_{22} = 0 \) (recall that \(C_{20} = -J_2 \)), Eqs. (23)–(24) reduce to the well known \(J_2 \)-invariant conditions [21, 32].

Having analyzed the bounded relative motion conditions necessary for spacecraft formation flying in a SDSOGF, a natural question that now arises is how to establish an optimal (loose) formation with a given performance index. The next section will analyze such a problem in terms of minimum time necessary for constituting a given formation structure.

Time-Optimal Formation Establishment

Consider a spacecraft of mass \(m \), equipped with a low-continuous-thrust propulsion system of constant specific impulse \(I_{sp} \) and a thrust magnitude variable in the range \(T \in [0, T_{max}] \). To avoid any singularity, the spacecraft trajectory is studied in terms of modified equinoctial orbital elements (MEOEs) \(\bar{a} = \{p, f, g, h, k, L\} \) [37, 38], where

\[
\begin{align*}
p &= a (1 - \epsilon^2) \tag{25} \\
f &= e \cos (\Omega_R + \omega) \tag{26} \\
g &= e \sin (\Omega_R + \omega) \tag{27} \\
h &= \cos \Omega_R \tan \frac{i}{2} \tag{28} \\
k &= \sin \Omega_R \tan \frac{i}{2} \tag{29} \\
L &= \Omega_R + \omega + \nu \tag{30}
\end{align*}
\]

in which \(\nu \) is the true anomaly. Since the boundedness conditions are defined in the mean-element space, it is necessary to formulate the optimal problem in terms of mean MEOEs. To this end, let \(\bar{a} = \xi (\bar{a}) \) denote the analytical transformation from osculating to mean MEOEs. Paralleling the procedure discussed in Ref. [39], the spacecraft dynamics in a SDSOGF can be described as

\[
\dot{\bar{a}} = \dot{\xi} (\bar{a}) + \frac{T_{max}}{m} \frac{\partial \xi}{\partial \bar{a}} \bar{B} (\bar{a}) \dot{\bar{a}} \tag{31}
\]

\[
\dot{\bar{m}} = \frac{T_{max}}{I_{sp} g_0} \tag{32}
\]

with

\[
A (\bar{a}) = [0, A_2, A_3, A_4, A_5, A_6]^T \tag{33}
\]

while the control influence matrix \(\bar{B} \) is defined as

\[
\bar{B} (\bar{a}) = \begin{bmatrix}
0 & B_{12} & 0 \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33} \\
0 & 0 & B_{43} \\
0 & 0 & B_{53} \\
0 & 0 & B_{63}
\end{bmatrix} \tag{34}
\]
where \(g_0 \) is the standard gravity, \(\tau \triangleq T/T_{\text{max}} \in [0,1] \) is a dimensionless parameter that models the engine throttle level, and \(\bar{\alpha} \) is the thrust unit vector. The detailed expressions of entries of \(A(\bar{\alpha}) \) and \(B(\bar{\alpha}) \), which can be analytically evaluated using the Lagrange planetary equations [31], are rather involved and are not reported here for the sake of brevity.

According to Ref. [39], the influence of the propulsive acceleration on mean elements can be approximated as that on the corresponding osculating elements for the low-thrust case, because the induced error in the relative dynamics is negligible [39]. Therefore, it is reasonable to assume \(\partial L/\partial \bar{\alpha} \approx 0 \) and \(B(\bar{\alpha}) \approx B(\bar{\alpha}) \), where \(\bar{\alpha}_6 \in \mathbb{R}^{3 \times 6} \) is an identity matrix. Accordingly, Eq. (31) can be further simplified as

\[
\dot{\bar{\alpha}} = A(\bar{\alpha}) + \frac{T_{\text{max}} \tau}{m} \; B(\bar{\alpha}) \; \bar{\alpha}
\]

(35)

where \(B(\bar{\alpha}) \) is obtained from Eq. (34) by simply replacing the generic osculating MEOEs with the corresponding mean MEOEs.

