Singling Out the Role of Molecular Weight in the Crystallization Kinetics of Polyester/Clay Bionanocomposites Obtained by In Situ Step Growth Polycondensation

Donata I. M. Catalano, Lucia Conzatti, Mohamed Ilsouk, Mohamed Lahcini, Antonella Manariti, Elena Maurina, Mustapha Raihane, Benaissa Rhouta, and Valter Castelvetro*

Cite This: ACS Appl. Polym. Mater. 2021, 3, 5405–5415

ABSTRACT: The isothermal crystallization kinetics of a set of bio-nanocomposites produced by in situ catalytic step growth polycondensation of adipic acid and 1,4-butanediol in the presence of Moroccan clay beidellite (BDT) organo-modified with hexadecyltrimethylammonium bromide (CTA/BDE) organo-BDT) was investigated and compared with that of the parent poly(butylene adipate) (PBA) matrices from which the clay had been extracted. In situ bio-nanocomposites had different contents (0–5 wt %) of CTA/BDE nanofillers characterized by different extents of organo-modification (CTA/BDE equivalent ratios from 0 to 5). The isothermal crystallization rates of the bio-nanocomposites and of the parent PBA matrices were investigated by differential scanning calorimetry (DSC) at 45, 40, and 37 °C and analyzed according to the Avrami model. The bionanocomposites with an intermediate (2 wt %) concentration of organoclays with a higher CTA/BDE ratio (3 and 5) showed the highest exfoliation degree, along with an increase in the crystallization rates, compared to those of the parent PBA matrices, which was larger than that in the other nanocomposites. The lack of a simple correlation between the nanoclay content/composition and crystallization kinetics was ascribed to the molecular mass, an additional variable for in situ bio-nanocomposites as compared to nanocomposites produced by simple physical blending of nanoclays with a single polymer matrix. The specific contribution of the molecular mass to the crystallization kinetics was untangled from those of the organoclay content and CTA/BDE ratio by comparing each bio-nanocomposite with its parent polymer matrix. The crystallization rate of the nanocomposites was always found to reach a maximum within an intermediate range of molecular weights of the polymer matrix, a behavior previously reported only for pure polymers. Such differences in the crystallization rate of in situ bio-nanocomposites may affect the crystalline phase morphology and, in polymorphs such as in PBA, phase composition, with consequent effects on properties that may be of interest for specific applications.

KEYWORDS: poly(butylene adipate), beidellite nanoclay, in situ polymerization, Avrami model, thermal properties

1. INTRODUCTION

Aliphatic polyesters are a very interesting class of semicrystalline polymers because of their adjustable thermal mechanical properties, good biocompatibility, and biodegradability.1,2 The crystallization kinetics of semicrystalline biodegradable materials such as, for instance, poly(butylene adipate) (PBA),3−5 poly (l-lactide),6 poly(butylene succinate),7 and poly(butylene succinate-co-adipate)8 has been extensively investigated. PBA is a polymer with two main crystalline forms, α and β, the α form being thermodynamically stable at T > 31 °C, and the β form at T < 27 °C. The enzymatic degradation rate of the α form decreases with increasing crystallinity, with the mixed α/β phase obtained by isothermal crystallization at 28 °C < T < 32 °C showing the lowest biodegradation rate.8 Because of its low stiffness, slow crystallization rate, low melting point, and modest mechanical properties, pure PBA does not match the requirements for most practical applications.9 While the physical properties of polyesters may be improved by post-synthetic modifications during, for example, reactive melt processing,10 PBA is a potentially interesting candidate as a matrix in reinforced biodegradable (nano)composites. In nanocomposites obtained by blending the polymer matrix with natural clays, either as such or as organo-modified...
nanoparticles, the variation of the molar mass has been investigated.32,33 However, when the molar mass is also a variable, a much more complex situation may arise because of the combined effects of the molar mass, nanoclay loading, and extent of the clay organo-modification, when applicable.22,31 The latter affects the extent of intercalation/delamination/exfoliation of the silicate layers within the polymer matrix, which in turn may significantly affect the crystallization behavior along with several ultimate properties (mechanical, thermal, gas barrier, etc.) of the material. The disaggregation of the original clay particles into tactoids (stacks of single layers) or delamination/exfoliation down to single isolated lamellae may not only increase enormously the concentration of heterogeneities possibly acting as nucleating centers, but also generate physical obstacles to crystal growth propagation. Such nanoclay disaggregation is promoted not only by shear forces (increasing with the increase in molecular mass during polymerization under stationary stirring) but also by the interaction of the monomers/polymer matrix with the clay lamellar surface (dependent on the extent of its organo-modification).34–36

