
Post-print version of: 

 

 

Publisher: Elsevier 

Journal paper: International Journal of Fatigue, 2021, 152, 106414 

 

Title: Plain and notch fatigue strength of thick-walled ductile cast iron EN-GJS-600-3: A double-

notch critical distance approach to defect sensitivity 

 

Authors: M. Benedetti, C. Santus, V. Fontanari, D. Lusuardi, F. Zanini, S. Carmignato 

 

 

Creative Commons Attribution Non-Commercial No Derivatives License 

 

 

 

 

DOI Link: https://doi.org/10.1016/j.ijfatigue.2021.106414  

https://doi.org/10.1016/j.ijfatigue.2021.106414


Plain and notch fatigue strength of thick-walled ductile cast iron EN-GJS-600-3: 

a double-notch critical distance approach to defect sensitivity 

 

Matteo Benedetti1*, Ciro Santus2, Vigilio Fontanari1, Danilo Lusuardi3, Filippo Zanini4, Simone Carmignato4 

 

1Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy  

2Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy 

3Fonderie Ariotti, Adro (BS), Italy 

4Department of Management and Engineering, University of Padua, Vicenza, Italy 

 

*Corresponding author 

Matteo Benedetti 

matteo.benedetti@unitn.it 

 

Abstract 

In some fatigue critical scenarios, like those arising in cast or additively manufactured components, the fatigue 

damage mechanisms prevailing in plain and notched components might be different. This could hinder the 

applicability of the theory of critical distances (TCD), which postulates that the critical distance L can be 

inferred from a plain and a notched or cracked specimen configuration. To overcome this shortcoming, we 

explore in this work the possibility of inferring L from two notched geometries with different notch severity. 

The proposed method is applied to the notch fatigue prognosis of the ductile cast iron EN-GJS-600-3. 
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Nomenclature 

area  geometrical parameter of the defect 

CT  computed tomography 

D  notched specimen bar diameter 

HV  Vickers hardness 

Kr  ratio of the fatigue stress concentration factors 

Kf  fatigue stress concentration factor 

Kt  theoretical stress concentration factor 

KN,UU  notch stress intensity factor 

L  critical length according to LM estimated from plain and notched specimen geometries 



L*  critical length according to LM estimated from two notched specimen geometries 

L*'  critical length according to PM estimated from two notched specimen geometries 

LM  line method 

Lth  critical length estimated from plain fatigue strength and crack growth threshold 

L'  critical length according to PM estimated from plain and notched specimen geometries 

l  dimensionless critical length according to LM 

l0  dimensionless singular term critical length according to LM 

Nf  number of cycles to failure 

PM  point method 

R  load ratio 

S  standard deviation 

TCD  theory of critical distances 

  notch opening angle 

Kth  long crack growth threshold 

fl  plain fatigue strength range 

N,fl  notch fatigue strength range 

*

fl   intrinsic plain fatigue strength range 

λ  ratio between notched specimens diameter 

  dimensionless notch root radius 

a  nominal stress amplitude on the net cross-section 

U  ultimate tensile strength 

Y  yield strength 

w  high cycle fatigue strength predicted by Murakami's model 

 

Subscripts  

1  sharp notch 

2  blunt notch 

 

1. Introduction 

Defects, like surface roughness, inclusions, pores, foreign object damages, play a crucial role in fatigue crack 

initiation and propagation, impacting on the structural integrity of components exposed to time-varying loads. 

To this regard, fundamental investigations [1] were carried out since the 70s of the last century on 

conventionally manufactured materials, such as tool steels [2], cast Al-Si eutectic alloys [3], ductile cast iron 

(DCI) [4], [5], welded joints [6], as it was recognized that defects are the preferential fracture origin in such 

intrinsically flawed materials. Nowadays, the interest in encapsulating the defects effect into the fatigue design 

has further increased with the advent of additive manufacturing (AM) technologies, which, on one side, permit 

larger design freedom, on the other one, introduce into the component defects in the form of surface flaws and 



irregularities, as well as pores and lack of fusion or gas entrapment [7]. Most of the fatigue assessments carried 

out so far rely on the pioneering work of Murakami [8], [9], whose well-known formula expresses the fatigue 

limit as function of the Vickers hardness and the defect area  parameter. In materials with very 

inhomogeneous microstructure, like cast irons, the Vickers hardness turned out to be affected by large point-

to-point variability and therefore poorly representative of the macroscopic fatigue properties of the material. 

For this purpose, Deguchi [10] and, more recently, Borsato et al. [11] proposed modifications of the Murakami 

formula, wherein the hardness is replaced by the tensile and/or the yield strength. 

This scenario is further complicated by the fact that usually machine parts are not only weakened by defects 

but also by geometrical details (holes, grooves, key seats, etc.), in general denoted as “notches”. They alter the 

lines of force flow resulting in local stress concentration that may promote the onset of fatigue damage. Dealing 

with the simultaneous effect of defects at the microscopic and of notches at the macroscopic level is not an 

easy task. For the sake of simplicity, the flawed material can be considered a homogenous medium with 

reduced fatigue properties. Its fatigue strength can be assessed by applying notch fatigue methods codified in 

machine design manuals and based on correction coefficients accounting for the geometrical stress 

concentration factor and the material’s notch sensitivity [12]. The low value of the plain fatigue strength, as a 

consequence of the intrinsic material defectiveness, generally results in low notch sensitivity. If the notch 

fatigue is reinterpreted by the light of more sophisticated methods, such as the Theory of Critical Distances 

(TCD) [13] or based on the Strain Energy Density [14], [15], the low material’s notch sensitivity can be 

explained by invoking the large value of the critical distance or the control radius of the material. However, 

these material characteristics turn out to be defect-dependent, therefore, a specific testing campaign is 

necessary to calibrate their value according to the defectiveness present in the vicinity of the notch [16], [17]. 