Assume the chief and deputy are both initially deployed along a nominal orbit at time \(t_0 = 0 \), with \(\bar{\alpha}_C(t_0) = \bar{\alpha}_{D}(t_0) = \bar{\alpha}_D \). The chief is subjected to the natural force only, whereas the deputy with active control is driven toward its design orbit so as to constitute the formation structure. According to Eq. (15) (or to Eqs. (21)–(22)) for the general (or the frozen-type) case, a given value of \(\delta t_f \) determines the required constraints on \(\delta \alpha_f \), \(\delta t_f \), and \(\delta \Omega_f \). In terms of mean MEOEs, the final states of the deputy satisfying the bounded relative motion conditions are

\[
\bar{\rho}(t_f) = \bar{\rho}_f, \quad \vec{f}^2(t_f) + \bar{g}^2(t_f) = \bar{f}^2 + \bar{g}^2, \quad \bar{h}(t_f) = \bar{h}_f, \quad \bar{k}(t_f) = \bar{k}_f
\]

(36)

Note that the deputy’s final true longitude \(\bar{L}_f \) and argument of pericenter \(\bar{\omega}_f \) are usually related to the specific mission requirement. In the following analysis, a loose formation is assumed so that a strict formation geometry is not required, and \(\bar{L}_f \) and \(\bar{\omega}_f \) are both left free.

The problem of spacecraft formation establishment is formulated within an optimal framework, by looking for the optimal control law \(\tau = \tau^*(t) \) and \(\bar{\alpha} = \bar{\alpha}^*(t) \) that minimizes the time interval \(\Delta t = t_f - t_0 \equiv t_f \) with the previously discussed boundedness conditions. The performance index to be minimized is therefore

\[
J \triangleq \lambda_0 t_f
\]

(37)

where the scaling factor \(\lambda_0 \in \mathbb{R}^+ \) is introduced to restrict the costate vector to lie on a unit hypersphere, useful for relieving its inherent sensitivity to the initial guess [40]. From Eqs. (32) and (35), the Hamiltonian function \(H \) can be written as

\[
H = A(\bar{\alpha}) \cdot \lambda_{\bar{\alpha}} + \frac{T_{\text{max}} \tau}{m} \; B(\bar{\alpha}) \; \lambda_{\bar{\alpha}} - \frac{\lambda_m T_{\text{max}} \tau}{I_{\text{sp}} g_0} + \lambda_0
\]

(38)

where \(\lambda_{\bar{\alpha}} \) is the mass costate, and \(\lambda_{\bar{\alpha}} \) is the vector adjoint to \(\bar{\alpha} \), defined as

\[
\lambda_{\bar{\alpha}} \triangleq [\lambda_{\bar{\alpha}}^\text{p}, \lambda_{\bar{\alpha}}^f, \lambda_{\bar{\alpha}}^L, \lambda_{\bar{\alpha}}^\text{L}, \lambda_{\bar{\alpha}}^\text{L}, \lambda_{\bar{\alpha}}^\text{L}]^T
\]

(39)

whose time derivatives are given by the Euler-Lagrange equations

\[
\dot{\lambda}_{\bar{\alpha}} = -\frac{\partial H}{\partial \dot{\bar{\alpha}}} = -\frac{\partial [A(\bar{\alpha}) \cdot \lambda_{\bar{\alpha}}]}{\partial \dot{\bar{\alpha}}} - \frac{T_{\text{max}} \tau}{m} \frac{\partial (\eta_{\bar{\alpha}} \cdot \bar{\alpha})}{\partial \dot{\bar{\alpha}}}
\]

(40)

\[
\dot{\lambda}_m = -\frac{\partial H}{\partial \lambda_m} = \frac{T_{\text{max}} \tau}{m^2} \; \eta_{\bar{\alpha}} \cdot \bar{\alpha}
\]

(41)

where

\[
\eta_{\bar{\alpha}} \triangleq B^T(\bar{\alpha}) \; \lambda_{\bar{\alpha}} = \begin{bmatrix}
\lambda_f B_{21} + \lambda_g B_{21} \\
\lambda_f B_{21} + \lambda_g B_{22} + \lambda_f B_{32} \\
\lambda_f B_{23} + \lambda_g B_{33} + \lambda_f B_{43} + \lambda_f B_{53} + \lambda_f B_{63}
\end{bmatrix}
\]

