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Abstract

The propellantless working principle of a solar sail requires the total flight time to be minimized when looking for
the optimal trajectory to reach a given target state. In this work the solar sail steering law is found by applying a
Q-law algorithm, which aims at driving the spacecraft towards the final (target) orbit by decreasing the distance
between actual and desired states or by increasing the rate of change of the state variables. A formulation of
the Q-law algorithm for a solar sail-based mission is given, which accounts for the constraints along the transfer
trajectory imposed by the sail thrust model. The performance of the proposed procedure, which represents the
novelty of this work, is checked in some potential solar sail mission scenarios, including coplanar interplanetary
transfers and the exploration of outer Solar System regions.
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Nomenclature

a = osculating orbit semimajor axis, [ au]
ã = dimensionless osculating orbit semimajor axis
ac = characteristic acceleration, [ mm/s2]
aPR = radial component of the propulsive acceleration, [ mm/s2]
aPT = transverse component of the propulsive acceleration, [ mm/s2]
C = penalty function dimensionless constant, see Eq. (14)
{c1, c2, c3} = scaling function dimensionless constants, see Eq. (13)
e = osculating orbit eccentricity
h = angular momentum vector magnitude, [ km2/s]
{K, k} = auxiliary constants, see Eqs (25)-(26) and (32)-(33)
O = Sun’s center-of-mass
œ = {ã, e, ω} = orbital element
œxx = maximum time derivative of œ over α and ν, see Eq. (15)
P = penalty function, see Eq. (14)
p = osculating orbit semilatus rectum, [ au]
Q = proximity quotient, see Eq. (12)
r = Sun-spacecraft distance, [ au]
rp = perihelion distance, [ au]
S = scaling function, see Eq. (13)
T (O; r, θ) = heliocentric polar reference frame
t = time, [ days]
u = radial component of the spacecraft velocity, [ km/s]
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v = transverse component of the spacecraft velocity, [ km/s]
Wi = weight associated with variable or function i
α = thrust angle, [ deg]
αi = candidate optimal pitch angle, see Eqs. (35)–(40), [ deg]
ε = dimensionless error, see Eq. (43)
θ = polar angle, [ deg]
µ� = Sun’s gravitational parameter, [ km3/s2]
ν = true anomaly, [ deg]
ω = osculating orbit argument of perihelion, [ deg]

Subscripts

⊕ = Earth
end = end of the integration
min = minimum value
0 = initial value
f = final (terminal) condition
œ = associated with orbital element œ
opt = optimal value
R = associated with radial component
T = associated with transverse component

Superscripts

· = time derivative
− = auxiliary variable

1. Introduction

Solar sails are innovative propellantless propulsive systems that exploit the momentum exchange between
the incoming photons from the Sun and a thin membrane [1, 2, 3], or several reflective and spinning blades [4],
to generate thrust. Although the existence of solar radiation pressure has been known for a long time, the
recent successes of solar sail-based missions, such as IKAROS [5, 6], LightSail-1 [7] and LightSail-2 [8],
have given a renewed impulse to the technological development of the solar sail concept. For example,
refractive and diffractive sails have been recently proposed, which are capable of generating an in-plane
transverse thrust even in a Sun-facing configuration [9, 10]. The interest of the scientific community on solar
sailing has led to the design of several solar sail-based missions, including NASA’s NEA Scout [11], Solar
Cruiser [12], and JAXA’s OKEANOS [13, 14], which require a deep space transfer phase to reach the target
position or the working orbit.

The propellantless working principle of solar sails requires that the optimal solar sail-propelled trajectory
is the solution of a minimum-time problem with prescribed values of initial and final spacecraft states.
The spacecraft trajectory is obtained by suitably adjusting the sail attitude along the transfer, and many
strategies exist in the literature for calculating the time-optimal steering law. These methods may be grouped
in either global or local approaches, where global optimization algorithms aim at finding the global minimum
of the transfer time and the corresponding steering law. Global strategies include indirect methods [15, 16,
17, 18, 19, 20], and direct methods, such as pseudospectral methods [21], nonlinear programming [22, 23], a
combination of genetic algorithms and quadratic programming [24], and shape-based methods [25]. In this
context, a comparison between the performance of direct and indirect approaches for solar sail trajectory
optimization has been recently analyzed in Ref. [26]. Other more complex global optimization techniques
have been proposed in the literature, including the evolutionary neurocontrol by Dachwald [27], or the use
of deep neural networks, first used for trajectory optimization of low-thrust spacecraft with conventional
engines [28], and applied to solar sail-based mission scenarios [29, 30]. Locally-optimal approaches, instead,
aim at minimizing (or maximizing), at each time instant, a given performance index, usually the time
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derivative of an orbital parameter or a linear combination of the time derivatives of two or more osculating
orbital elements [31, 32, 33].