In the framework of TCD, which is the focus of the present work, three possible strategies to deduce the critical 

length L are schematically illustrated in Fig. 1. In the classical TCD formulation, L is determined by combining 

the long crack threshold Kth and the plain fatigue limit range fl: 
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Where the subscript “th” indicates that L is deduced from the crack threshold. However, this route (denoted in 

Fig. 1 as "Plain&Threshold") has some drawbacks, mainly related to the difficulty in accurately determining 

Kth [18]. For instance, in the case of DCI, viz. the material investigated in this work, Kth typically assumes 

very high values in comparison with other structural metallic materials, as a result of extrinsic fatigue crack 

growth resistance mechanisms [19]. Specifically, the crack path is made very tortuous due to the tendency of 

the crack to propagate adjacent to and not through the graphite nodules [20], [21]. However, the resulting crack 

shielding mechanism is fully deployed only when the crack is sufficiently long [22], [23]. For this reason, 

specific testing campaigns are necessary to identify such crack length threshold, making the experimental 

determination of Kth even more challenging. In addition, given the crucial role played by the size and spatial 

distribution of graphite nodule, very different Kth values can be found, especially in castings obtained at very 

long solidification times and affected by degeneration of the nodular graphite [24]. Therefore, it is not 



surprising that a large spectrum of Kth values was reported in the literature for DCI, ranging between 5 and 

15 MPa·m0.5 at R≈0 [19], [25], [26]. As a result, values of Lth ranging between 0.5 mm and 0.9 mm were 

reported for this material [27], [28]. Interestingly, these Lth values are approximately one order of magnitude 

higher than that of high strength aluminum alloys and steels [18]. This is not unexpected since DCI features a 

small plain specimen fatigue strength (because of its intrinsic defectiveness) along with high Kth values. 

To overcome these limitations, an alternative way, denoted in Fig. 1 as "Plain&Sharp", was devised by Santus 

et al. [29]. This is based on the knowledge of the fatigue strength of a plain and notched specimen geometry. 

This latter was optimized to maximize the intensity of the singular notch stress term and hence to minimize 

the sensitivity of the inverse search of critical distance to the experimental uncertainty. Analytical formulas 

were derived in [29] to determine the critical lengths L and L', according to the line (LM) and point method 

(PM), respectively, without the necessity of finite element analyses of the notch stress field. A probabilistic 

approach was then conceived in [30] to encapsulate the statistical variability of the input fatigue characteristics 

into the definition of L as a random variable. The method shown in Fig. 1b was successfully applied to 

structural metals like quenched+tempered steel and Al alloys [18], leading to a L estimation in good agreement 

with Lth. Conversely, when this approach was applied in [16] to additively manufactured Ti-6Al-4V, a large 

discrepancy between L and Lth was found. This was imputed to crack growth mechanisms different from those 

arising in notched samples and, more importantly, to the fact that the population of critical defects triggering 

the fatigue damage in plain and notched samples was found to be different in size and to depend on the route 

followed for the notch manufacturing. For this reason, the plain fatigue strength used in L inverse search was 

replaced by a fictitious value obtained through the Murakami model devised in [31] and incorporating the 

actual hardness and critical defect size found at the notch tip. The necessity of readapting the plain fatigue 

strength to the length scale of the fatigue damage occurring in notched components was also recently pointed 

out by He et al. [32]. Clearly, such approach requires a level of sophistication related to the necessity of 

statistically characterizing the distribution of defects in the neighborhood of the notch tip, which is hardly 

feasible at an industrial level. This scenario might be even more complicated in the notch fatigue prognosis of 

DCI, because this material is affected by a large spectrum of defect types, comprising graphite nodules, 

microshrinkage porosities and matrix structures composed of different phases [4], [33], [34]. It is therefore 

reasonable to expect that their role in originating the fatigue damage will be dissimilar in plain and notched 

samples, given the different size of the critically stressed volume, within which diverse defect types of different 

size might be present. 

To correctly capture the length scale of the fatigue damage occurring in notched components made of 

intrinsically defected materials, the present work proposes a method, termed "Blunt&Sharp" in Fig. 1, which 

is based on the use of two optimized notched specimen geometries producing a different stress concentration 

factor. The fatigue characteristics determined in this way are therefore representative of the fatigue damage 

mechanism ruling the neighborhood of the notch tip. In this way, it is possible to deduce, along with the critical 

length L*, an intrinsic plain fatigue strength 
*

fl , which ideally represents the fatigue strength measured using 

miniaturized plain samples extracted from the notch tip. This paper is organized as follows: Section 2 illustrates 



the procedure for inverse search of the critical distance L* from two notched geometries according to the LM; 

this section further develops analytical formulas devised in [29] for the "Plain&Sharp" approach. Section 3 

describes the DCI representative of heavy-section castings investigated in this work and the procedures for its 

experimental characterization. Section 4 illustrates the results of the fatigue tests and compares the outcomes 

of the three inversion strategies sketched in Fig. 1. Particular care is devoted to the identification of the fatigue 

damage mechanism acting in plain and notched samples through fractographic inspections of fatigue coupons 

and metrological X-ray computer tomography (CT) analyses of defects detected in the gage section of a plain 

sample. The proposed approach is validated through the prediction of the fatigue strength of independent 

notched geometries not used for the calibration of the TCD method. Concluding remarks are given in Section 

5. The appendix reports the application of the "Blunt&Sharp" to the PM and illustrates an applicative example 

of its use according to LM and PM. 

 

2. Critical distance inverse search from two notched specimen geometries 

The proposed procedure is based on two notched geometries characterized by different non-dimensional notch 

root radii 1 2,  , same notch angle  , either 90° or 60°, and same specimen outer diameter D . The meaning 

of these geometrical parameters is illustrated in Fig. 1. The fatigue strengths of the two notched variants are 

denoted as N1,fl N2,fl,   . The plain intrinsic fatigue limit 
*

fl  is assumed to be unknown. The ratio of the 

fatigue stress concentration factors of the two specimens is: 

*
N2,fl N2,flf1 fl

r *

f2 N1,fl fl N1,fl
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Assuming that specimen "1" is sharper than "2", the ratio r 1K   since f1 f2K K . This ratio rK  is the only 

experimental input required for the procedure. After the determination of the critical distance length, both f1K  

and f2K  are obtained, and then the plain intrinsic fatigue limit 
*

fl  can be easily derived, from either N1,fl  

or N2,fl . 

More precisely, the critical distance L  searched is the value corresponding to f1K  and f2K  for the two notch 

geometries. In principle, if the critical distance is very small, it reduces to the stress concentration factor ratio: 

t1 t2/K K . On the contrary, for very large critical distances, both the two f1 f2,K K  values tend to unity. 

Therefore, rK is comprised in this range: r t1 t21 /K K K  . 