(42)

According to the Pontryagin’s maximum principle, the optimal control law \(\{\tau^*, \bar{\alpha}^*\} \), to be selected within the feasible control domain, is designed such that the Hamiltonian \(H \) given by Eq. (38) is an absolute minimum at any time, viz.

\[
\bar{\alpha}^* = -\frac{\eta_{\bar{\alpha}}}{\|\eta_{\bar{\alpha}}\|}
\]

(43)

\[
\tau^* = \frac{1 - \text{sign}(S)}{2}
\]

(44)

where \(\text{sign}(S) \) is the signum function, and \(S \) is a switching function, defined as

\[
S = -\frac{I_{\text{sp}} g_0 \|\eta_{\bar{\alpha}}\|}{m} - \lambda_m
\]

(45)

Note that the singular case in which \(S = 0 \) (that is, when \(\lambda_{\bar{\alpha}} = 0 \)), may take place at some isolated points only, and therefore, is not considered in this work. Taking into account Eqs. (41) and (43), the mass costate is \(\lambda_m > 0 \), which results in \(S < 0 \) and \(\tau^* = 1 \) during the transfer; see Eq. (44).

The time-optimal trajectory of the deputy is the solution to a two-point boundary-value problem (TPBVP) constituted by 14 first-order differential equations, that is, the equations of motion (32) and (35), and the Euler-Lagrange equations
The (seven) initial boundary conditions are $\dot{\bar{e}}_D(t_0) = \ddot{\bar{e}}_0$ and $m_D(t_0) = m_0$, while the (four) final boundary conditions are given by Eqs. (36). The TPBV is completed by the transversality conditions [41], that is

$$
\lambda_m(t_f) = 0, \quad \lambda_f(t_f) \bar{g}_f - \lambda_0(t_f) \bar{f}_f = 0, \quad \lambda_{\bar{f}}(t_f) = 0, \quad \mathcal{H}(t_f) = 0
$$

(46)

where t_f is an output of the optimization process. The TPBV is solved with the procedure proposed by Ref. [40], in which a scaling technique of the initial costate vector (that is, a suitable choice of λ_0) is used to improve the robustness and efficiency of the numerical procedure.

Numerical Simulations

Consider the (slowly rotating) asteroid 4179 Toutatis, whose main physical parameters [29] are resumed in Table 1. Even though that asteroid actually rotates about a non-principal axis of inertia, it is chosen here as a target object for the numerical simulations to make a meaningful comparison with the literature results [29, 30]. The chief spacecraft is assumed to cover a quasi-frozen orbit, of which the feasible region is shown in Fig. 1 as a function of the numerical simulations to make a meaningful comparison with the literature results [29, 30]. The chief spacecraft is chosen equal to $\bar{e}_0 = 0.1$, $\bar{i}_0 = 147.48$ deg, $\bar{\Omega}_R = 90$ deg, and $\bar{\omega}_0 = \bar{\nu}_0 = 0$ deg. As stated before, the condition $\delta \bar{\bar{e}}_f = 0$ must be satisfied to guarantee bounded relative motion. The desired relative eccentricity is chosen equal to $\delta \bar{\bar{e}}_f = 0.01$, and so the correcting parameter is $\kappa = 1.0285$, see Eq. (14). The values of $\delta \bar{\bar{e}}_f$ and $\delta \bar{f}_f$ are computed from Eqs. (21)–(22) as $\delta \bar{\bar{e}}_f = -83.1$ m and $\delta \bar{f}_f = -7.2$ deg, whereas $\delta \bar{\bar{e}}_f$ and $\delta \bar{f}_f$ are left free.