An example of locally-optimal strategy for determining the time-optimal control law of a low-thrust-
propelled spacecraft is the Q-law, first proposed by Petropoulos [34] about 20 years ago. This algorithm,
which is a refined local-optimization technique, is based on the definition of a nonnegative dimensionless
proximity quotient Q, the time derivative of which has to be minimized at each time. The distinguishing
characteristics and the main advantages of a Q-law algorithm with respect to other optimization techniques
are in its simplicity and small computational cost it requires. Indeed, a Q-law algorithm essentially relies
on analytical approximated mathematical expressions and, unlike most (especially global) optimization
methods, it does not require any initial guess of the solution.

In particular, the dimensionless proximity quotient Q is an increasing function of the Euclidean distance
between the instantaneous and the target spacecraft state, and a decreasing function of the maximum time
derivatives of the state variables, that is, the osculating orbital parameters. With such a definition of the
proximity quotient Q, a reduction of its value may be obtained either by reducing the difference between
the osculating orbit elements and the target elements, or by increasing the maximum variation rate of
the orbital parameters. The performance of a Q-law algorithm has been investigated in several mission
scenarios based on conventional low-thrust propulsive systems (mainly electric thrusters), and the original
algorithm has been also refined to include the possible presence of coasting arcs along the trajectory [35], or
to account for orbital perturbations (such as the Earth’s oblateness) and eclipse periods in planetocentric
mission scenarios [36, 37, 38]. The solutions provided by the Q-law algorithm have also been used as first
guesses for global optimization algorithms to reduce the total computation time [39, 40, 41, 42].

The aim of this work (and its new contribution) consists in adapting the Q-law algorithm formulation
to the case of a solar sail-based spacecraft. Unlike the propulsive acceleration generated by a conventional
electric thruster, the magnitude of the sail thrust vector scales as the inverse square heliocentric distance, and
its components are functions of the sail attitude. The solar sail trajectory generated by a Q-law algorithm
will be tested in two mission scenarios, that is, a coplanar circle-to-circle interplanetary rendezvous [15], and
a mission toward the outer regions of the Solar System [27, 43, 44, 45]. The latter case is especially well suited
for solar sail-based spacecraft, which may exploit one (or more) solar photonic assist maneuvers, consisting
in a close passage near the Sun to exploit the gravity assist and the increased solar radiation pressure [46, 47].
This maneuver is very useful for low- and medium-performance solar sails, and optimal trajectories with
single or multiple photonic assists are usually difficult to find with conventional optimization algorithms [48].

The rest of the manuscript is structured as follows. Section 2 describes the dynamical model of the
problem, while Section 3 discusses the specific formulation of the Q-law algorithm for a spacecraft propelled
by an ideal solar sail. The proposed procedure is tested in Section 4 with the aid of two mission scenarios,
and the outputs are compared with results taken from the recent literature. Finally, the Conclusion section
summarizes the outcomes of this analysis.

2. Mathematical model

Consider a heliocentric two-dimensional trajectory of a solar sail-based spacecraft, in which the propulsive
acceleration vector always lies on the parking orbit plane. Introduce a polar reference frame T (O; r, θ), with
its origin O coincident with the Sun’s center of mass, as is sketched in Fig. 1. In that scenario, the spacecraft
dynamics are described by the classical equations of motion

ṙ = u (1)

θ̇ =
v

r
(2)

u̇ =
v2

r
− µ�

r2
+ aPR (3)

v̇ = −u v
r

+ aPT (4)
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Figure 1: Sketch of the polar reference frame and of the propulsive acceleration components used to formulate the mathematical
model.

where r is the Sun-spacecraft distance, θ is the polar angle measured counterclockwise from a fixed direction,
µ� is the Sun’s gravitational parameter, u (or v) is the radial (or transverse) component of the spacecraft
inertial velocity, and aPR (or aPT ) is the radial (or transverse) component of the sail propulsive acceleration
vector. The osculating orbital elements may be calculated from the spacecraft state variables {r, θ, u, v}
using the expressions

a =

(
2

r
− u2 + v2

µ�

)−1

(5)

e =

√
1− r2 v2

µ� a
(6)