In the present work, the isothermal crystallization kinetics of a series of nanocomposites of PBA synthesized by in situ step growth polycondensation catalyzed by titanium tetrabutoxide in the presence of BDT organically modified with hexa decyltrimethylammonium bromide (CTA) was investigated.3 The main purpose was to explore the combined effects of molar mass, organoclay content, and CTA/BDT ratio on the isothermal crystallization kinetics of PBA/CTA–BDT nanocomposites. The different extents of nanoclay disaggregation as a result of different organophilicities, defined here by the C TA/BDT ratio, were expected to play a role in the isothermal crystallization rate. On the other hand, to the best of our knowledge the role played by the molecular weight, another variable in the case of nanocomposites prepared by in situ polymerization, in the crystallization kinetics, has never been investigated.3,4 The isothermal crystallization kinetics of seven different in situ PBA nanocomposites, of the pure PBA matrix synthesized under the same conditions as the nanocomposites, and of the PBA fractions extracted from the nanocomposites, was followed by differential scanning calorimetry (DSC), while the morphology of the nanocomposites was investigated by transmission electron microscopy (TEM), aiming at highlighting a possible specific contribution of the different molecular weights to the crystallization process.
2. EXPERIMENTAL SECTION

2.1. Materials. Adipic acid (AA; Alfa Aesar, 99%), 1,4-butanediol (1,4-BD; Alfa Aesar, 99%), titanium(IV) tetrabutoxide (Aldrich Chemicals, 97%), and hexadecyltrimethyleneammonium bromide (cetyltrimethyleneammonium bromide, CTA, Aldrich Chemicals) were used as received without further purification.

Raw ferruginous BDT collected from the Western High Atlas basin of the Agadir region (Morocco) was purified, as previously reported, to obtain homonionic sodium beidellite (Na-BDT) that was sieved to a particle size <2 μm. The specific surface area, porosity, and cation-exchange capacity (CEC) of Na-BDT were assessed to be about 82.2 m² g⁻¹, 0.136 cm³ g⁻¹, and 58.2 meq (100 g)⁻¹, respectively. The organo-modified BDT clay samples used in this study were prepared by the cation-exchange reaction between Na-BDT and Ti(OBu)₄ (titanium tetrabutoxide) prepared by the cation-exchange reaction between Na-BDT and Ti(OBu)₄ at different CTA/Na-BDT ratios, namely, by using 1, 3, and 5 equivalent ratios of CTA to CEC of Na-BDT. The three organo-modified BDT clays are labeled hereafter xCTA-BDT, where x can be 1, 3, or 5. All polymerization runs were performed by a two-stage melt polycondensation (esterification followed by polycondensation) between AA and 1,4-BD, with Ti(OBu)₄ (titanium tetrabutoxide) as the catalyst.

All polymerization procedures were performed under a 50 mL/min nitrogen purge. In the in situ polymerizations, the nanoclay; and (iii) a physical blend prepared by the coprecipitation of the organoclay. The dependence of the molecular weight on the presence of nanoparticles has been reported for various in situ syntheses.20

Table 1. Number Average (M_n) and Weight Average (M_w) Molecular Weights with the Corresponding Polydispersity D from SEC Analysis (Relative to a Polystyrene Calibration Curve).