The search for the critical distance, starting from the ratio rK , can be performed according to either LM or 

PM. The former has a linear formulation that reduces to a closed-form formula. On the contrary, the PM 

requires an iterative search described in the Appendix. Two dimensionless values are defined as: 

*

1 1/ ( / 2)l L D=  and 
*

2 2/ ( / 2)l L D= . After introducing a scale factor   between the sizes of the two 

specimens, it follows: 
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Each dimensionless critical distance can be linearly related to singularity-based (dimensionless) lengths, which 

are referred to as 0,1l  and 0,2l : 

1 min,1 0,1 min,1 1

2 min,2 0,2 min,2 2

( ) /

( ) /

l l l

l l l
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= + −

= + −
          (4) 

where min min, ,l    are specific to notch 1 and 2, and   is the slope of the linear expression 

max min max min( ) / ( )l l  = − −  defined in [29]. All these coefficients are known parameters available in [29]. 

The two relations in Eq. (4) can be easily inverted and both sides divided: 
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l l l

l l l

 

 

− +
=

− +
           (5) 

Being the singularity-based length 0l  related to fK  for both specimens: 
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where KN,UU and s are the notch-stress intensity factor and the William's power law singularity exponent 

reported in [29] as a function of the notch opening angle . The ratio between these two lengths reduces to: 

0,2 1/

r

0,1

s
l

K
l

=             (7) 

After combing Eq. (5) and Eq. (7), the following equation is obtained: 
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where: 1 min,1 min,1 1/b l  = −  and 2 min,2 min,2 2/b l  = −  

and by substituting the simple relation between the two unknown lengths, Eq. (3) becomes a linear equation 

in the only unknown 1l . This turns out to be given by: 
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which can be then converted into the researched length: 

* 1
1

2

D
L l=             (10) 



After having solved and obtained the LM critical distance, the two fK  can be easily obtained. The singularity-

based length is obtained from Eq. (4): 

0,1 1 1 min,1 min,1( )l l l = − +                       (11) 

and then reversing again Eq. (6), f1K  can be easily found and then f2K  too: 
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Being the notched specimen fatigue limits known, the plain intrinsic fatigue limit is finally deduced such as 

from the notch 1: 

*

fl N1,fl f1K  =                      (13) 

The LM critical distance inverse search according to LM will be applied in the following sections to the 

experimental data collected for the DCI under investigation. 

 

3. Material and experimental procedures 

The experimentation was performed on an EN-GJS-600-3 pearlitic ductile cast iron (DCI) of chemical 

composition listed in Table 1. The specimens were extracted from an as-cast cylinder (300 mm diameter, 520 

mm height) of high thermal modulus (~6 cm) exposed to natural air convection, thus representative of thick-

walled castings subjected to long solidification times [35], [36]. All the samples were taken from the bottom 

half of the cast cylinder in order to maintain a certain uniformity in microstructure and defectiveness. 

The microstructure was characterized by conventional metallographic analyses. Samples were mounted and 

ground from 220 to 4000 mesh SiC abrasive papers. The final polishing was done using a 3-micron diamond 

paste followed by a 0.04-micron alumina suspension. Nital etching was used to reveal the microstructure. To 

characterize the graphite morphology of each material variant, quantitative image analysis was conducted with 

software ImageJ® on five cross-sections randomly extracted from the samples. Specifically, non-etched 

micrographs were binarized and elaborated with a particle analysis tool to measure area A, perimeter U, nearest 

neighbor distance λnn, and maximum Feret’s diameter dF of each graphite particle. The deviation from the 

spherical shape is estimated by the shape factor expressed as:  

0 2

4 A
f

U


=             (14) 

and by roundness factor defined as: 

G 2

F

4A

d



=             (15) 

The mean particle diameter of the graphite nodules is estimated as:  

G

4A
d


=             (16) 



Finally, the graphite fraction was evaluated as the ratio between the total area of the graphite particles and the 

area of the metallographic micrograph. The fraction of spheroidal graphite was determined according to the 

approach set in [19], wherein the nearest neighbor distance λnn is used as discriminating factor between 

spheroidal and non-spheroidal graphite particle. For the present solidification condition, graphite nodules were 

categorized as spheroidal when λnn ≥ 45 m and and f0 ≥ 0.35. 

Five monotonic tensile tests were carried out according to the standard UNI EN ISO 6892-1 on dog-bone 

coupons (14 mm gauge diameter, 84 mm parallel length), using a servo-hydraulic universal testing machine, 

equipped with hydraulic grips, and a load cell of 200 kN. The yield strength was determined as the 0.2% offset 

yield stress. 

The fatigue characterization was conducted using the axisymmetric specimen geometries illustrated in Fig. 2a-

e. Specifically, the plain (smooth) specimen geometry shown in Fig. 2a was used to determine the materials 

baseline fatigue S-N curve. V-notched specimen geometries reported in Fig. 2b-e are characterized by a notch 

depth, which was optimized in [29] to maximize the intensity of the asymptotic stress field term and therefore 

minimize the sensitivity of the inverse search of the critical distance to the experimental uncertainties. 

Specimens (b) and (c) have a notch opening angle of 60° and differ only in the notch tip radius, whose nominal 

value was set to 0.2 and 1 mm, respectively. In the following, they will be denoted as sharp and blunt notches. 

Two additional notched geometries, denoted (d) and (e) in Fig. 2, were selected to obtain independent fatigue 

data to be used to validate the predictions made applying the critical distance approaches illustrated in Fig. 1. 

Given the crucial role played by the notch root radius on the notch stress field, its actual value was verified by 

means of stereomicroscopic measurements and reported in Table 2 along with the corresponding theoretical 

stress concentration factor Kt. The measured notch root radii reported in Table 2 were used in the following 

TCD calculations. 

Alternating (zero mean stress, load ratio R= −1) axial fatigue tests were carried out according to the ASTM 

E466 standard in a laboratory environment using a Rumul Testronic 50kN resonant testing machine, operating 

at a nominal frequency of 150 Hz under load control. Fatigue tests were therefore carried out at different stress 

amplitudes to explore the fatigue lives up to 5×106 cycles. The S-N curve for each experimental condition was 

obtained from at least 12 samples, and runout tests were terminated at 5×106 cycles when no fracture took 

place. The S-N curves were found to be well represented by the following model: 

3
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N
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In fitting Eq. (16), only the run-out tests obtained at the highest explored stress level were included along with 

the tests ended after a failure. The scatter of the fatigue data was assessed by computing the estimated 

regression variance assumed to be uniform for the whole fatigue life range and expressed by: 
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where σa,i is the i-th fatigue amplitude data point, 
a,i̂  is its estimator, n is the number of data elements, and 

p is the number of parameters in the regression (p = 3 in the present case). 