ν = sign (u) arccos

{
1

e

[
a(1− e2)

r
− 1

]}
(7)

ω = θ − ν + ω0 (8)

where a is the semimajor axis, e is the eccentricity, ν is the true anomaly, and ω is the osculating orbit apse
line rotation angle, while the subscript 0 refers to the initial time t = 0. To account for both closed and open
osculating orbits, the convention according to which ν ∈ [−π, π] rad has been adopted in Eq. (7). Note that
the orbital elements calculated with Eqs. (5)–(8) will be used in the rest of the paper to define the Q-law
algorithm.

The components of the solar sail propulsive acceleration vector vary according to the various thrust
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models available in the literature [49]. The ideal force model, which assumes each photon impinging on the
(flat) sail film to be specularly reflected, will be used in this work. In fact, such a model provides sufficiently
accurate results for the purposes of a preliminary mission analysis at a low computational effort, and allows
the outputs of the numerical simulations to be compared with those found in the literature. Other, more
complex, sail thrust models exist, which take into account the optical properties of the reflective film [19],
the degradation of the sail surface [50, 51], the sail billowing [2], or the presence of wrinkles [52, 53].

The components of the ideal sail propulsive acceleration vector {aPR, aPT } are given by [1, 2]

aPR = ac

(r⊕
r

)2

cos3 α (9)

aPT = ac

(r⊕
r

)2

cos2 α sinα (10)

where r⊕ , 1 au is a reference distance, and ac is the spacecraft characteristic acceleration, that is, the
maximum propulsive acceleration magnitude at r = r⊕. In Eqs. (9)-(10), the term α ∈ [−π/2, π/2] rad is
the thrust angle, defined as the angle (measured counterclockwise along the parking orbit plane) between
the Sun-spacecraft line and the thrust vector direction, see Fig. 1. The thrust angle may be calculated as

α = arctan

(
aPT
aPR

)
(11)

In an ideal force model the thrust angle α coincides with the sail pitch angle, that is, the angle between the
external normal to the sail nominal plane and the radial direction [2]. Note that the thrust vector cannot
be freely oriented, as is shown in Fig. 2, where the straight lines report the values of the thrust angle.
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Figure 2: Dimensionless components of the ideal (flat) sail propulsive acceleration vector.

As is usual in solar sail trajectory analysis, the time-variation of the thrust angle α = α(t) is designed
to allow a spacecraft to move from a set of initial conditions {r(t0), θ(t0), u(t0), v(t0)} (see Fig. 1) to a
final (target) state, by minimizing the total flight time. The target state is fully described by a given set of
state variables {r(tf ), θ(tf ), u(tf ), v(tf )} where tf is the final time instant, although, some of the terminal
conditions may not be specified a priori.
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3. Q-law algorithm application to solar sail transfer trajectories

We now illustrate a procedure to approximate the minimum-time solar sail trajectory with a Q-law
algorithm, in which a dimensionless proximity quotient Q is used to quantify the differences between the
osculating and the target orbit (dimensionless) parameters œ ∈ {ã, e, ω} with ã , a/a0, where a0 is the
(parking) orbit semimajor axis at t = 0. To simplify the analysis, and in analogy with Refs. [34, 35, 42],
assume that Q is independent of ν, which amounts to state that the target true anomaly is left unconstrained.

In this context, the proximity quotient Q is defined as

Q , (1 +WP P )
∑
œ

Wœ Sœ

(
œ−œf

œ̇xx

)2

(12)

where the subscript f refers to the target (final) value, Wi ≥ 0 is a dimensionless weight parameter related
to the generic variable i, and Sœ is a dimensionless scaling function, used to prevent a non-convergence to
the target state [35, 42]. In particular, the generic Sœ is defined as

Sœ =


[
1 +

(
a− af
c1 af

)c2] 1
c3

for œ = ã

1 for œ ∈ {e, ω}
(13)

where {c1, c2, c3} are dimensionless tuning parameters, of which the suggested values [35] are c1 = 3, c2 = 4,
and c3 = 2. The term P in Eq. (12) is a penalty function, used to enforce a constraint on the minimum
perihelion radius rpmin

to avoid a close approach to the Sun, and defined as

P , exp

[
C

(
1− a (1− e)

rpmin

)]
(14)

where the C is a dimensionless tuning parameter. Finally, the terms œ̇xx ∈ { ˙̃axx, ėxx, ω̇xx} in Eq. (12) are
defined as

œ̇xx , max
ν,α

(œ̇) (15)

and represent the maximum value of the time-derivative of the generic (dimensionless) orbital parameter œ
that may be achieved along the osculating orbit by suitably steering the sail nominal plane.