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_n (g/mol)</th>
<th>M_w (g/mol)</th>
<th>D (M_w/M_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBA-1%(3CTA-BDT)</td>
<td>4400</td>
<td>8100</td>
<td>1.84</td>
</tr>
<tr>
<td>PBA-5%(3CTA-BDT)</td>
<td>7000</td>
<td>13,300</td>
<td>1.90</td>
</tr>
<tr>
<td>PBA-2%(Na-BDT)</td>
<td>8500</td>
<td>16,600</td>
<td>1.95</td>
</tr>
<tr>
<td>PBA-2%(1CTA-BDT)</td>
<td>9000</td>
<td>18,000</td>
<td>2.00</td>
</tr>
<tr>
<td>PBA-2%(SCA-BDT)</td>
<td>9800</td>
<td>20,000</td>
<td>2.04</td>
</tr>
<tr>
<td>PBA-3%(3CTA-BDT)</td>
<td>14,000</td>
<td>28,500</td>
<td>2.04</td>
</tr>
<tr>
<td>PBA-2%(3CTA-BDT)</td>
<td>21,000</td>
<td>41,000</td>
<td>1.95</td>
</tr>
<tr>
<td>PBA</td>
<td>69,600</td>
<td>120,000</td>
<td>1.72</td>
</tr>
</tbody>
</table>

The morphology of the nanocomposites was investigated by TEM using an EM 900 transmission electron microscope (Carl Zeiss microscopy GmbH, Jena, Germany) operated at an accelerating voltage of 80 kV. Ultrathin sections (about 50 nm thick) from samples embedded in suitable resin and cooled down to −80 °C were obtained with a Leica EM FCS cryo-ultramicrotome equipped with a diamond knife. Scanning electron microscopy (SEM) analyses were performed using a FEI QUANTA 450 ESEM-FIG at the Centro per l’Integrazione della Strumentazione, University of Pisa (CISUP).

3. RESULTS AND DISCUSSION

The pure PBA and the PBA matrices extracted from the nanocomposites were analyzed by SEC to assess the possible effect on the polymer molar mass caused, either directly or indirectly, by the presence of the nanoclay during polycondensation. The latter may provide a support for the initially homogeneous metal catalyst, reactive surfaces interfering or competing with the polymerization reaction, and a physical barrier for the diffusion of the reactive groups involved in polymerization. The molecular weights of the PBA matrices recovered from the nanocomposites were found to be significantly lower than that of the pure PBA obtained under the same reaction conditions adopted for the in situ syntheses with the nanoclays (Table 1), spanning over a broad range without any clear correlation with the organoclay content. As already pointed out and discussed in a previous work dealing with some of the nanocomposites studied here, the lower molecular weight of PBA in nanocomposites suggests the occurrence of side reactions either catalyzed by, or otherwise involving, the organo-modified clay. The dependence of the molecular weight on the presence of nanoparticles has been reported for various in situ syntheses.20-23

3.1. Morphology of the Nanocomposites and Residual Nanoclay Contaminating the Purified PBA Matrices. In order to focus on the discussion of the results of the morphological analyses, and afterward of the isothermal crystallization experiments, on the specific influence of the
molecular weight of the PBA matrix, the nanocomposites are conveniently analyzed by considering two distinct groups. In Figure 1 are shown the TEM images taken from the set of nanocomposites containing the same type of organoclay (3CTA-BDT) but in different amounts in the 0–5 wt % range, hereafter collectively labeled as Group Y; the physical blend mix-PBA with the same composition as sample PBA-2%(3CTA-BDT) is also included in this group. The TEM micrographs of the nanocomposites containing the same 2 wt % amount of different organoclays (xCTA-BDT with 0 ≤ x ≤ 5, that is, including the unmodified Na-BDT; see Figure S1 of the Supporting Information), characterized by different organophilicities and labeled hereafter as Group X, will also be briefly discussed.

It is worth mentioning that the organoclays used in this work were characterized by a substantial, if not exclusive, confinement of CTA in the nanoclay interlayers, resulting in their expansion when an excess CTA with respect to the ion-exchange capacity of the nanoclay was used.9 An expanded organoclay was expected to promote both catalyst adsorption and clay delamination upon stirring during melt polymerization. Some of the nonelectrostatically bound excess CTA might have desorbed from the clay upon polymerization as a result of shear-induced delamination; however, given the small...
overall excess CTA (in the 0.4–1.5 wt % range in the final nanocomposites) and its possible partial thermal decomposition into volatile products caused by the high polymerization temperature (220 °C), the presence of traces of free CTA was considered as unimportant for the final properties of the nanocomposites.