To check the effectiveness of this approach to robustly predict the high cycle fatigue (HCF) strength, sample 

batches (a), (d) and (e) were tested according to a staircase approach as well. In this way, the fatigue strength 

corresponding to a fatigue life of 5×106 cycles was evaluated employing 20 samples and 10 MPa stress 

increments. 

The fracture surface of all the fatigue samples per each specimen geometry was analyzed using a JEOL JSM-

IT300LV scanning electron microscope (SEM) to investigate the crack initiation site, taking particular care in 

identifying the microstructural feature triggering the fatigue damage. In addition, four fractured plain 

specimens (a) were scanned and analysed through metrological X-ray CT [37], using a Nikon Metrology 

MCT225 system. The system is characterized by micro-focus X-ray source with minimum focal spot size of 3 

µm, 16-bit X-ray detector with a 2000×2000 grid of pixels and controlled cabinet temperature (20 ± 0.5 °C). 

Each CT scan consisted in the acquisition of 1500 bi-dimensional projections at different angular positions of 

the specimen performed with voltage 220 kV, current 36 µA and exposure time 2 s. Importantly, the small 

gage diameter of the specimens allowed scanning their entire volume with high structural resolution [38], 

which is needed to detect and measure micro-features such as internal voids and graphite spheroids. In 

particular, the achieved voxel size (i.e. volumetric pixel) was equal to 5.8 µm and the low X-ray beam power 

involved (below 8 watts) resulted in a minimal focal spot size. The beam hardening effect - which often 

generate image artifacts in CT reconstructions [39] - was reduced using a 0.1 mm-thick physical filter made 

of copper and by subsequent software correction using the following polynomial: 𝑦 = 1.94(0.5𝑥2 + 0.5𝑥),, 

where x represents the initial grey value of a pixel and y represents the corrected grey value. The acquired 

projections were then reconstructed using a filtered backprojection algorithm [40] and the visualization and 

analysis software VGStudio MAX 3.2 (Volume Graphics, GmbH) was used to detect and measure internal 

voids as well as graphite nodules in terms of dimensions, shape and position. The shape was evaluated by 

computing pores and nodules sphericity , defined as: 

( )
2/31/3 6V

A


 =            (18) 

where A and V are pore or nodule area and volume, respectively. The volume V was used to determine the 

mean diameter d* as well: 

*
3

6V
d


=             (19) 

The mechanical characterization of the material was complemented by a fatigue crack growth (FCG) rate test 

conducted according to the ASTM E647standard. To reproduce the same fully reversed stress cycle of the 

Wöhler fatigue tests, the M(T) specimen geometry shown in Fig. 2f was used. Specifically, the FCG test was 

conducted in the laboratory environment on a Rumul Mikrotron 20 kN resonant testing machine under 

sinusoidal load waveform applied at a frequency of approximately 150 Hz. A Fractomat® apparatus based on 

the indirect potential drop method is used to continuously measure the crack extension from both tips. More 



details about the experimental procedure are given in [16]. In brief, the test was conducted in two phases, the 

first one according to a force-shedding procedure until reaching near-threshold FCG conditions; after three 

consecutive crack growth increments resulting in a crack growth rate below 2×10−10 m/cycle, the second phase 

at constant force amplitude was started. The experimental da/dN - K data were least-square fitted using the 

following expression proposed by Klesnil and Lukáš [41]: 

( )th

m mda
C K K

dN
=  −            (20) 

where C and m are fitting coefficients and Kth is the crack growth threshold. 

 

4. Results and discussion 

4.1 Optical microstructural analyses and monotonic tensile tests 

The optical micrographs shown in Fig. 3a–b at two magnification scales illustrate the typical microstructure 

of the investigated material. The matrix is predominantly pearlitic, while ferritic layers surround the graphite 

nodules. Graphite particles of different size and shape are unevenly interspersed in the metallic matrix. The 

results of graphite quantitative and morphological 2D analyses are summarized in Table 3. Importantly, the 

graphite is almost completely present in the form of spheroidal nodules, while degenerated (mainly chunky) 

graphite is nearly absent. Shape factor and roundness take large values (well above 0.5), thus indicating that 

the graphite nodules have an approximately spherical shape with a mean diameter of about 60 m. 

The characteristic strength parameters obtained by conventional tensile tests and hardness measurements are 

reported in Table 4 and compared with guidance values prescribed by [42] on the mechanical properties 

measured on samples cut from moderately thick-walled castings (60 mm < t ≤ 200 mm) of EN-GJS-600-3. It 

can be noted that the investigated material is compliant with the guidance values in all the properties apart 

from the ultimate tensile strength. Apparently, the solidification conditions of the investigated material 

(corresponding to heavy-section castings) led to a non-optimal microstructure, affected, as shown below, by 

shrinkage porosity, which impacts detrimentally on the material ductility. 

 

4.2 Fatigue and crack growth rate tests 

The results of the axial fatigue tests carried out on all the specimen variants are compared in Fig. 4a. Fitting 

curves corresponding to 50% (solid line), 10% and 90% (dashed lines enclosing a colored scatter band) failure 

probability, expressed by Eq. (16), are also plotted in Fig. 4. The best-fit parameters and the standard deviation 

S are listed in Table 5, which compares, where available, the estimation of the fatigue strength at 5×106 cycles 

made according to Eq. (16) and the staircase approach. Importantly, the two fatigue assessment methods led 

to very similar values, especially in terms of mean value. In view of this result, the HCF strength estimations 

made for specimens (b) and (c) using only Eq. (16) are deemed to be reliable as well. 

Looking at Fig. 4, it can be noted that the plain fatigue data are affected by a considerable scatter (coefficient 

of variation of about 12%), significantly larger than that of the notched counterparts (comprised between 4 and 

8%). The fatigue curves of the notched variants approximately scale according to the notch stress concentration 



factor Kt, apart the geometry (e), which displays a superior fatigue strength with respect to that expected from 

Kt. Apparently, the small specimen diameter results in a more localized and thus less detrimental notch stress 

field, as further discussed in the following. 