In particular, the terms œ̇xx may be estimated starting from the Gauss’ variational equations, which pro-
vide the time derivatives of the osculating orbital elements as functions of the components of the propulsive
acceleration vector {aPR, aPT }, viz.

dã

dt
=

2 a2

h a0
[e sin ν aPR + (1 + e cos ν) aPT ] (16)

de

dt
=

1

h
{p sin ν aPR + [(p+ r) cos ν + e r] aPT } (17)

dω

dt
=

1

e h
[−p cos ν aPR + (p+ r) sin ν aPT ] (18)

where p , a(1 − e2) is the osculating orbit semilatus rectum, h ,
√
µ� p is the angular momentum vector

magnitude, and {aPR, aPT } are given by Eqs. (9)-(10). Starting from Eqs. (16)–(18), in principle the values
of the coefficients œ̇xx may be found with an analytical or a numerical approach. However, to simplify the
problem and in analogy with Refs. [34, 35, 42], the values of œ̇xx will be calculated with suitable approximate
analytical expressions.

More precisely, according to Ref. [35], ˙̃axx may be estimated by observing that the maximum variation of
the semimajor axis is obtained by applying the maximum transverse component of the propulsive acceleration
at the osculating orbit pericenter (i.e., at ν = 0 and r = a − ae). When such a strategy is specialized to a
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solar sail-based spacecraft, Eq. (10) shows that the thrust angle that maximizes the transverse component

aPT is α? , arcsin(1/
√

3) rad. The term ˙̃axx is therefore written by enforcing the conditions

r = a (1− e) , ν = 0 , α = α? (19)

into Eqs.(9)-(10) and (16). Recalling that sinα? = 1/
√

3 and cosα? =
√

2/3, the result is

˙̃axx =
4

3 a0

√
3

√
1 + e

µ� a (1− e)5
ac r

2
⊕ (20)

An analytical expression of ėxx cannot be retrieved for a solar sail-based spacecraft, but an approximate
expression may be found by assuming that the maximum value of ė is approximately obtained at the
perihelion of the osculating orbit with a thrust angle equal to α?, that is, using the maximum transverse
component of the propulsive acceleration, viz.

ėxx =
4

3
√

3

√
1 + e

µ� a3 (1− e)3
ac r

2
⊕ (21)

Likewise, ω̇xx cannot be calculated in an exact form, but may be approximated with similar considerations
as

ω̇xx =
4

3 p e h
√

3
ac r

2
⊕ (22)

which comes from Eq. (18) with the aim of maximizing the (positive) contribution to the propulsive accel-
eration from the transverse component, that is, by enforcing the conditions ν = π/2 rad and α = α?. The
results from Eqs. (20)–(22) are illustrated in Fig. 3 as a function of {a, e} assuming ac = 0.5 mm/s2 and
a0 = r⊕.

The time derivative of the proximity quotient Q is given by

Q̇ =
∑
œ

∂Q

∂œ
œ̇ (23)

where the analytical expression of ∂Q/∂œ, which may be calculated from Eq. (12), is not reported here for
the sake of conciseness. The Q-law algorithm requires Q̇ to be minimized. To that end, first note that

œ̇ = kœR aPR + kœT aPT (24)

where

kœR ,
∂œ̇

∂aPR
(25)

kœT ,
∂œ̇

∂aPT
(26)

may be written as a function of the osculating orbit parameters through the Gauss’ variational equa-
tions (16)–(18). Substituting Eq. (24) into Eq. (23) yields

Q̇ =
∑
œ

[
∂Q

∂œ
(kœR aPR + kœT aPT )