The number of potential nucleating sites in the polymer matrix is expected to increase with the degree of disaggregation of the nanoclay, although single exfoliated lamellae or smaller tactoids have also been reported to be less-effective nucleation sites than the larger aggregates.37 From the TEM analysis, most of the clay appears to be extensively exfoliated and dispersed in the PBA matrix. In particular, the micrographs of samples from the PBA-y%(3CTA-BDT) series (Group Y, Figure 1) show that the quality of the dispersion of the organo-clay in the PBA matrix is dependent not only on the extent of organophilic modification (Figure S1 of the Supporting Information) but also on the content of organoclay in the nanocomposite. At low nanoclay content, the presence of tactoids with different sizes and nonuniform distribution within the matrix can be clearly noticed. At intermediate 2 wt % of clay, the volume distribution of tactoids becomes more uniform and their dispersion improves. The reference mix-PBA nanocomposite with the same composition as PBA-2%(3CTA-BDT), but prepared by physical blending of the polymer matrix with the nanoclay through solvent-nonsolvent coprecipitation, does not show significant differences in the quality of the nanoclay dispersion and exfoliation. Further increase in the clay content does not lead to further improvements in the clay dispersion; in fact, the sample with 5 wt % of 3CTA-BDT shows the presence of aggregates larger than 1 μm and of submicrometric tactoids with 20 or more layers. Similar morphologies had already been reported for the analogous nanocomposites poly(ε-caprolactone)-y%(3CTA-BDT).15

In order to assess the exhaustiveness of the extraction procedure of the CTA–BDT nanofiller from the nanocomposites, the exPBA samples obtained after precipitation and separation of the nanofiller were analyzed by thermogravimetry. While the residues after thermal decomposition at 700 °C of the organic fraction matched well the nominal nanoclay content (see Figure S2 and Table S1 of the Supporting Information), the residues in the purified PBA always fall below 1 wt %, that is, within the uncertainty of about ±1% affecting our TGA measurements. The good efficacy of the adopted purification procedure was further checked by performing filtration of diluted chloroform solutions of the purified PBA samples through a 0.2 μm pore size nylon membrane and by checking the membrane surface for the possible presence of nanoclay residues not completely removed from the polymer matrix during the purification process. SEM analyses and EDS microanalyses of the surface of the membrane allowed detection of only a few scattered particles, some of which were actually the result of environmental contamination (e.g., airborne particulate), along with a few clay particles (see Figure S3 and Figure S4 of the Supporting Information).

3.2. Isothermal Crystallization Kinetics Based on the Avrami Model

The isothermal crystallization study was based on DSC measurements. The results of the thermal characterization of the nanocomposites and of the exPBA matrices can be found in the Supporting Information (representative DSC thermograms are shown in Figure S5; thermal parameters are shown in Table S2; a plot of T_{m} against the PBA molecular weights is shown in Figure S6, where the presence of a threshold value at about $M_w = 20,000$ g/mol marks a possible similar threshold in other nanocomposite properties).

Under isothermal conditions, the polymer crystallization kinetics is described with a generally good accuracy, at least for the early stage of the process, by the Avrami model according to eq 1.38–40

$$
\alpha(t) = 1 - \exp[-K(t - t_0)^n]
$$

where \(\alpha(t)\) is the relative crystallinity at time \(t\); \(t_0\) is a parameter required to match the effective beginning of the isothermal crystallization process; \(K\) is a crystallization rate constant, which depends on the crystallization temperature and on the geometry of the sample; \(n\) is the so-called Avrami
Figure 3. Avrami best fit (red line) of the experimental $\alpha(t)$ values (black points) for PBA-5%(3CTA-BDT) at 37 °C (a), 40 °C (b), and 45 °C (c). In each graph, the starting point of the crystallization process, determined by the best-fit parameter t_0 of the Avrami model, is indicated by the red arrow; the fitting procedure was performed on the experimental values in the range $0 < \alpha(t) < 0.5$, included between the vertical dashed lines. Note the different time ranges on the horizontal axis because of the different crystallization rates.

