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ABSTRACT 13 

To reduce both the computational cost of probabilistic inversions and the ill-posedness of 14 

geophysical problems, model and data spaces can be re-parameterized into low-dimensional domains 15 

where the inverse solution can be computed more efficiently. Among the many compression methods, 16 

deep learning algorithms based on deep generative models provide an efficient approach for model 17 

and data space reduction. We present a probabilistic electrical resistivity tomography inversion in 18 

which the data and model spaces are compressed through deep convolutional variational 19 

autoencoders, while the optimization procedure is driven by the ensemble smoother with multiple 20 

data assimilation, an iterative ensemble-based algorithm. This method iteratively updates an initial 21 

ensemble of models that are generated according to a previously defined prior model. The inversion 22 

outcome consists of the most likely solution and a set of realizations of the variables of interest from 23 

which the posterior uncertainties can be numerically evaluated. We test the method on synthetic data 24 

computed over a schematic subsurface model, and then we apply the inversion to field measurements. 25 

The model predictions and the uncertainty assessments provided by the presented approach are also 26 
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compared with the results of an MCMC sampling working in the compressed domains, a gradient-27 

based algorithm, and with the outcomes of an ensemble-based inversion running in the uncompressed 28 

spaces. A finite-element code constitutes the forward operator. Our experiments show that the 29 

implemented inversion provides most likely solutions and uncertainty quantifications comparable to 30 

those yielded by the ensemble-based inversion running in the full model and data spaces, and the 31 

MCMC sampling, but with a significant reduction of the computational cost. 32 

Keywords: Electrical Resistivity Tomography; Inversion;  33 

 34 

INTRODUCTION 35 

Electrical resistivity tomography (ERT) is widely used to image the resistivity distribution of the 36 

subsurface in a variety of engineering, hydrogeological and environmental problems (e.g., Rucker et 37 

al. 2011; Moradipour et al. 2016; Whiteley et al. 2017; Arosio et al. 2017; Bièvre et al. 2018; Hojat 38 

et al. 2019a; Dahlin 2020; Hermans and Paepen 2020; Aleardi et al. 2020; Loke et al. 2020; Aleardi 39 

et al. 2021a; Norooz et al. 2021). Due to incomplete data coverage and noise contamination, the ERT 40 

is an ill-posed problem characterized by a non-unique and unstable solution (i.e., small variations of 41 

the data produce large perturbations in the predictions; Tarantola, 2005; Aster et al. 2018; Binley and 42 

Slater, 2020), and hence, an accurate estimation of the model uncertainty is of primary importance. 43 

However, the most common approach to ERT solves the inversion through deterministic, gradient-44 

based algorithms. These methods employ optimization algorithms to minimize a predefined objective 45 

function that measures the difference between the predicted and the observed data. Usually, model 46 

constraints are also infused in the objective function to reduce the ill-conditioning of the problem. 47 

Such methods are generally computationally efficient but provide an estimation of the model (i.e., 48 

the most likely solution) without accurately quantifying the associated uncertainty. On the contrary, 49 

a probabilistic (Bayesian) inversion framework considers the model parameters as random variables 50 



and formulate the inversion as a probability density function that is proportional to the product of the 51 

prior and the data likelihood. The prior term corresponds to the regularization term in deterministic 52 

methods, whereas the likelihood incorporates information about the observed data. For linear forward 53 

operators and Gaussian model and data assumptions, the posterior can be analytically computed from 54 

which model realizations can be efficiently simulated. Otherwise, Markov Chain Monte Carlo 55 

(MCMC; Sambridge and Mosegaard, 2002; Sen and Stoffa, 2013) algorithms can be employed for 56 

accurate posterior probability density (PPD) estimations in non-linear problems. However, the 57 

considerable numbers of samples needed for accurate uncertainty appraisals often discouraged their 58 

applications in large dimensional parameter spaces and for expensive forward model evaluations 59 

(Sajeva et al. 2014; Aleardi and Salusti, 2020; Pradhan and Mukerji, 2020). To mitigate this problem, 60 

model and data compression strategies can be employed such as singular-value decomposition, 61 

wavelet transform, discrete cosine transform (Grana et al. 2019; Aleardi, 2020) and in this context, 62 

the inversion is run in the reduced model and data spaces. Another promising approach is based on 63 

the dimension reduction of model and data spaces via deep neural networks (Goodfellow et al., 2014; 64 

Laloy et al., 2018) that presents several advantages over linear compression strategies. Ensemble-65 

based data assimilation methods such as ensemble smoother with multiple data assimilation (ES-66 

MDA) (Emerick and Reynolds, 2013) can constitute an efficient alternative to MCMC algorithms 67 

because they are computationally faster but might underestimate the model uncertainty in high-68 

dimensional parameter and data spaces. This undesirable phenomenon is usually called ensemble 69 

collapse (Sætrom and Omre, 2013). To mitigate this issue a local analysis can be employed to 70 

eliminate spurious correlations between data and model parameters (Chen and Oliver, 2017; Luo et 71 

al., 2019). Otherwise, reduction methods can be employed to eliminate the redundant information 72 