]
(27)

where the propulsive acceleration components {aPR, aPT } are functions of the control variable α and the
Sun-spacecraft distance r. Define now the equivalent propulsive acceleration components {aPR, aPT } as

aPR , aPR

(
r

r⊕

)2

= ac cos3 α (28)

aPT , aPT

(
r

r⊕

)2

= ac cos2 α sinα (29)
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Figure 3: Contours of œ̇xx ∈ { ˙̃axx, ėxx, ω̇xx} as functions of a and e when ac = 0.5 mm/s2 and a0 = r⊕.
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which depend on the sail attitude only through the thrust angle α. Substituting Eqs. (28)-(29) into Eq. (24)
we get

œ̇ =
kœR

(r/r⊕)
2 aPR +

kœT

(r/r⊕)
2 aPT (30)

Combining Eq. (30) with Eq. (27) and paralleling the approach discussed in Ref. [42], the time derivative of
the proximity quotient Q is written as

Q̇ = KR cosα3 +KT cosα2 sinα (31)

with

KR , ac

(r⊕
r

)2∑
œ

∂Q

∂œ
kœR (32)

KT , ac

(r⊕
r

)2∑
œ

∂Q

∂œ
kœT (33)

where {kœR , kœT } are given by Eqs. (25)-(26). Since the derivatives of the proximity quotient with respect
to the orbital parameters may be analytically calculated, the pair {KR, KT } is easily obtained at each time
instant along the transfer trajectory. The minimum of Q̇ is therefore a function of the thrust angle α only,
so that the stationary points of Eq. (31) are given by

∂Q̇

∂α
= 0 with α ∈ {α1, α2, α3, α4} (34)

where

α1 , arcsin


√√√√√3K2

R − 3KR

√
K2
R +

8

9
K2
T + 2K2

T

6K2
R + 6K2

T

 (35)

α2 , arcsin


√√√√√3K2

R + 3KR

√
K2
R +

8

9
K2
T + 2K2

T

6K2
R + 6K2

T

 (36)

α3 , −α1 (37)

α4 , −α2 (38)

Note that the set of stationary points must be completed with

α5 = π/2 rad (39)

α6 = −π/2 rad (40)

which correspond to the boundaries of the variation range of the thrust angle. The set of candidates points
is therefore

Iα , {α1, α2, α3, α4, α5, α6} (41)

and the optimal thrust angle αopt results from

αopt = arg min
α∈Iα

Q̇(α) (42)
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where Q̇ is given by Eq. (31), and the angles αi ∈ Iα are calculated from Eqs. (35)–(40).
Having obtained the optimal thrust angle from Eq. (42), the corresponding propulsive acceleration com-

ponents come from Eqs. (9)-(10), and the spacecraft dynamics are simulated by (numerically) integrating
Eqs. (1)–(4) to avoid singularities. In this analysis it is assumed that the optimal thrust angle may always
be achieved, without considering possible constraints on solar sail attitude. The interested reader is referred
to the recent paper by Caruso et al. [25] for an in depth discussion on this last topic.

4. Case study and simulation results

The proposed Q-law algorithm has been simulated in some typical heliocentric mission cases, which
represent potential mission applications for a solar sail-based spacecraft. Depending on the different mission
requirements, the Q-law algorithm has been suitably tuned to maximize its performance.

4.1. Coplanar interplanetary transfers

The first group of mission cases concerns a classical interplanetary transfer towards Mars or Venus.
Considering a two-dimensional motion, the relative inclination between the planetary orbits is neglected,
and the orbits of Earth, Mars, and Venus are all supposed to be circular, that is, e0 ≡ ef = 0. It is assumed
that the solar sail leaves the Earth’s sphere of influence following a parabolic escape trajectory with zero
hyperbolic excess velocity relative to the planet, so that at time t0, when the transfer starts, the spacecraft
osculating orbit parameters are those of the Earth (i.e., a0 = r⊕). The mission aim is to perform an orbit-
to-orbit transfer, by matching the semimajor axis and eccentricity of the target planet, with no constraint
on planetary ephemerides. Accordingly, in a circle-to-circle orbit transfer the only relevant parameters are
a and e, so that the weight related to the argument of pericenter is set equal to zero, that is, the condition
Wω = 0 is enforced in Eq. (12).