For convenience, introduce the body-fixed (rotating) reference frame $\mathcal{T}(O; \hat{x}, \hat{y}, \hat{z})$, with origin O coincident with the asteroid center-of-mass, and axes $\{\hat{x}, \hat{y}, \hat{z}\}$ aligned with the minimum, intermediate, and maximum axis of inertia of the asteroid, respectively. The mean orbital elements of the deputy, obtained with a time-optimal control law, are plotted in Fig. 2, while the corresponding components of the thrust unit vector $\hat{\alpha}$ in frame \mathcal{T} are reported in Fig. 3. In this case, a minimum time $t_f = 2.85$ minutes is required to complete the (loose) formation structure with bounded relative motion.

To compare the results with those obtained using the boundedness conditions discussed in Ref. [29], the time history of the relative distance $\rho = ||\rho||$ between the two spacecraft is illustrated in Fig. 4(a) for a time interval of 30 hours. In addition, Fig. 4(b) shows the minimum time t_f necessary for a loose formation to be constituted as a function of the initial mean eccentricity $\bar{e}_0 \in [0.01, 0.1]$. In particular, Fig. 4 clearly shows that the proposed approach guarantees a formation flying with bounded relative distance, and has a better performance in terms of required relative drift and time when compared to the approach proposed in Ref. [29].

Let $\mathbf{r} \triangleq [r_x, r_y, r_z]^T$ denote the position vector of the deputy spacecraft along three coordinate axes in frame \mathcal{T}, and let $\mathbf{\rho} \triangleq [\rho_x, \rho_y, \rho_z]^T$ be the relative position vector of the deputy with respect to the chief spacecraft. Figure 5(a) illustrates the time-optimal trajectory necessary to establish bounded relative motion for a maximum thrust value of $T_{\text{max}} = 70$ mN, while Fig. 5(b) shows the relative trajectories in the (ρ_y, ρ_z) plane when $T_{\text{max}} = [10, 40, 70]$ mN. The minimum flight time t_f is shown in Fig. 6(a) as a function of $\bar{e}_0 \in [0.01, 0.1]$ and $T_{\text{max}} \in [10, 100]$ mN, while the corresponding mass variation $\Delta m = \Delta m(\bar{e}_0, T_{\text{max}})$ is reported in Fig. 6(b). In particular, Fig. 6 suggests that an

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>1.79×10^4 m3/s2</td>
</tr>
<tr>
<td>ν_T</td>
<td>1.34×10^{-5} rad/s</td>
</tr>
<tr>
<td>C_{20}</td>
<td>-0.313</td>
</tr>
<tr>
<td>C_{22}</td>
<td>0.12</td>
</tr>
<tr>
<td>R_0</td>
<td>1.225×10^3 m</td>
</tr>
</tbody>
</table>

Figure 1: Feasible region for a quasi-frozen orbit around asteroid 4179 Toutatis.
initial nominal quasi-frozen orbit with a small eccentricity is preferable, as it requires a shorter flight time and a smaller propellant mass.

Conclusions

Using the mean orbital elements, we have analytically derived the necessary conditions that guarantee bounded spacecraft relative motion around a slowly rotating asteroid, which is schematized as an ellipsoid with uniform density. These conditions are useful for alleviating the mutual drift of the formation flying spacecraft. Based on these constraints, the problem of formation establishment has been addressed within a time-optimal framework by using an indirect approach. The proposed method provides an important reference for the design of a loose formation in the vicinity of a slowly rotating asteroid of regular shape, and represents the starting point for the project of a cluster flight comprised of multiple spacecraft.

It is worth mentioning that the proposed methodology relies on an approximate second-degree and second-order gravitational field, which inevitably gives rise to inherent errors in a real mission scenario. In addition, when dealing with a more accurate irregular gravity field, an analytical approach might be no longer feasible. In that case, numerical
TIME-OPTIMAL FORMATION ESTABLISHMENT AROUND A SLOWLY ROTATING ASTEROID

Figure 4 Comparison with the literature results [29].

Figure 5 Time-optimal trajectories for formation establishment.