(Luo et al., 2018). Therefore, compression strategies have also been extensively implemented in 73 

ensemble-based methods (Bao et al. 2020). In this context, the compression of model and data space 74 

allows developing a fast and efficient probabilistic inversion. However, the unavoidable information 75 

loss due to reduction might lead to underestimation or overestimation of the model uncertainty (Grana 76 



et al. 2019). For this reason, the trade-off between model resolution and model uncertainty must be 77 

always considered when reparameterization techniques are applied (Aleardi, 2015). Recently 78 

ensemble-based methods and convolutional autoencoders have extensively been used to solve 79 

geophysical problems and some applications can be found in Liu and Grana (2018), Mandelli et al. 80 

(2018), Kang et al. (2019), Tso et al. (2020), Saad and Chen (2020), Gao et al. (2020), Kang et al. 81 

(2021), to name just a few. 82 

In this work, we present a probabilistic ERT inversion in which deep convolutional variational 83 

autoencoders (DCVAEs; Kingma and Welling, 2013) are used to compress data and model spaces, 84 

while the ES-MDA provides multiple posterior realizations from which the uncertainty can be 85 

numerically assessed. DCVAEs are a variant of variational autoencoders (VAEs) in which 86 

convolutional filters are used to extract latent features from the network input. We first discuss a 87 

synthetic example over a schematic subsurface model before applying the method to field data. The 88 

outcomes of the proposed approach are also benchmarked against those yielded by a gradient-based 89 

algorithm, an ES-MDA inversion running in the full data and model spaces, and an MCMC sampling 90 

working in the compressed domains. The employed MCMC recipe is described in Vinciguerra et al. 91 

(2021) with the only difference that the probabilistic sampling is here performed in DCVAE 92 

compressed data and model spaces. The MCMC method employed is the differential evolution 93 

Markov chain, a popular algorithm that employs interactive chains to improve the efficiency of 94 

probabilistic sampling (Vrugt, 2016). In all cases, a 2.5D finite-elements (FE) Matlab modeling 95 

routine constitutes the forward operator (Karaoulis et al., 2013). All the codes have been written in 96 

Matlab, and all the tests have been run on a notebook equipped with Intel i7-10750H CPU@2.60GHz, 97 

16Gb of RAM, and an NVIDIA GeForce RTX 2060.  98 

This work aims to assess the applicability of DCVAEs to increase the computational efficiency of 99 

a probabilistic ERT inversion solved via the ES-MDA algorithm. As far as the authors are aware, this 100 

is the first paper in which these two approaches are combined to solve this geophysical problem. 101 

 102 



METHODS 103 

The Bayesian framework and the ensemble-based inversion 104 

In a Bayesian context the solution of an inverse problem is fully expressed by the PPD in the model 105 

space, which is expressed as:  106 

𝑝(𝐦|𝐝) =
𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝)
,     (1) 107 

where 𝑝(𝐦) and 𝑝(𝐝) denote the a-priori distributions of model parameters and data, respectively; 108 

𝑝(𝐦|𝐝) is the target PPD, whereas 𝑝(𝐝|𝐦) is the data likelihood. For nonlinear inverse problems, 109 

the posterior distribution can not be analytically computed because the forward operator can not be 110 

expressed in a matrix form. Therefore, a numerical evaluation of the posterior must be derived using, 111 

for example, MCMC sampling algorithms or ensemble-based methods. 112 

The ES-MDA is an iterative procedure in which the updated models are used as the prior in the 113 

next iteration. The method starts with an ensemble of models generated according to the prior 114 

assumptions. Then, these models are updated by applying a Bayesian updating step to a stochastic 115 

observation of the data 𝐝̃𝑘 under model and data Gaussian assumptions with empirical parameters 116 

estimated from the ensemble members. A single ES-MDA iteration can be written as: 117 

𝐦𝑘
𝑢 = 𝐦𝑘

𝑝 + 𝐂̃𝐦𝐝
𝑝 (𝐂̃𝐝𝐝

𝑝 + 𝐂𝐝)−1(𝐝̃𝑘 − 𝐝𝑘
𝑝),        (2) 118 

where: 119 

𝐂̃𝐦𝐝
𝑝

=
1

𝑁 − 1
∑(𝐦𝑘

𝑝
− 𝐦̅𝑝)(𝐝𝑘

𝑝
− 𝐝𝑝̅)

𝑇
 ,       (3)