The Q-law algorithm does not impose any boundary constraint on the spacecraft trajectory, so it may
only ensure an asymptotic convergence towards the target state, before the eventual onset of numerical
errors. The Euclidean distance from the target orbit is measured by a dimensionless error ε, defined as

ε ,

√
(a− af )2

a2
f

+ e2 (43)

where the orbital parameters {a, e} in Eq. (43) are calculated at the time instant when the numerical
integration of the equations of motion is stopped. In the simulated scenarios, the maximum value of ε
required for convergence is 5 × 10−2 in the Earth-Venus transfer, and of 10−1 in the Earth-Mars case.
Since trajectories with a convergence error close to the maximum allowable values require small corrective
maneuvers to reach the target orbit, they are well suited for estimating the required transfer time and may
be used as first guesses for more refined optimization procedures. On the contrary, values of ε on the order of
5×10−2 or smaller are considered to be satisfactory, and correspond to trajectories that actually accomplish
an interplanetary orbit-to-orbit transfer.

The first test case is an Earth-Venus orbit-to-orbit circular transfer, with af = 0.723 au. According
to Ref. [42], the weights of the two state variables a and e are chosen within the range Wa ∈ [1, 10] and
We ∈ [1, 10]. The minimum perihelion constraint is set to rpmin

= 0.2 au, with a value C = 100 in the
penalty function of Eq. (14) (although it is inactive in all of the simulated trajectories). Among the possible
transfer trajectories, the optimal solution for each value of the characteristic acceleration ac is chosen as the
one that minimizes the value of ε.

The flight times to Venus are reported in Fig. 4, which shows a very good accordance with the results (in
red colour) taken from the global optimization algorithm discussed in Refs. [54, 55]. The convergence errors
are very satisfactory, with a mean value of 1.4× 10−2 for the trajectories shown in Fig. 4. An example of an
Earth-Venus transfer trajectory (assuming ac = 0.5 mm/s2) along with the required steering law α = α(t)
is illustrated in Fig. 5. The convergence dimensionless error in this case is ε = 3.4× 10−3.

The second test case is an Earth-Mars circular transfer, with af = 1.523 au. The weights Wa and We

are chosen to vary within the same range as that in the Earth-Venus scenario, and the constraint on the
minimum perihelion radius is, again, inactive. In this case the convergence errors are higher than those
of the Earth-Venus transfer, and the maximum convergence error is set equal to 10−1. This means that
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Figure 4: Earth-Venus flight times tf as a function of ac (black dots = Q-law algorithm, red asterisks = global optimal).

in most cases the Q-law algorithm only gives a rough estimation of the optimal transfer trajectory, which
could be used as an initial guess for a succeeding optimization algorithm, in analogy with what suggested
by Refs. [39, 40, 41, 42].

In this context, Fig. 6 shows the resulting Earth-Mars estimated flight times, which are similar to those
obtained with the global optimization algorithm discussed in Refs. [54, 55]. The Earth-Mars transfers have
dimensionless errors with a mean value of 5× 10−2. Figure 7 illustrates the Earth-Mars transfer trajectory
with ac = 0.3 mm/s2 and ε = 8.2× 10−3, together with the corresponding steering law α = α(t).

4.2. Missions to the outer Solar System

Advanced mission scenarios regarding the exploration of the outer Solar System have been often proposed
for spacecraft with propellantless propulsion systems [17, 27, 44, 45, 56]. The main mission objectives usually
include a flyby with a distant planet or require to reach the heliopause region to obtain in-situ observations
of the interstellar medium. In all cases, a large heliocentric distance rf must be bridged within a reasonable
flight time. In principle, the Sun-spacecraft distance is a function of a, e, and ν, although a fast transfer
can be approximated with a rapid growth of the spacecraft orbital energy, that is, by increasing the value
of a. This approximation is supported by the fact that trajectories toward the outer Solar System region
must achieve large values of the mechanical energy, as is discussed in Ref. [57]. Therefore, apart from Wa,
the other two weights of the Q-law algorithm are both chosen to be zero, that is, We = Wω = 0 in Eq. (12).

The definition of Q requires the target orbital elements to be specified. The semimajor axis is set equal
to the target distance (af = rf ), but such a choice would cause the algorithm to convergence to a target
state with r < rf . Therefore, as soon as the aphelion radius of the osculating orbit reaches the target
radius, that is, a(1 + e) = rf , the Q-law algorithm is no more used to steer the solar sail. Since the orbital
energy is now sufficient to reach the target distance, the solar sail must increase as quickly as possible
its heliocentric distance. To do so, a steering law that maximizes the transverse component aPT of the
propulsive acceleration is enforced, which amounts to set α = α?; see Eq. (10). In conclusion, the Q-law
algorithm with af = rf is used as long as the condition a(1 + e) = rf is met, from then on a constant thrust
angle α = α? is assumed.