Table 2. Avrami Parameters for PBA and for exPBA Matrices Extracted from the Nanocomposites, Listed by Increasing M_w

<table>
<thead>
<tr>
<th>sample</th>
<th>t_0 (min)</th>
<th>n</th>
<th>$K (10^{-4} \text{ min}^{-n})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBA-1%(3CTA-BDT)</td>
<td>4.8</td>
<td>0.319</td>
<td>-0.16</td>
</tr>
<tr>
<td>PBA-2%(Na-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-2%(1CTA-BDT)</td>
<td>N.D.</td>
<td>4.15</td>
<td>0.00</td>
</tr>
<tr>
<td>PBA-2%(3CTA-BDT)</td>
<td>25.0</td>
<td>2.80</td>
<td>3.10</td>
</tr>
<tr>
<td>PBA-2%(5CTA-BDT)</td>
<td>22.8</td>
<td>5.11</td>
<td>0.195</td>
</tr>
<tr>
<td>PBA-3%(3CTA-BDT)</td>
<td>15.4</td>
<td>1.21</td>
<td>-0.218</td>
</tr>
<tr>
<td>PBA-3%(3CTA-BDT)</td>
<td>5.77</td>
<td>0.00</td>
<td>-0.303</td>
</tr>
<tr>
<td>PBA-2%(3CTA-BDT)</td>
<td>4.98</td>
<td>0.172</td>
<td>-0.492</td>
</tr>
<tr>
<td>exPBA matrices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBA</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-1%(3CTA-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-2%(Na-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-2%(1CTA-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-2%(3CTA-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-3%(3CTA-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
<tr>
<td>PBA-2%(3CTA-BDT)</td>
<td>4.30</td>
<td>1.15</td>
<td>-0.139</td>
</tr>
</tbody>
</table>

aN.D. = Not determined as it was larger than 8 h

exponent, related to the time dependence of the nucleation rate and to the dimensionality of the crystal growth.41,42 Here, time is measured from the moment when the temperature set for the isothermal crystallization process has been reached; at the end of the process, corresponding to the stabilization of the normalized heat flow in the DSC experiment, the value of α will be 1. The longer the delay time (the time between the start of the measurement, following the stabilization of the temperature in the DSC cell, and the t_0 value corresponding to the actual beginning of the crystallization process) the slower was generally observed to be the kinetics. On the other hand, in case of very fast kinetics, the crystallization process might begin before the stabilization of the temperature, with a corresponding negative value of t_0. The different t_0 values in the DSC thermograms can be clearly observed in the thermograms of Figure S5 in the Supporting Information.

From the DSC thermograms of the isothermal kinetics experiments, the relative crystallinity $\alpha(t)$ can be calculated according to eq 2:

$$\alpha(t) = \frac{\Delta H(t)}{\Delta H_{(\text{tot})}}$$

where $\Delta H_{(\text{tot})}$ is the total enthalpy loss resulting from the isothermal crystallization process, and $\Delta H(t)$ is the enthalpy loss from the beginning of the process to time t.

Among the group Y nanocomposites, the crystallization rate for PBA-5%(3CTA-BDT) was by far the lowest, as shown by the time evolution of $\alpha(t)$ in Figure 2a. In Figure 2b, the same graph for group X nanocomposites shows slower processes for the less organophilic nanocomposites (CTA/BDT equivalent ratio of 0 and 1). In both groups, only the slowest processes present an initial period of latency.

The following quantitative analysis is based on the fitting of the $\alpha(t)$ data sets by eq 1. It is well known that the Avrami model describes in a generally accurate way the first part of the crystallization process (typically up to α values of 30 to 60%), while in the final stage, the so-called secondary crystallization mechanism prevails.43 In all cases analyzed in this work, the overlap of the Avrami fit with the experimental points throughout the first half of the isothermal crystallization process is excellent (nonlinear fitting performed with Origin Pro 2015 Data Analysis and Graphing Software, based on the Levenberg–Marquardt algorithm43). This is clearly shown in three plots reported in Figure 3, representative of progressively slower crystallization processes at increasing crystallization
A more appropriate and commonly used measure of the crystallization rate is the reciprocal of the crystallization half-time, \(\nu = (1/t_{1/2}) \), as \(t_{1/2} \) can be calculated from \(K \) and \(n \) by eq 3:

\[
t_{1/2} = \left(\frac{\ln 2}{K} \right)^{1/n}
\]

The calculated \(t_{1/2} \) and \(\nu \) values are listed in Table 3.