𝑁

𝑗=1

 120 

𝐂̃𝐝𝐝
𝑝 =

1

𝑁 − 1
∑(𝐝𝑘

𝑝 − 𝐝𝑝̅)(𝐝𝑘
𝑝 − 𝐝𝑝̅)𝑇

𝑁

𝑗=1

,       (4) 121 

with k=1,…,N, where N represents the number of models in the ensemble and 𝐝̃𝑘 is a random 122 

perturbation of the observed data according to the Gaussian distribution 𝒩(𝐝, 𝐂𝐝), in which 𝐂𝐝 is the 123 

data covariance. The subscripts u and p denote the updated (current iteration) and prior (previous 124 



iteration) variables, respectively;  𝐂̃𝐦𝐝
𝑝

 and 𝐂̃𝐝𝐝
𝑝

 represent the empirical covariance matrices estimated 125 

from the ensemble members, whereas 𝐦̅𝑝 and 𝐝𝑝̅ are the empirical ensemble mean of the model 126 

parameters and predicted data, respectively.   127 

The following steps are implemented for the ES-MDA: 128 

1. Define the number of models in the ensemble N, the maximum number of iterations Q, and 129 

the inflation coefficient α for each iteration with ∑
1

𝛼𝑖
= 1𝑄

𝑖=1 ; 130 

2. Generate realizations according to the prior 𝑝(𝐦); 131 

3. For each iteration:  132 

a. Apply the forward operator and compute the observation for each ensemble 133 

member  {𝐝 
𝑝} 1,…,𝑁; 134 

b. Perturb the observations according to:  𝐝̃𝑘 = 𝐝 + √𝛼𝑖𝐂𝐝
−1/2

𝐧 , with 𝐧 = 𝒩(0, 𝐈), 135 

where I is the identity matrix;  136 

c. Update the ensemble using equations 2-4 with  𝐂𝐝 replaced by 𝛼𝑖𝐂𝐝. 137 

All the ensemble members at the last iteration represent possible subsurface scenarios in agreement 138 

with the acquired geophysical data and with the prior assumptions. From this ensemble of models, 139 

the PPD can be numerically evaluated. Theoretically, the method converges when the ensemble size 140 

𝑁 tends to infinity. In practical applications, a sensitivity analysis is generally required to determine 141 

the optimal number of ensemble members that guarantees accurate posterior uncertainty assessments. 142 

In particular, the number of ensemble members should be large enough to get an accurate estimate of 143 

the 𝐂𝐝𝐝
𝑝

 and 𝐂𝐦𝐝
𝑝

 matrices but small enough not to make the forward evaluations computationally 144 

impractical. Usually, the number of ensemble members needed to get accurate uncertainty 145 

assessments increases with the dimension of the model space.   146 

 147 

Variational autoencoders 148 



Autoencoders are a class of unsupervised neural networks that are widely employed for 149 

representation learning (Goodfellow et al., 2016). Autoencoders are more powerful than linear 150 

dimensionality reduction methods (e.g., principal component analysis) because deep neural networks 151 

can learn nonlinear features underlying the uncompressed, input space. An autoencoder consists of 152 

two components: an encoder and a decoder. The encoder extracts latent features 𝐳 from the high 153 

dimensional input data 𝐱; the decoder recovers the predicted input data 𝐱 from the latent features 154 

minimizing the reconstruction error. Autoencoders force a sparse representation of the input by 155 

imposing a bottleneck in the network such that the dimension of the latent features is much lower 156 

than that of the original input. Mathematically, the autoencoder is described as a set of two functions:  157 

𝐳 = 𝐡(𝐱; Ω𝐞𝐧𝐜),    (5) 158 

𝐱̂ = 𝐠(𝐳; Ω𝐝𝐞𝐜),   (6) 159 

where 𝐡 represents the encoder that projects the input 𝐱 to the sparse latent features 𝐳, whereas 𝐠 160 

denotes the decoder that recovers the estimated input 𝐱̂ from 𝐳; Ω𝐞𝐧𝐜 and Ω𝐝𝐞𝐜 are the network internal 161 

parameters (i.e., learnable weight matrices and biases) in the encoder and decoder. The internal 162 

network parameters are randomly initialized and then updated during the learning phase that involves 163 

the generation of appropriate training and validation sets, and minimization of a loss function. VAEs 164 

are a generalization of the standard approach to learning the probability distribution of the latent 165 

space. The encoder in VAEs learns two vectors: a vector of mean 𝛍 and a vector of standard deviations 166 

𝛔. In our case, the inputs to the encoder are models and data generated according to prior assumptions. 167 

The inputs to the decoders in the variational approach are random vectors drawn from the Gaussian 168 

distribution 𝐳 ~ 𝒩 (𝛍,𝛔𝟐), which allows the decoder to sample in the latent space.  Figure 1 169 

schematically represents a generic VAE architecture. 170 

As previously mentioned, the learning process minimizes a loss function that is here defined as a 171 

linear combination of L2 norm difference between target and reconstructed network outputs (𝐸𝑥), and 172 

the Kullback–Leibler divergence (𝐸𝐾𝐿) that quantifies the similarity of two probability distributions. 173 



Introducing the KL divergence allows making the variational distribution as close as possible to the 174 

prior distribution. Therefore, the loss function can be written as: 175 

𝐸 = 𝐸𝑥 + 𝜀𝐸𝐾𝐿 ,       (7) 176 

with: 177 

𝐸𝑥 =
1

𝐿
||𝐱 − 𝐱̂||2,      (8) 178 

𝐸𝐾𝐿 = −
1

2𝐿
∑ 1 + log(𝜎𝑖

2)