The da/dN-ΔK FCG curve is plotted in Fig. 4b. Table 6 reports the best-fit parameters of Eq. (20). Interestingly, 

the obtained crack growth threshold is only a few MPa·m0.5 higher than the values reported in [19] for a similar 

DCI tested under positive load ratios R. Evidently, the compressive part of the load cycle as well contributes 

to the fatigue crack extension. In addition, the obtained value of 14.0 MPa·m0.5 is in good agreement with the 

value 14.3 MPa·m0.5 found by Zambrano et al. [26] for DCI at R=-1 employing a specimen of size comparable 

to that shown in Fig. 2f. 

 

4.3 Inverse search of the critical distance and notch HCF strength predictions 

The results of the inverse search of the LM critical distance are summarized in Table 7 for the three approaches 

discussed in the Introduction and sketched in Fig. 1. Importantly, the two approaches based on the plain fatigue 

limit (namely "Plain&Threshold" and " Plain&Sharp") predict a very large value of the critical distance, above 

0.5 mm, well above the values typically reported in the literature [13], [16], [18] for structural metallic 

materials. Conversely, the approach "Blunt&Sharp" based on two notched specimen geometries leads to 

estimate a much shorter critical distance L*, about 0.14 mm, and an intrinsic plain fatigue strength 
*

fl / 2  

(about 270 MPa) significantly higher than that displayed by the plain samples (a). The predictions listed in 

Table 9 of the HCF strength of independent notched variants permit to assess the suitability of these three 

critical distance approaches to predict the notch fatigue resistance of DCI. A systematic comparison is possible 

only for variants (d) and (e), used in neither of these approaches. Interestingly, the "Blunt&Sharp" approach 

is the only one able to keep the absolute relative error well below 10%. In particular, the high value of the 

fatigue strength of the small diameter notch variant (e) (only 20% lower than the plain fatigue strength) is 

correctly predicted as well, despite the great Kt (4.48) affecting this geometry. Evidently, the large value of the 

critical distance exhibited by DCI is able to attenuate a lot the average notch stress field localized in few mm 

tenths ahead of the notch tip. 

Conversely, the "Plain&Threshold" and "Plain&Sharp" predictions are affected by larger errors, even up to 

16%. In addition, errors of comparable magnitude affect the predictions of the blunt notched variant (b). 

Evidently, these latter two approaches are influenced by fatigue damage mechanisms occurring in plain and 

M(T) specimens that are scarcely representative of those taking place in notched coupons. Interestingly, the 

fact that the "Blunt&Sharp" approach predicts the crack growth threshold with higher error with respect to the 

"Plain&Sharp" method supports the idea that the fatigue damage conditions occurring at the notch tip 

significantly deviate from those taking place in plain [5] and cracked [20] components. To shed light on these 

aspects, the next section will discuss the results of fractographic analyses and CT scans. 

 

4.4 Fractographic and defectiveness analysis 



SEM analyses were conducted to identify the dominant crack initiation mechanisms acting in the HCF regime. 

A meaningful example of the crack initiation site found in plain (a) specimens is reported in Fig. 5a. 

Importantly, in all the investigated smooth samples, the crack was found to initiate in the vicinity of a large 

solidification shrinkage pore (indicated by an arrow in Fig. 5a). The scenario depicted by the fracture surface 

of the notched variants (Fig. 5b-d) is completely different. Despite careful search, no shrinkage microporosity 

was found in the neighborhood of any fatigue crack initiation site at the tip of the notched samples. The fracture 

surface reported in Fig. 5b indicates that the crack nucleated from a large graphite nodule (red arrow in Fig. 

5b) located in the vicinity of the notch tip. However, the smearing action exerted by the fully-reversed stress 

cycle on the fracture surface eliminated characteristic features (striations, beach marks, etc.) permitting to 

unambiguously identify the graphite nodule as the microstructural constituent originating the fatigue damage. 

To overcome this difficulty, some notched samples survived after 5×106 cycles were retested by applying 

tension-tension (R=0.1) stress cycles until final failure. An example of the obtained fracture surface is shown 

at two magnifications in Fig. 5c and d. The dashed line in Fig. 5c indicates the front of the non-propagating 

crack nucleated in the run-out test. Its morphology is much less deteriorated with respect to that shown in Fig. 

5b so that the striations particularly visible in Fig. 5d clearly point out that the crack nucleated from the graphite 

nodule indicated by the red arrow. 

CT scans performed on plain samples provide a convincing interpretative key of the above-described scenario. 

Figure 6a illustrates the CT scan data image of a fatigued plain specimen (a). Shrinkage microporosity is 

highlighted in a color scale expressing the pore volume. It can be noted that the fatigue fracture (grey shaded 

surface in the middle) originated from the largest pore present in the gage volume of the specimen. In addition, 

pores are of much larger size and much lesser amount with respect to graphite nodules (darker grey particles), 

as summarized in Table 9. Importantly, in the gage volume 14 pores vs. 68537 graphite nodules were detected, 

displaying a mean diameter about 5 times larger and much lower sphericity (and presumably higher stress 

concentration factor) with respect to the latter ones. Interestingly, mean diameter and sphericity of graphite 

nodules evaluated through CT scans are in very good agreement with mean diameter and roundness 

summarized in Table 3 as a result of 2D optical measurements. 

From the above discussion, it is not surprising that when the scanned gage volume is subjected to the uniform 

stress field reigning in smooth samples, the fatigue damage starts from the most critical pore. Conversely, if 

such gage volume is machined to introduce a stress raising geometrical feature (notch), two competing fatigue 

crack nucleation mechanisms take place: one located at the most critical pore and the other at the tip of the 

geometrical stress concentrator. In general, this latter crack initiation mechanism prevails in notched 

components made of cast iron, as the ubiquitous presence of graphite nodules inside the gage volume makes 

it possible that some of them are exactly situated in the vicinity of the notch tip, hence further increasing the 

stress concentration exerted by the notch. This explains the above-described fractographic evidence in the 

notched variants, attesting crack initiation from a graphite nodule in the vicinity of the notch tip. It is therefore 

clear that the approach "Blunt&Sharp" permits to determine the critical distance from two fatigue 

characteristics representative of the fatigue damage occurring at the notch tip, while this phenomenon is not 



adequately captured by the other two inverse search approaches. It is therefore sensible that the first approach 

leads to more accurate predictions of the HCF strength of independent notched variants. 