(possibly time-consuming) techniques, such as that discussed in the recent literature by Baresi et al., represent an essential tool to analyze the actual spacecraft trajectory.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant nos. 11525208 and 11902175), Postdoctoral Science Foundation of China (Grant nos. BX20190166 and 2019M650700). The authors would like to appreciate the mean-to-osculating orbital elements transformation provided by Hanlun Lei, School of Astronomy and Space Science, Nanjing University.
Appendix: Partial Derivatives in Eqs. (8)–(11)

The partial derivatives of \(\{ F_i, F_{\bar{\Omega} R}, F_{\bar{\omega}R}, F_{\bar{\omega}\bar{\Omega}} \} \) with respect to \(\{ \bar{a}, \bar{e}, \bar{i}, \bar{\Omega}_R \} \) in Eqs. (8)–(11) are

\[
\frac{\partial F_1}{\partial \bar{a}} = -\frac{21}{2} C_{22} R_{0}^2 \mu^\frac{1}{2} \bar{a} \bar{e} (1 - \bar{e}^2)^{-2} \sin \bar{i} \sin 2\bar{\Omega}_R
\]

(1)

\[
\frac{\partial F_1}{\partial \bar{e}} = 12 C_{22} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} \bar{e} \sin \bar{i} \sin 2\bar{\Omega}_R
\]

(2)

\[
\frac{\partial F_1}{\partial \bar{i}} = 3 C_{22} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} \cos \bar{i} \sin 2\bar{\Omega}_R
\]

(3)

\[
\frac{\partial F_1}{\partial \bar{\Omega}_R} = 6 C_{22} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} \sin \bar{i} \cos 2\bar{\Omega}_R
\]

(4)

\[
\frac{\partial F_{\bar{\Omega} R}}{\partial \bar{a}} = \frac{21}{4} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-2} \cos \bar{i} \left(C_{20} + 2 C_{22} \cos 2\bar{\Omega}_R \right)
\]

(5)

\[
\frac{\partial F_{\bar{\Omega} R}}{\partial \bar{e}} = 6 R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-3} \cos \bar{i} \left(C_{20} + 2 C_{22} \cos 2\bar{\Omega}_R \right)
\]

(6)

\[
\frac{\partial F_{\bar{\Omega} R}}{\partial \bar{i}} = -\frac{3}{2} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-2} \sin \bar{i} \left(C_{20} + 2 C_{22} \cos 2\bar{\Omega}_R \right)
\]

(7)

\[
\frac{\partial F_{\bar{\Omega} R}}{\partial \bar{\Omega}_R} = -6 C_{22} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-2} \cos \bar{i} \sin 2\bar{\Omega}_R
\]

(8)

\[
\frac{\partial F_{\bar{\omega}R}}{\partial \bar{a}} = \frac{21}{16} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-2} \left(3 C_{20} + 5 C_{20} \cos 2\bar{i} - 2 C_{22} \cos 2\bar{\Omega}_R + 10 C_{22} \cos 2\bar{i} \cos 2\bar{\Omega}_R \right)
\]

(9)

\[
\frac{\partial F_{\bar{\omega}R}}{\partial \bar{e}} = -\frac{3}{2} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-3} \bar{i} \left(3 C_{20} + 5 C_{20} \cos 2\bar{i} - 2 C_{22} \cos 2\bar{\Omega}_R + 10 C_{22} \cos 2\bar{i} \cos 2\bar{\Omega}_R \right)
\]

(10)

\[
\frac{\partial F_{\bar{\omega}R}}{\partial \bar{i}} = \frac{15}{4} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-2} \sin 2\bar{i} \left(C_{20} + 2 C_{22} \cos 2\bar{\Omega}_R \right)
\]

(11)

\[
\frac{\partial F_{\bar{\omega}R}}{\partial \bar{\Omega}_R} = -\frac{3}{2} C_{22} R_{0}^2 \mu^\frac{1}{2} \bar{a}^{-\bar{e}^{-2}} (1 - \bar{e}^2)^{-2}(1 - 5 \cos 2\bar{i}) \sin 2\bar{\Omega}_R
\]

(12)
References

[12]最も正確な文献番号は、この文脈で指定されていません。