𝐿

𝑖=1

− 𝜇𝑖
2 − 𝜎𝑖

2,        (9) 179 

where L denotes the dimensionality of the input data 𝐱, and 𝜇𝑖
 
 and 𝜎𝑖

 
 are the ith components of the 180 

output vectors 𝛍 and 𝝈 of the encoder, respectively. The term 𝜀 in equation 7 represents the trade-off 181 

parameter that must be optimally tuned to ensure that the reconstructed output can reproduce the 182 

original input and that the learned distribution is similar to the target distribution (see Lopez Alvis et 183 

al., 2021 for a detailed discussion). In this way, the autoencoders can successfully learn the compact 184 

latent features that represent the original data x.   185 

In this work, we use deep convolutional VAEs to compress model and data spaces in a ES-MDA 186 

inversion framework. In other terms, the model unknowns and the data points in our approach are 187 

defined in latent spaces whose geometrical properties are defined by properly trained VAE networks. 188 

When the compression is applied to the full model space 𝐦, we get:  189 

𝐦̂ = 𝐡𝐦(𝐦; Ω𝐞𝐧𝐜),      (10) 190 

where 𝐦̂ represents the reduced model vector through the 𝐡𝐦 encoder. Otherwise, when the 191 

compression is applied to the data we obtain the reduced data vector:  192 

𝐝̂ = 𝐡𝐝(𝐝; Ω𝐞𝐧𝐜),        (11) 193 

with 𝐡𝐝 representing the trained encoder for data compression. Therefore, the data likelihood in the 194 

reduced model and data space becomes:  195 

𝑝(𝐝̂|𝐦̂) = 𝒩 (𝐝̂; 𝐡𝐝 (𝐺(𝐠𝐦(𝐦̂; Ω𝐝𝐞𝐜))) , 𝐂𝐝̂),        (12) 196 



where G is the nonlinear forward operator, while the data covariance matrix in the compressed space 197 

𝐂𝐝̂ is learned by the VAE.  198 

The inversion is performed in the compressed model space, then the samples are projected in the full 199 

space before the data computation through the FE code. The computed data are then compressed 200 

before the evaluation of the data matching. Note that the encoding and decoding operations can be 201 

accomplished almost in real-time with a negligible computational cost. Also, note that the encoding 202 

and the decoding applied to the data and model space are different and learned during separate training 203 

phases. The samples forming the ensemble of the ES-MDA inversion at the last iterations can be 204 

finally projected onto the full model space (using the trained decoder) to numerically compute the 205 

most likely solution and the associated uncertainties (i.e., model standard deviation) in the original, 206 

uncompressed parameter space.   207 

 208 

RESULTS 209 

Synthetic inversions 210 

We consider a schematic subsurface resistivity model represented by a rectangular block with a 211 

resistivity of 50 Ωm hosted in a homogeneous half-space with resistivity equal to 150 Ωm (Figure 2). 212 

The study area is discretized with 11 × 35 = 385 rectangular cells with vertical and lateral 213 

dimensions of 0.5 m and 1 m, respectively. The resistivity values within the cells correspond to the 214 

model parameters to be estimated. We simulate a Wenner acquisition layout with 36 electrodes with 215 

a=1 m. The maximum a value is 11. This configuration results in 198 data points. In this example, 216 

we employ the Wenner layout because it has been also used for the field data acquisition, but the 217 

presented inversion framework can be applied to other electrode configurations as well. The FE code 218 

was used to compute the noise-free observed dataset that was contaminated with uncorrelated 219 

Gaussian noise with a standard deviation equal to the 10% of the total standard deviation of the noise-220 

free apparent resistivity data (i.e., a noise standard deviation equal to 2.06). Figure 3 represents the 221 

prior model assumptions used to generate the training, validation, and tests sets. We employ a 222 



stationary log-Gaussian prior, while a Gaussian variogram is used as the spatial continuity pattern 223 

with horizontal and vertical variogram ranges equal to 4 and 1.5 m, respectively.  224 

For both model and data compression, we use DCVAEs. To simplify the network configuration 225 

for the model compression we add a column and a row to the dimension of the study area (11 x 35) 226 

so to obtain a grid of 12 rows and 36 columns with dimensions that can be repeatedly and conveniently 227 

divided by integer numbers. This additional row and column are removed in the inversion phase 228 

before the forward modeling computation and are not considered in the visualization of the final 229 

results. For model compression, we first generate 5000 realizations from the prior; 4000 are used for 230 

training, whereas 500 form the validation and test sets. The time needed to generate the prior models 231 

is negligible while the training runs in less than five minutes (20 epochs) on the GPU previously 232 

mentioned. The characteristics of the implemented DCVAE for model compression are shown in 233 

Table 1. Note that in this case the full 385D model space is reduced to a 40D domain. The Adam 234 

optimizer (Balles and Hennig, 2018) is used to minimize the loss function. We employ a batch size 235 

of 24, whereas a dropout of 10% is used before the fully connected layer to prevent overfitting (Wu 236 

and Gu, 2015). We set the trade-off parameter ε in the loss function to 0.1. In all layers, we adopt the 237 

LeakyRelu activation function with a leakage value of 0.1 (Dubey and Jain, 2019). Batch 238 

normalization is used as a regularization operator (Santurkar et al., 2018), while the initial learning 239 

rate is set to 0.001 and this value is multiplied by 0.95 every epoch.  240 

For data compression, we first compute the data associated with all the 5000 models previously 241 

generated. Again this ensemble is divided into training, validation, and test with a split of 80/10/10.  242 