From the fractographic analysis, it can be argued that the graphite nodules play a crucial role in dictating the 

notch fatigue strength of DCI. To this regard, Figure 6b plots the bin histogram of the area  Murakami 

parameter [8] of the graphite nodules detected in the whole CT reconstructed gage volume. The distribution is 

bimodal with a long right tail. The maximum area  value is about 250 m. Clearly, such value is not 

representative of the scenario occurring at the tip of the notched specimen, wherein the size of the critically 

stressed volume is much smaller. For this reason, it seems to be more appropriate to analyze the distribution 

of graphite nodules in a material volume of size linked to the critical distance found in the previous section. 

This idea is sketched in Fig. 7a, viz. only the graphite nodule population comprised within a toroidal control 

volume (red line) centered on the notch tip of the notched sample (blue line) is supposed to control its fatigue 

damage. Since it was possible to analyze via CT scans only plain samples (black line) and since notched 

specimens were turned from the same base material, it is reasonable to center such control volume on the outer 

surface of the plain sample. Figure 7b plots the bin histogram of the Murakami parameter area  of the 

graphite nodules detected in control volumes of size a equal to 2L* (viz. the same size of the notch stress 

averaging domain) located at three different axial locations zc (see Fig. 6a and 7a for the location of the 

reference frame). Notably, no pore was detected in such control volumes (thus confirming their marginal role 

in dictating the notch fatigue strength); moreover, the size distribution of graphite nodules deviates 

significantly from that plotted in Fig. 6b for the whole scanned gage volume. Clearly, the total amount of 

nodules is much lower, the right tail of the distribution is even more elongated, and the maximum nodule size 

(about 150 m) is considerably smaller. To get a more robust estimation of the maximum size of the graphite 

nodule expected in the control volume, the population of graphite nodules therein comprised was elaborated 

according to the statistics of largest extreme value distribution (LEVD) using the Maximum Likelihood 

Method [8], [43]. The statistical distribution of defect sizes obtained taking a = 2L* is shown in Fig. 7c. It can 

be noted that the maximum expected nodule size maxarea  corresponding to a cumulative probability F of 

99% is similar in the three control volumes and approximately equal to 155 m. This value is in good 

agreement with the size of the nodule shown in Fig. 5b (about 140 m) which triggered the fatigue failure of 

a notched specimen. It is also interesting to observe that the nodule shown in Fig. 5d, which was found to 

initiate a non-propagating crack in a runout specimen, is considerably smaller (about 80 m). All this evidence 

supports the hypothesis that the largest graphite nodule in the control volume ahead of the crack tip controls 

the notch fatigue strength. Figure 7c plots the distribution of maxarea as a function of the radius a of the 

toroidal control volume. As expected, maxarea  increases with a and, interestingly, tends to saturate at a 

values exceeding 2L*. 

In light of these observations, we tried to predict the fatigue strength of the material encompassed within the 

control volume using the following area  models proposed in the literature and successfully applied to DCI 

[8], [10], [11]: 
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Where W is the predicted fully-reversed HCF strength (expressed in MPa), Floc is the location factor, FM is a 

material strength parameter, usually defined as a function of Vickers hardness HV or monotonic tensile 

properties SU and SY. Table 10 summarizes the predictions of the HCF strength of the material comprised in 

the control volume according to the three proposed models. In this analysis, the defects were assumed to be 

internal (Floc = 1.56) as the fractographic inspections (see for instance Fig. 5b) located most of the critical 

nodules at a distance below the surface larger than their maximum Feret's diameter. It can be noted that the 

values of W reported in Table 10 are significantly higher than the plain HCF strength listed in Table 5, as a 

result of the different size of the defect (graphite nodule vs. pore) triggering the fatigue damage. Interestingly, 

the value of W predicted by Borsato et al. method (specifically devised for cast iron) is identical to that of the 

intrinsic plain fatigue strength 
*

fl / 2  estimated through the double notch inversion method, thus confirming 

the suitability of this approach to predict the notch fatigue strength of DCI. 

 

4.5 Extension of the "Blunt&Sharp" method to the medium cycle fatigue regime 

As already discussed in [44], one of the advantages of deriving the critical distance from notched instead of 

cracked specimen geometries is the possibility of extending the TCD method to the medium cycle fatigue 

regime. Given the higher accuracy ensured by the "Blunt&Sharp" method, for the sake of brevity, we will 

extend only this latter approach to this fatigue regime. For this purpose, L* and 
*

fl / 2  are deduced from the 

method illustrated in Section 1, wherein Kr is estimated from sharp- (b) and blunt- (c) notch fatigue data taken 

at different fatigue lives Nf. Fig. 8a illustrates the variation of L* (black solid line) and 
*

fl / 2  (red dashed 

line) as a function of Nf. Interestingly, the critical length L* is fairly independent of Nf, in contrast with the 

decreasing trend we found in other structural metallic materials [16], [44]. As expected, the intrinsic plain 

fatigue strength 
*

fl / 2  decreases with increasing number of cycles to failure. Figure 8b plots the SN curves 

calculated for the two independent notched geometries (d) and (e). The predicted SN curves are in good 

agreement with the trend of the experimental data, especially for the variant (d), where the experimental data 

(dotted values) are uniformly dispersed above and below the predicted curve. Conversely, the predictions of 

the variant (e) are affected by an average overestimation of about 15%, nevertheless reasonable given the large 

uncertainty in the fatigue properties of the investigated material. 

 



5. Conclusions 

This paper explored the fatigue strength of a ductile cast iron (DCI) EN-GJS-600-3 fabricated under conditions 

representative of heavy-section castings. A significant difference was found in the defectiveness triggering the 

fatigue damage. In plain samples, a few shrinkage pores were found in the gage section through CT analyses. 

The largest pore is responsible for the fatigue crack initiation. In notched samples, the likelihood that such 

critical pore is located in the process zone ahead of the notch tip is very low, therefore the fatigue damage is 

promoted by the largest graphite nodule therein located. This evidence must be taken into account when 

applying a critical distance approach to predict the fatigue strength of DCI. For this purpose, instead of deriving 

the critical length from a plain specimen geometry affected by a fatigue mechanism not representative of that 

occurring at the notch tip, a novel inverse search is proposed in this paper. This is based on the use of two 

optimized notched geometries differing in notch root radius and hence in the resulting stress concentration 

factor. Analytical formulas for such inversion have been proposed in Section 2 for the line method and used 

for the fatigue calculation of independent notched geometries. A better agreement with the experimental data 

has been found with respect to predictions made with critical distance estimations based on the plain fatigue 

strength. The extension of the double notch inversion search to the point method is presented in the appendix 

for future use of this methods to other fatigue scenarios similar to that presented in this work. 