In the following, the trends of the isothermal crystallization rates will be analyzed in detail, aiming at untangling, and possibly rationalizing, in particular, the influence of the PBA molecular weight, along with the contributions of the content \((\gamma%)\) of the CTA–BDT nanoclay in the nanocomposite and that of the CTA \((x\%)\) equivalent ratio in the organoclay.

3.3. Effect of the Molecular Weight on the Isothermal Crystallization Rate

As a general rule, the isothermal crystallization rate of polymers is hardly detectable over any reasonable measurement time at temperatures just below \(T_m \). As the temperature is lowered, the rate progressively increases, goes through a maximum, and then decreases again, going to zero below the glass transition temperature.\(^{45}\) The isothermal crystallization rates were recorded for PBA and for the PBA extracts from the nanocomposites at three different temperatures (see the plotted data in Figure S7 in the Supporting Information) in a temperature range close enough to the melting temperature to result in increasing crystallization rates with decreasing temperature.

The trends of the isothermal crystallization rates as a function of \(M_w \), as reported for various polymers,\(^ {46,47}\) present substantially common features, with the crystallization rate rapidly increasing with \(M_w \) until a threshold value is reached at molecular weights most often observed in the range between

Table 3. Isothermal Crystallization Rate Parameters (Derived from the Avrami Parameters) for the Nanocomposites and the exPBA Matrices

<table>
<thead>
<tr>
<th>sample composition</th>
<th>(M_w) (g/mol)</th>
<th>PBA(^ a)</th>
<th>nanocomposites</th>
<th>PBA(^ a)</th>
<th>nanocomposites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>45 °C</td>
<td>37 °C</td>
<td>45 °C</td>
<td>37 °C</td>
</tr>
<tr>
<td>PBA-1%(3CTA-BDT)</td>
<td>8100</td>
<td>24.5</td>
<td>75.7</td>
<td>65.0</td>
<td>13.3</td>
</tr>
<tr>
<td>PBA-5%(3CTA-BDT)</td>
<td>13,300</td>
<td>148</td>
<td>13.9</td>
<td>328</td>
<td>89.1</td>
</tr>
<tr>
<td>PBA-2%(Na-BDT)</td>
<td>16,600</td>
<td>86.6</td>
<td>14.7</td>
<td>345</td>
<td>147</td>
</tr>
<tr>
<td>PBA-2%(1CTA-BDT)</td>
<td>18,000</td>
<td>57.7</td>
<td>7.12</td>
<td>193</td>
<td>112</td>
</tr>
<tr>
<td>PBA-2%(5CTA-BDT)</td>
<td>20,000</td>
<td>62.8</td>
<td>11.4</td>
<td>442</td>
<td>169</td>
</tr>
<tr>
<td>PBA-3%(3CTA-BDT)</td>
<td>28,500</td>
<td>23.0</td>
<td>3.63</td>
<td>259</td>
<td>29.0</td>
</tr>
<tr>
<td>PBA-2%(3CTA-BDT)</td>
<td>41,000</td>
<td>34.0</td>
<td>5.73</td>
<td>258</td>
<td>29.1</td>
</tr>
<tr>
<td>PBA</td>
<td>120,000</td>
<td>25.4</td>
<td>7.25</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>mix-PBA</td>
<td>120,000</td>
<td></td>
<td>22.1</td>
<td>2.84</td>
<td>1.51</td>
</tr>
</tbody>
</table>

\(^{a}\)Extracted PBA from nanocomposites and pure PBA used in the mix-PBA physical blend.
10,000 and 20,000 g/mol (see Figure S8 in the Supporting Information for linear polyethylene). Indeed, a similar behavior can also be observed in the log−log plots of Figure 4 relative to the experiments performed on the PBA matrices of this investigation and on the corresponding nanocomposites, as well as on other PBA matrices.5