The network configuration used for data compression is represented in Table 2. Note that because of 243 

its trapezoidal shape, the apparent resistivity section is first flattened to a 1D vector before feeding 244 

into the DCVAE. In this case, the 198D data space has been sparsely re-parameterized by mean and 245 

variance vectors of dimensions 50. Again, the Adam optimizer is used to minimizes the loss functions 246 

while the trade-off parameter in the loss function is set to 0.05. The batch size and the learning rate 247 



are the same used for the model compression. The training phase takes three minutes on the same 248 

hardware resources previously mentioned.  249 

As an example, Figure 4 represents some prior realizations extracted from the test set and the 250 

associated DCVAE approximations. The satisfactory agreement between target and approximated 251 

models proves that the network has been properly trained and hence it can capture most details of the 252 

original models.  Note that once the network is fully trained it can also be used to generate models 253 

(e.g., the models forming the initial ensemble for the ES-MDA inversion) according to the prior 254 

without employing any geostatistical generation tool.  255 

We run the ES-MDA inversion in the compressed domain using an ensemble of 250 resistivity 256 

models. We run inversions also with smaller and larger ensembles but this number revealed to be the 257 

optimal compromise between the computational costs related to the forward evaluations and the 258 

stability of the estimated uncertainties (see discussion below). With stability, we mean that the 259 

estimated uncertainty does not sensibly change for an increased ensemble size. Indeed, smaller 260 

ensembles resulted in underestimated posterior uncertainties, while larger ensembles (e.g., 500, 1000 261 

models) provided uncertainty similar to the one obtained with 250 models. See Aleardi et al. (2021b) 262 

for a more detailed discussion on how the ensemble size affects the uncertainty estimation in ERT 263 

inversion solved via ensemble-based algorithms. For comparison, the MCMC employs 30 chains and 264 

runs in the compressed model space for 3000 iterations, with a burn-in period of 500. The potential 265 

scale reduction factor (PSFR; Brooks and Gelman, 1998) is used to monitor the convergence of the 266 

MCMC sampling towards a stable PPD. For computationally feasibility reasons the MCMC sampling 267 

has not been run in the full data and model spaces. 268 

As a comparison Figure 5 illustrates, the most likely ES-MDA solution obtained with the 269 

implemented approach, the solution provided by the MCMC inversion, the one obtained by the ES-270 

MDA inversion running in the full data and model space, and the predictions of a gradient-based 271 

inversion performed with the IP4DI software (Karaoulis et al., 2013). Both the ensemble-based 272 

inversions have been run for four iterations. The rectangular resistivity anomaly is well recovered and 273 



properly located by all methods, although the gradient-based inversion yields a final result that 274 

slightly underestimates the resistivity values in the deeper part of the model, while the probabilistic 275 

approaches slightly overestimate the maximum depth reached by the low resistivity body. From the 276 

many inversion tests carried out with the ES-MDA running in the full space we noted that stable 277 

uncertainties quantifications can be achieved with an ensemble of 1000 models (see again the 278 

discussion below), thus meaning that the compression of the model and data spaces provides similar 279 

model predictions but with a total number of forward evaluations (and computing time) four times 280 

smaller.  281 

Figure 6 compares the posterior standard deviations estimated by the ES-MDAs running in the 282 

compressed and full spaces, and the MCMC sampling. The two ensemble-based inversions provide 283 

congruent uncertainty quantifications, although we observe that with DCVAE we get a slight 284 

underestimation of the posterior uncertainties due to the reduced model space dimension, especially 285 

in the least illuminated part of the subsurface. Some differences are also observed with respect to the 286 

MCMC results particularly for the cells poorly informed by the data, for which the two ES-MDA 287 

inversions tend to underestimate the posterior uncertainties. However, in all cases, we observe that 288 

the lower uncertainties are located in correspondence with the low resistivity anomaly while the 289 

precision of the results decreases moving at the lateral edge and the bottom of the study area.  290 

To better investigate how the ensemble size affects the estimated uncertainty, Figure 7 compares 291 

the standard deviation sections computed for the ES-MDA inversion with and without model 292 

compression and running with different ensemble sizes. It emerges that with DCVAE the inversion 293 

yields stable posterior quantifications with smaller ensembles; In particular stable uncertainties can 294 

be achieved with 250 and 1000 models, respectively, for the inversion running in the reduced and full 295 

model and data spaces. Differently, the most likely models are very similar for all the tests illustrated 296 

previously, and hence they are not shown here.    297 

Figure 8 shows for the MCMC inversion the evolution of the negative log-likelihood for the 30 298 

chains and the PSRF for some model parameters. We observe that the steady-state of the Markov 299 



chain is attained in 500 iterations (i.e., corresponding to the selected burn-in period), while 1500 300 

iterations are needed to reach stable PPD estimations (a PSRF lower than 1.1). This means that the 301 