We expect a transition in the defect originating the fatigue damage in notched geometries with declining notch 

severity from graphite nodule to microshrinkage porosity. In addition, we cannot exclude a priori the very 

infrequent case of a critical pore located at the tip of a sharp notch and triggering the fatigue damage instead 

of more frequent but less critical graphite nodules. All these circumstances necessitate a sound statistical 

approach that will be matter of future investigations. 

 

Appendix 

A.1 Point Method search 

A similar inversion procedure was developed for the Point Method. An inversion procedure was developed for 

the Point Method in similarity with that proposed above for the Line Method. The initial unknown of the 

problem is again the fatigue stress concentration factor ratio rK , however, the inversion procedure for the PM 

does not lead to a closed-form equation. The proposed approach is to define an appropriate search range and 

compare the deduced critical distances. In order to define an appropriate search range, the maximum fatigue 

stress concentration factor was determined, which obviously is the theoretical stress concentration factor tK . 

Fig. A.1 shows the trend of the tK  for two investigated angles, as functions of the radius ratio  , and a fitting 

model for each trend. 

An effective form for the stress concentration factor fit function was obtained after the observation that in log-

log coordinates the relation between the radius ratio   and tK  is almost a linear, with small tendency of a 

parabola, thus three coefficients only were considered. The numerical model proposed to accurately fit the FE 

data is: 
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where the use of the logarithm with base 10 was suggested by the radius ratio, which ranges from 0.01 to 1.0. 

However, the same fitting model would have been obtained with any other basis, and the same values of the 

three coefficients 1 2 3, ,t t t  would result. These fitting coefficients are reported in Table A.1. 

To propose an initial guess value for the length search, one of the two notches can be assumed as that with 

maximum notch sensitivity, and realistically this can be applied to the blunter notch, which is assumed as notch 

2. Thus, the initial assumption f2 t2K K=  can be proposed to set a starting point. Then the singularity-based 

length is obtained, according to this value of fK , which in principle is corresponding to a null critical distance: 
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while for the maximum of the searching range, a value as large as the previous max  for notch 2, can be 

considered, which is usually quite large with respect to the material usual lengths: 

0,max 2 max,2l  =  

Now, an iterative search can be performed by sampling this min. to max. range in many divisions, such as 
410

. The singularity-based length for the other notch is easily found with the same relationship of Eq. (7), which 

is equally valid for the PM: 

0,min 2 0,2 0,max 2

1/

0,1 0,2 r/ s

l l l

l l K

   

 =
          (A.3) 

And for each pf the tentative couples 0,1l  and 0,2l , the corresponding PM critical distances are: 
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where ,1i  and ,2i  are the PM coefficients, from [29], for the notch geometries 1 and 2, respectively. The 

objective function of this search is the difference of the two lengths, in dimensionless form and scaled, which 

is to be minimized as absolute value: 

2 1 2 1Min.( )l l l l    =  −          (A.5) 

In the range proposed above, the two lengths are independently obtained, with Eq. (A.4), and then the couple 

of 1 2,l l   minimizing the difference of Eq. (A.5) can be iteratively found. After this minimization search, one of 

the two lengths, can be used for the final determination of the PM critical distance: 

* 2
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A.2 An applicative example 

An example is reported here to show the proposed procedures of critical distance determination both according 

to the LM and the PM with two notches of different sharpness. The considered example is referring to the 

experimental data presented above, with the following data: 
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In this situation, the scale factor is not required ( 1 = ) since both specimens were manufactured with the 

same external diameter D . According to the LM the following results are obtained: 
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Similar results are then found, in terms of fK , according to the PM, while a larger critical distance is obtained: 
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Figure A.2 shows the LM and PM relationships between the ratio rK  and the corresponding critical distances, 

and as discussed above, vary large (an unrealistic) length values are obtained for r 1K = . 

After the availability of the fatigue stress concentration factors, and the fatigue limits of the notched specimens, 

the plain intrinsic fatigue limit can be deduced. The same value is obtained from either specimen 1 or specimen 

2, however, a small difference results between Line and Point Methods: 
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Figure 

 

 

Figure 1: strategies for inverse search of the critical distance pursued in the present paper. (i) in 

"Plain&Treshold" Lth is deduced from plain fatigue strength and crack growth threshold, (ii) in "Plain&Sharp" 

L is obtained from the fatigue strength measured on a plain and an optimized notched geometry, (iii) in 

"Blunt&Sharp" L* is determined from two optimized notched geometries producing a different stress 

concentration factor. 

 



 

Figure 2. Geometry of the specimens used for the fatigue characterization. (a) plain, (b)-(e) notched specimens. 

(f) M(T) specimen used for the fatigue crack growth experiment. Dimension in mm. Fatigue data obtained 

from specimen geometries (b) and (c) were used to determine the critical distance L* according to Blunt&Sharp 

approach specifically devised in the present work. 

 

  

Figure 3. Microstructure of the EN-GJS-600-3 coupons cast investigated in this work shown at two 

magnification scales. 
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Figure 4. (a) Axial fatigue SN curves. Solid lines represent 50% failure probability, while dashed lines refer 

to 10% and 90% failure probability. Arrows indicated runout tests. (b) Fatigue crack propagation curve and 

Klesnil and Lukáš fit curve (Eq. (20)). 

 



 

Figure 5: SEM micrographs of the fracture surfaces around the fatigue crack initiation site. (a) microshrinkage 

pore (red arrow) found in plain sample (a) (a = 140 MPa, Nf = 1.9×106). (b) Graphite nodule (red arrow) that 

likely triggered the fatigue crack initiation in notched specimen (d) (a = 130 MPa, Nf = 5.4×105). (c) and (d) 

fracture surface of a runout blunt notched specimen (c) ((a = 110 MPa, Nf = 5×106). (c) Dashed line indicates 

the front of the non-propagating crack revealed after fatigue resting at load ratio R = 0.1. (d) magnification of 

the detail enclosed in (c) by the red dashed rectangle. The red arrows indicate the graphite nodule causing the 

crack initiation in the runout test. 
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Figure 6. (a) CT scan of a plain sample (a). Shrinkage pores are indicated in color scale. The circled pore 

triggered the fatigue fracture shown in the CT scan. Grey features are graphite nodules. (b) Histogram showing 

the distribution of the Murakami area  parameter of the graphite nodules detected in (a). 