As previously stated, the optimal trajectory for a solar sail to reach the outer Solar System region
usually requires one (or more) photonic assist maneuvers. As is sketched in Fig. 8, such a maneuver consists
in a passage close to the Sun in order to exploit the increased Sun’s gravity and solar radiation pressure
to increase its orbital energy [46, 47]. The constraint on the minimum perihelion distance expressed by
the penalty function in Eq. (14) obviously plays a crucial role in the resulting trajectories, so that different
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Figure 5: Earth-Venus transfer trajectory when ac = 0.5 mm/s2.
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Figure 6: Earth-Mars flight times tf as a function of the characteristic acceleration ac (black dots = Q-law algorithm, red
asterisks = global optimal).

values have been considered in the simulations, that is, rpmin
∈ {0.1, 0.2, 0.3, 0.4, 0.5} au. The unconstrained

trajectory is first obtained by setting WP = 0 in Eq. (14), while the other cases are simulated with WP = 1
and using the specific value of rpmin . In all cases, it is assumed that C = 100 in Eq. (14).

The test case chosen in the simulations is an orbital flyby with Neptune. Neglecting the planetary
ephemeris, the problem is to reach a target heliocentric distance of rf = 30 au. The flight times are
reported in Tab. 1 as a function of the minimum perihelion distance and characteristic acceleration ac ∈
{0.5, 1, 2}mm/s2. The inner part of the transfer trajectory with rpmin

= 0.2 au and ac = 1 mm/s2 is shown

ac [ mm/s2] rpmin
[ au] min(r) [ au] Q-law tf [years] tf from Ref. [58] [years]

0.5

0.1 0.3025 11.9 11.6
0.2 0.3025 11.9 11.6
0.3 0.3225 12.2 12.0
0.4 0.4296 15.0 13.8

1.0

0.1 0.1097 6.9 4.1
0.2 0.2240 7.9 5.7
0.3 0.3345 9.0 6.9
0.4 0.4455 11.0 8.2

2.0

0.1 0.1844 3.3 3.2
0.2 0.2291 3.6 3.4
0.3 0.3416 4.5 4.6
0.4 0.4526 5.5 5.3

Table 1: Comparison between the Neptune flyby-scenario flight times obtained with the Q-law algorithm and literature re-
sults [58].

in Fig. 9. In this case, the solar sail-based spacecraft reaches the Neptune’s distance, with a flight time of
about 7.92 years, after two close passages to the Sun that increase its orbital energy.

To simplify a comparison with the literature results, since the latter are usually given as a function of the
minimum Sun-spacecraft distance and not of the perihelion distance as in the Q-law algorithm, Tab. 1 reports
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the flight times obtained with different values of rpmin
and the corresponding minimum values of r obtained

along the simulated trajectory. The same table also compares the results with the outputs of an interpolation
of data taken from Ref. [58]. In this scenario, the Q-law algorithm provides a very good estimate of the
flight times required to reach Neptune’s orbit. This is more evident when low-performance solar sails are
considered, probably due to the capability of the Q-law algorithm of comprising the possible solar photonic
assist maneuvers in the trajectory, a feature that is usually difficult to manage with conventional optimization
methods [57].

5. Conclusions

A method for providing a quick approximation of the minimum-time transfer trajectory of a solar sail-
based spacecraft has been discussed. The procedure is based on the use of the Q-law algorithm, which is
here specialized to the solar sail case by accounting for the thrust dependance on the Sun-spacecraft distance
and on the sail attitude.

In particular, the Q-law algorithm approach has been applied to two potential mission cases, that is, an
interplanetary transfer and a mission to the outer Solar System region. The algorithm proves to be effective
in estimating the minimum flight time required to reach the target, even when compared to the outputs of
a global optimization method. The Q-law algorithm is also able to approximate an escape trajectory with
multiple photonic assist maneuvers, which are usually difficult to analyze with conventional optimization
algorithms. Future investigations will concentrate on considering the effects of perturbative sources, such as
third-body gravitational perturbations, in the mathematical formulation of the Q-law algorithm. A further
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extension of this work is offered by its generalization to solar sail three-dimensional trajectories, which would
require the inclusion of other orbital parameters in the definition of the proximity quotient.
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