MCMC inversion needs 45000 forward evaluations to converge (1500 iterations × 30 chains). This 302 

value is 45 and 11.25 times larger than the number of forward runs needed by the ensemble-based 303 

inversions running in the compressed and full spaces, respectively. 304 

Figures 9a and 9b show some resistivity models from the initial ensemble generated with the 305 

trained network and the corresponding models at the last ES-MDA iteration, respectively. We observe 306 

that all the final models successfully predict the low resistivity anomaly located in the central part of 307 

the investigated profile.  308 

Figure 10 shows a comparison between the observed apparent resistivity values and the data 309 

generated on the most likely solutions predicted by the two ES-MDA inversions and the MCMC 310 

sampling, along with the prediction of the gradient-based algorithm. All the methods achieve 311 

satisfactory data matching. Figure 11 illustrates for the ES-MDA inversion running in the compressed 312 

domains, a comparison between the observed data and the data computed on the initial and final 313 

ensemble of models. This comparison demonstrates that the inversion eventually converges toward 314 

an ensemble of resistivity profiles that satisfactorily reproduce the observed apparent resistivity 315 

values. 316 

As a final and more quantitative assessment of the results, we list in Table 3 the 90% coverage ratio, 317 

and the root-mean-square errors (RMSE) between true and predicted models and observed and 318 

predicted data. We remind that the 90% coverage ratio quantifies the percentage of resistivity values 319 

in the true model that fall within the 90% confidence interval as estimated by the probabilistic 320 

inversion. Since the gradient-based inversion does not provide uncertainty quantifications the 321 

coverage ratios are only computed for the MCMC sampling and the two ES-MDA inversions. The 322 

four inversions give very similar data predictions while the model predictions are slightly more 323 

accurate for the three probabilistic inversions due to the underestimation of the background resistivity 324 

of the gradient-based approach. A better data matching can be achieved by the gradient-based 325 



inversion just by lowering the trade-off regularization parameter but at the expense of an increased 326 

scattering in the recovered solution. As expected, the two ES-MDA algorithms provide lower 327 

coverage ratios than the MCMC sampling, thereby demonstrating that this last method gives slightly 328 

more accurate uncertainty estimations, but this happens at the expense of a dramatic increase of the 329 

computational workload due to the higher number of forward evaluations needed to converge. For 330 

the two ES-MDA inversions, we also note that the coverage ratio slightly increases if we move from 331 

the compressed to the full model and data spaces, but this again happens at the expense of an increased 332 

computational cost. For example, if we consider parallel codes and the hardware resources previously 333 

mentioned, the ES-MDA with DCVAE runs in less than 10 minutes. The same inversion approach 334 

without compression takes more than 40 minutes, while the MCMC sampling running in the 335 

compressed domains takes 900 minutes to converge. Finally, from a practical point of view, we deem 336 

that the model uncertainties provided by the presented approach are reasonable and comparable to 337 

those yielded by the other probabilistic inversion methods. 338 

 339 

 340 

Field data application 341 

We now apply the presented approach to invert a field dataset acquired for levee monitoring along 342 

the Parma river (Italy). We refer the interested reader to Hojat et al. (2019b) for more information 343 

about the study area. We invert a single dataset acquired with electrodes buried in a 0.5 m-deep trench 344 

and employing the Wenner acquisition layout with 48 electrodes for a unit spacing of a = 2 m. The 345 

investigated site covers an area that is 94 m wide and 14 m deep and it is discretized with rectangular 346 

cells with vertical and lateral dimensions of 1 m and 2 m, respectively. This configuration results in 347 

15×47= 705 resistivity values to be estimated from 360 data points. Similar to the synthetic example, 348 

we have conveniently added a column and a row to the dimension of the inversion grid to simplify 349 

the network configuration.   350 



We exploit all the available information about the investigated site to define the prior distribution 351 

of model parameters. In particular, we still employ a log-Gaussian prior and a spatial variability 352 

pattern described by a Gaussian variogram with lateral and vertical ranges equal to 6 m and 2 m, 353 

respectively. In this area, we mainly expect a low-resistivity clay body that around 2-3 m depth hosts 354 

a more permeable layer with higher resistivity values associated with the presence of sand and gravel. 355 

The a-priori simplifies the actual distribution of the resistivity values in the synthetic model. 356 

Therefore, to validate this prior we compare summary statistics of observed and simulated data 357 

generated from prior realizations to determine if the observed data samples are outliers. Figure 12 358 

demonstrates that the observations always lie within the 95 % confidence interval derived from 359 

apparent resistivity sections generated by prior realizations. In mathematical terms, this means that 360 

the observed data and the data derived from the prior can be considered as realizations of the same 361 

random variable (Pradhan and Mukerji, 2020). 362 

To train the networks we again generate 5000 prior realizations and we define the training, 363 

validation, and test sets using the same split previously employed in the synthetic experiment. The 364 

main characteristics of the network used for model compression (see Table 4) are similar to those 365 

employed in the synthetic case and listed in Table 1, but in this application, the full model domain is 366 

compressed to a 150D space. We also use the same batch size, optimization algorithm, initial learning 367 

rate, and the maximum number of epochs. The fact that almost the same network configuration 368 

properly works in both the synthetic and field example illustrates the flexibility of the approach, 369 

which means that a successful application does not depend on the selected network configuration (see 370 

the discussion section for additional considerations). However, some care must be devoted to tuning 371 

the trade-off parameter that here is set to 0.2.  The comparison between models extracted from the 372 

test set and the corresponding DCVAE approximations demonstrate that the network has been 373 

properly trained (Figure 13). Table 5 depicts the network hyperparameters used for data 374 

compressions. Again we employ an architecture similar to the one used in the synthetic example, but 375 



with a trade-off parameter of 0.08. In this example, the full data space is sparsely compressed into an 376 