 



 

Figure 7. (a) geometry and location of the toroidal control volume considered for the estimation of the expected 

maximum size of the graphite nodule in the vicinity of the notch tip. For this purpose, the entire scanned 

volume of a plain sample (black line) is considered. The control volume is centered at the tip of the notched 

specimen (blue dashed line) having the same net section diameter as the plain specimen. (b) Histograms 

showing the distribution of the Murakami area  parameter of the graphite nodules detected in control 

volumes located at different axial coordinate z from the fracture surface shown in Fig. 6. (c) Cumulative 

probability distributions of nodule dimension area  detected in toroidal control volumes of different 

location z. (d) Maximum expected nodule size maxarea  as a function of the radius of the toroidal control 

volume. 
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Figure 8: (a) critical distance L* and intrinsic plain fatigue strength 
*

fl / 2  assessed according to the 

"Blunt&Sharp" method as a function of the number of cycles to failure. (b) Prediction of the fatigue curves of 

independent notched variants (d) and (e) not used for the calibration of the critical distance approach. 

 



 

Fig. A.1. Stress concentration factor for the optimized specimens with notch angles 90 =   and 60  as 

functions of the notch radius ratio  . 

 

 

Fig. A.2. Example of LM and PM critical distance determinations, as functions of the fatigue stress 

concentration factor ratio rK . 

 

Tables 

 

Table 1. Measured chemical composition (wt.-%) of the investigated EN-GJS-600-3 cast iron, balance Fe. 

C Si Mn P S Cu Ni Mg 

3.550 2.390 0.280 0.038 0.009 0.520 0.020 0.046 
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Table 2. Notch root radius measured in the notched variants and corresponding stress concentration factor. 

Specimen geometry Notch root radius (mm) Theoretical stress 

concentration factor Kt 

Notch 60° R0.2 (b) 0.30±0.01 4.95 

Notch 60° R1 (c) 1.00±0.01 2.87 

Notch 90° d14 (d) 0.51±0.03 3.87 

Notch 90° d6.5 (e) 0.17±0.01 4.48 

 

Table 3. Results of the 2D optical analyses of the graphite nodules. Standard error corresponds to 1σ 

uncertainty band. 

Number of 

nodules 

Total 

graphite 

content (%) 

Fraction 

of 

spheroidal 

graphite 

(%) 

Diameter of 

graphite 

nodules dG 

(m) 

Shape factor 

f0 

Roundness G Mean 

nearest- 

neighbour 

distance λnn 

(μm)  

 

1965 13±2 98±1 62±40 0.90±0.20 0.61±0.15 104±43 

 

Table 4. Monotonic tensile properties and Brinell hardness (based on four replicated tests). Standard error 

corresponds to 1σ uncertainty band. 

Condition SY (MPa) SU (MPa) T.E. (%) HB 

present material 363±8 458±15 2.1±0.5 198±4 

EN-GJS-600-3 

[42] 

60 < t ≤ 200 mm 

320 min 500 min 1 min 190 ÷270 

SY: 0.2% yield stress; SU: ultimate tensile strength; T.E.: total elongation; HB: 

Brinell hardness 

 

Table 5. Best-fit coefficients of Eq. (16) used to interpolate the SN curves. S indicates the standard deviation. 

The high-cycle fatigue strength was assessed at 5×106 cycles. 

Specimen geometry k1 (MPa) k2 (MPa) k3 S (MPa) 
fl N,fl/ 2,  / 2    at 

5×106 cycles (MPa) 

Plain d6.5 (a) 143 10205 0.424 23 158 (158±19*) 

Notch 60° R0.2 (b) 79.2 12062 0.432 5.0 94.6 

Notch 60° R1 (c) 78.2 2980.9 0.280 5.8 118 

Notch 90° d14 (d) 99.6 10078 0.434 5.1 112 (113±2*) 



Notch 90° d6.5 (e) 115 89358 0.605 11 123 (124±15*) 

* mean and standard deviation of the fatigue endurance estimated on the base of a staircase 

approach 

 

Table 6. Best-fit parameters of the crack propagation law expressed by Eq. (20) 

Specimen geometry Kth (MPa·m0.5) C m (*) 

M(T) (f) 14.0 3.75×10-13 3.66 

Units in Eq. (20) are m/cycle and MPa·m0.5 

 

Table 7: Results of the critical distance inversion methods illustrated in Fig. 1. 

Plain&Threshold 

Specimen geometry: (a) & (f) 

Plain&Sharp 

(a) & (b) 

Blunt&Sharp 

(c) & (b) 

fl / 2  

(MPa) 

thL  (mm) fl / 2  

(MPa) 

L  (mm) *

fl / 2  

(MPa) 

*L  (mm) 

158 0.625 158 0.530 269 0.136 

 

Table 8: Prediction of the notch fatigue strength and crack growth threshold of independent geometries not 

used in the calibration of the critical distance method. 

Specimen 

geometry 

Exp. (MPa/ 

MPam0.5) 

Plain&Threshold Plain&Sharp Blunt&Sharp 

Pred. Err. (%) Pred. Err. (%) Pred. Err. (%) 

Notch 60° 

R0.2 (b) 

94.6 102 7.5 - - - - 

Notch 60° R1 

(c) 

118 105 -11 99.3 -16 - - 

Notch 90° d14 

(d) 

112 104 -7.2 97.5 -13 105 -6.4 

Notch 90° 

d6.5 (e) 

123 143 16 133.3 8.4 130 6.1 

M(T) (f) 14.0 - - 12.9 -7.9 11.1 -20 

 

Table 9. Results of the 3D analyses done via CT scans of pores and graphite nodules. Standard error 

corresponds to 1σ uncertainty band. 

Type of feature Number of detected 

features 

Diameter d* (m) Sphericity  

pore 14 333±84 0.25±0.07 



graphite nodule 68537 65±31 0.54±0.07 

 

Table 10. Prediction of the fatigue strength of the control volume based on the maximum expected nodule size 

according to the models expressed in Eq. (21). 

Floc HV* SU (MPa) SY (MPa) 
maxarea  

(m) 

W (MPa) 

Murakami 

[8] 

Deguchi et al. 

[10] 

Borsato et al. 

[11] 

1.56 198 458 363 155 214 219 269 

* estimated through conversion from Brinell hardness 

 

Table A.1. Fit coefficients of the tK  model for the two considered notch angles. 

Notch angle   
1t   2t   3t   

90° 0.02206 -0.3862 0.2687 

60° 0.02912 -0.3907 0.2685 

 