The graphs in Figure 4a, b strictly resemble those included in the red circle of Figure S8 in the Supporting Information, with an apparent discontinuity around $\bar{M}_w = 20,000$ g/mole, marking the difference between a lower molar mass range, in which the crystallization rate increases with increasing \bar{M}_w, and a higher molecular weight range, in which the crystallization rate is stabilized or decreases slightly with increasing \bar{M}_w. In fair agreement with these findings, a decrease in the isothermal crystallization rate with increasing \bar{M}_w had been reported for linear and branched PBA with $\bar{M}_w > 40,000$ g/mole (see Figure 4c).5 By comparing the two graphs in Figure 4a, b, it is also apparent that the presence of the nanoclay in the nanocomposites affects the crystallization rate of the PBA matrix, slowing down the rate for the PBA matrices with lower \bar{M}_w (possibly as a result of hindered diffusion of highly mobile macromolecular chains), but increasing the rate for the PBA matrices with higher \bar{M}_w (possibly due to assisted nucleation for macromolecular chains that are less mobile as they are likely above the entanglement threshold). Anyway, it is clear that the isothermal crystallization rate of nanocomposites is influenced by the sample’s molecular weight, in combination with other factors such as the crystallization temperature, the nature (size, shape, and surface chemistry), the concentration, and the quality of the dispersion of the nanofiller.

3.4. Singling out the Influence of the Molecular Weight and That of the Nanoclay Loading on the Crystallization Kinetics of the PBA/Nanoclays. In the literature, various sets of data relative to nanocomposites based on physical blends with the same polymer matrix (or with matrices having very similar molecular weights) can be found. In such cases, a rather straightforward relationship between the isothermal crystallization rate and the nanofiller content is generally observed.3,30,31 Typically, the addition of small quantities of nanofiller increases the crystallization rate with respect to that of the pure polymer matrix as a result of heterogeneous nucleation. However, above a given threshold, a further increase of the amount of nanofiller results in the reduction of the crystallization rate even below that of the pure
polymer. This is clearly highlighted in the central graph of Figure 5, a similar behavior having also been reported for poly(l-lactide) and poly(butylene succinate-co-adipate) bio-nanocomposites with organo-modified layered double hydroxide. Such a threshold had probably not been reached in the system described in the left graph of Figure 5, while it might have been below the lowest studied nanofiller loading range in the right graph (a similar behavior has been described for PBA with organo-modified layered double hydroxide). Note that nanocellulose, silica, and claylike layered nanoparticles have quite different aspect ratios and surface chemical compositions.

As anticipated in Section 3.1, the results of our isothermal crystallization experiments are conveniently analyzed by separately discussing the samples of group Y (those with the same 3CTA-BDT organoclay but in different amounts) and those of group X (nanocomposites with 2 wt % of different nanoclays, namely, the pristine Na-BDT and the three xCTA-BDT), along with the corresponding extracted PBA.

The isothermal crystallization rates of group Y nanocomposites are compared with those of their corresponding PBA matrices in Figure 6. Differently from the above cited cases from the literature, the rate ratio \(R_\text{N} \) (ratios between the isothermal crystallization rates for each nanocomposite/PBA matrix pair) does not show any correlation with the organoclay content, the only common feature being a consistently slower crystallization rate in the nanocomposites \((R_\text{N} < 1)\) at the lowest 1 wt % content of nanoclay. This is likely a result of the different contributions from the density of nucleation sites increasing with increasing nanoclay concentration, and the molecular weights of the parent PBA matrices being uncorrelated with the nanoclay concentration.