80D domain. 377 

Figure 14 compares the most likely models estimated by the two ES-MDA inversions and by the 378 

gradient-based approach. The three methods again provide similar and comparable estimates and the 379 

slight low resolution of the two ES-MDA approaches with respect to the gradient-based outcomes is 380 

related to the different regularizations strategies applied. Figure 15 compares the posterior standard 381 

deviations numerically estimated from the final ensembles associated with the ES-MDA inversion 382 

running in the compressed and full model and data space, respectively.  Again, we note that the 383 

uncertainty estimated when the data and model spaces are reduced is slightly lower than that estimated 384 

without compression. This is particularly evident for the model parameters less informed by the data 385 

for example for the cells located at the bottom and the lateral edges of the study site.  Similar to the 386 

synthetic example, we note that the two ES-MDA inversions achieve stable posterior assessments 387 

with very different ensemble sizes: When the DCVAE are employed only 500 models are needed 388 

while 2000 models are requested by the inversion without compression. Again both these inversions 389 

have been run for four iterations. Therefore, the use of the DCVAE still guarantees a significant 390 

decrease in the number of forward evaluations, and thus a decrease in the computing time of the 391 

probabilistic inversion. For example, the ES-MDA with DCVAE runs in 15 minutes while about an 392 

hour is needed without model and data compression. These computing times are still referred to 393 

parallel codes running on the same hardware resources previously described.  394 

Figures 16 shows some models forming the final ensemble for the ES-MDA inversion with 395 

DCVAE. Again, we observe that the inversion satisfactorily converges toward congruent results. 396 

Indeed, all the models at the very last iteration show similar characteristics such as the low resistivity 397 

anomaly in the shallowest and central part of the study area, and the high resistivity body buried 398 

around 3 m depth.  399 

 400 

 401 



DISCUSSION 402 

We applied a probabilistic approach to solve the ERT problem in which DCVAEs have been used 403 

to increase the computational efficiency of the inversion procedure and to avoid the so-called 404 

ensemble collapsing issue. On the one hand, the computational burden of the ES-MDA inversion 405 

largely depends on the number of ensemble members and the cost of running the forward 406 

computations. On the other hand, the ensemble size should be large enough to get accurate uncertainty 407 

evaluations, and its dimension should increase with the dimension of the parameter space. Therefore, 408 

running the inversion in compressed spaces significantly reduces the number of ensemble members 409 

and the computational cost needed for reliable uncertainty quantifications.  410 

In our application, we employ log-Gaussian prior but deep generative models are helpful for data 411 

assimilation and inverse problems with non-Gaussian models as well (Canchumuni et al., 2019; Bao 412 

et al., 2020). In our implementation, the use of nonparametric priors is theoretically possible, but it 413 

requires the application of a normal score transformation. In this context, the sampling would be 414 

performed in the original domain, whereas the inversion would run in the normal score transformed 415 

space. We expect this approach to be quite accurate for unimodal distributions, but further 416 

investigations are needed in the case of multimodal priors. 417 

The reason for uncertainty underestimation or overestimation in the case of model and data space 418 

compressions is that data reduction makes the inverse problem underdetermined while model 419 

compression makes the inversion overdetermined. Ideally, the compression of model space should be 420 

as small as possible to sparsely represent the original domain and to effectively mitigate the ill-421 

conditioning of the problem. For this reason, the reduction of the parameter space should be a 422 

compromise between the expected model resolutions, and the accuracy of the uncertainty 423 

assessments. Also, note that the posterior uncertainty is underestimated in the ES-MDA if the number 424 

of ensemble members is not sufficient to statistically represent the model space (Aleardi et al. 2021b). 425 

Reducing the data space partially mitigates the underestimation because it makes the problem more 426 

underdetermined, thus increasing its condition number and consequently the posterior uncertainties 427 



(Grana et al. 2019). However, in practice, it is often difficult (especially for nonlinear problems) to 428 

determine the optimal dimensions of the reduced model and data to get uncertainty quantification 429 

equal to the one obtained in the full spaces.  430 

In the proposed approach a sufficient number of prior realizations and associated data are needed 431 

to train the networks. From our experience, 4000 examples are enough for successful training. In our 432 

many experiments (not shown here for brevity) we found that many different DCVAE architectures 433 