In Figure 7, the isothermal crystallization rates of group X nanocomposites are compared with those of their corresponding PBA matrices. Again, the presence of xCTA-BDT or Na-BDT (corresponding to \(x = 0 \)) in the PBA matrix causes, in most cases, an increase in the crystallization rate. However, in this series, an apparently more regular increase in the crystallization rate is observed upon increasing organophilicity of the nanoclay, the latter being probably associated with increasing extent of the delamination/exfoliation of the lamellar stacks of nanoclay, which in turn may result in enhanced nucleation and thus faster crystallization. Incidentally, in these samples, the molecular weights of the PBA matrices increase along with the content of the CTA modifier in the organoclay, with the exception of sample PBA-2%(5CTA-BDT) in which the PBA matrix has a lower molecular weight than PBA-2%(3CTA-BDT). However, the value of \(M_w = 20,000 \) g/mole for exPBA-2%(5CTA-BDT) matches the previously discussed threshold, above which the influence of the molecular weight becomes negligible or even reversed, providing a further evidence of a nontrivial effect of the molecular weight on some relevant physical properties (further arguments supporting such evidence can be found in the comments in Figure S9 of the Supporting Information).

4. CONCLUSIONS

The molecular weights of PBA synthesized by in situ step growth catalytic polycondensation were found to be affected by the presence of the nanoclay, causing a generalized reduction of it to a different extent, although such reduction was not correlated with the extent of nanoclay modification. The latter affects the extent of delamination/exfoliation of the nanoclay, as highlighted by the different morphologies of the nanoclay dispersion in the final bionanocomposites. However, the most significant result of the present investigation concerns the pinpointing of a specific contribution of the molecular weight in determining the crystallization rate. The latter, along with the crystallinity and crystal morphology, may affect application-relevant properties of the bio-nanocomposite such as mechanical strength, barrier properties, and biodegradability, to mention a few. In fact, while the type and concentration of the nanofiller are generally investigated as the factors affecting the crystallization rate in nanocomposites (most frequently produced by melt mixing or solvent coprecipitation of the
same polymer matrix with different amounts/types of nanofillers), the results presented here indicate that also the molecular weight plays a not-negligible role, similar to what had been already observed for several pure polymers, but only incidentally for nanocomposites. As a consequence, while in situ polymerization may result in possibly better properties of the nanocomposite associated with improved nanofiller dispersion/delamination, it may also lead to less easily predictable ones as these may also be affected by the molecular weight of the newly synthesized polymer matrix.

The isothermal crystallization kinetics of the investigated PBA/BDT-CTA bionanocomposites followed quite well the Avrami model, with the crystallization rates showing nonlinear variations with the molecular weight. In particular, a trend similar to that of pure polymeric matrices was observed, that is, with a maximum rate reached above the entanglement threshold, irrespective of the temperature at which the isothermal crystallization experiment is carried out.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsapm.1c00684.

(i) TEM analysis of Group X nanocomposites; (ii) evaluation of the possible presence of residual nanoclay in the purified PBA samples by minutes of thermogravimetric and SEM analyses; (iii) thermal analysis; and (iv) effect of the molecular weight on the isothermal crystallization rate. (PDF)

AUTHOR INFORMATION

Corresponding Author
Valter Castelvetro — Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; orcid.org/0000-0002-3302-7037; Email: valter.castelvetro@unipi.it

Authors
Donata I. M. Catalano — Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
Lucia Conzatti — Institute of Chemical Science & Technology “Giulio Natta”, National Research Council (CNR-SCITEC), 16149 Genoa, Italy; orcid.org/0000-0003-1899-8262
Mohamed Ilsouk — IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, 40000 Marrakech, Morocco; orcid.org/0000-0003-3302-7037
Mohamed Lahcini — IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, 40000 Marrakech, Morocco; orcid.org/0000-0003-1049-7906
Antonella Manariti — Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
Elena Maurina — Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
Mustapha Rahnane — IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, 40000 Marrakech, Morocco
Benaissa Rhouta — IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, 40000 Marrakech, Morocco

Complete contact information is available at: https://pubs.acs.org/10.1021/acsapm.1c00684

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support for cooperative research came from the MESRF, CNRST of Morocco (PPR program), the University of Pisa (International Academic Cooperation Support Action Program-Cooperation with the University Cadi Ayyad of Marrakech), the CNRST (Morocco)-CNR (Italy) program, and the Hassan II Academy of Science and Technology of Morocco/CSCS-Spain (Project AH11STCnano and 2010MA003). Scanning electron microscopy analyses were performed using a FEI QUANTA 450 ESEM-FEG at the Centro per la Integrazione della Strumentazione-University of Pisa (CISUP).

REFERENCES