(with a different number of layers, filter dimensions) work similarly. The final one has been selected 434 

as a reasonable compromise between the computational cost of the training phase and the accuracy 435 

of the predictions. However, special care must be devoted to properly tune the trade-off parameter of 436 

the loss function, thus ensuring that the reconstructed output can reproduce the original input and that 437 

the learned distribution approximates the target distribution. In this work, we selected this parameter 438 

using a trial-and-error procedure that is facilitated by the limited computational cost of the training 439 

phase (very few minutes on the employed hardware resources). We also found that the optimal range 440 

for this parameter is not that narrow: for example, in the synthetic application, all the values between 441 

0.05-0.15 provide very similar model approximations. If needed the modeling error related to the 442 

uncertainty in the network reconstruction can additionally be propagated into the final PPDs. This is 443 

an interesting point that is worthy of a deeper investigation in further studies. Here, we limit the 444 

comparison of ES-MDA and MCMC only to the synthetic example because running an MCMC 445 

sampling to solve the field inversion is computationally impractical on the limited hardware resources 446 

employed in this study (it would probably require a couple of weeks to converge). 447 

Reducing the computational cost of a probabilistic ERT inversion is needed to make this approach 448 

more appealing than popular local inversion algorithms. The Bayesian framework provides crucial 449 

information regarding the uncertainties affecting the recovered solution. Such estimated model 450 

uncertainties can be used to generate different subsurface scenarios in agreement with the prior 451 

assumptions and the acquired data. We deem that the outcome of such a probabilistic approach adds 452 

an extra layer of information over gradient-based solutions that could contribute to a more informed 453 



decision-making process in many ERT applications (e.g., monitoring applications). For this reason, 454 

we are also working to extend the presented approach to time-lapse ERT inversion.  455 

As demonstrated in Aleardi et al. (2021) also linear compression methods are very effective to 456 

reduce model and data spaces in 2D ERT inversion. However, the popularity that machine learning 457 

compression methods have recently gained in the geophysical community, motivated us to 458 

contemporarily assess the applicability of DCVAEs to solve the same problem. The limited 459 

computational effort needed for network training, along with the limited human effort needed to set 460 

up an appropriate DCVAE architecture, make the total computational cost of ESMDA inversions 461 

with linear and non-linear compressions very similar (i.e., note that also for linear compressions, an 462 

accurate analysis conducted on prior realizations must be done to select the optimal number of basis 463 

functions to retain). However, deep neural networks exploit the nonlinear and spatial patterns in the 464 

input, and thus they generally outperform linear dimension reduction methods for more complex (e.g., 465 

three-dimensional) models/data. Indeed, our preliminary attempts on 3D and time-lapse ERT 466 

inversion indicate superior performances of DCVAE over linear strategies. We are still investigating 467 

these challenging topics, but some preliminary results can be found in Vinciguerra and Aleardi 468 

(2021). 469 

 470 

CONCLUSIONS 471 

This work was aimed at decreasing the computational cost of a probabilistic ERT inversion by 472 

exploiting the sampling ability of ES-MDA and the compression ability of DCVAEs. The DCVAEs 473 

were used as a dimensionality reduction strategy to avoid spurious correlation and ensemble collapse 474 

and to decrease the dimensionality of the problem, hence reducing the computational cost of the 475 

inversion. Indeed, our tests illustrated that the ensemble size needed for stable uncertainty 476 

quantifications significantly decreases for an ES-MDA inversion running in the compressed space 477 

with respect to the same inversion approach working in the full model and data domains. More in 478 

detail, the use of DCVAE reduced the total number of forward evaluations of the stochastic inversion 479 



by four times in both the synthetic and field data experiments. Our tests also demonstrated that the 480 

implemented inversion can provide most likely models and uncertainty quantifications comparable 481 

to those yielded by an ES-MDA algorithm running in the full model and data space, and an MCMC 482 

sampling working in the compressed domains. All these probabilistic approaches estimated most 483 

likely solutions very similar to the results of a gradient-based inversion. We also observed that due 484 

to the dimensionality reduction, the proposed ES-MDA inversion is prone to slightly underpredict the 485 

uncertainties for the parameters poorly informed by the data. However, from a practical point of view, 486 

the estimated uncertainties remain extremely valuable since they offer insights into the accuracy of 487 

the recovered model features and allow assessing the precision of the results. The presented method 488 

can be easily adapted to solve other geophysical inverse problems.  489 
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FIGURES 639 

 640 

Figure 1: A schematic representation of VAEs. 641 

  642 



 643 

Figure 2: The true model for the synthetic inversion. 644 

  645 



 646 

Figure 3: a) Log-Gaussian prior distribution for the synthetic example. b), and c) spatial 647 

correlation functions associated with the assumed 2-D variogram model for the horizontal 648 

and vertical directions, respectively. 649 
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 651 

Figure 4: a) Example of DCVAE approximations of resistivity models extracted from the 652 

test set. b) The corresponding target, uncompressed models. 653 
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 655 

 656 

Figure 5: a) The most likely model predicted by the ES-MDA with DCVAE. b) The most 657 

likely solution predicted by the ES-MDA without DCVAE. c) The most likely model 658 

provided by the MCMC inversion with DCVAE. d) Gradient-based solution. 659 
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 661 

Figure 6: Posterior standard deviation estimated with the ES-MDA running in the 662 

compressed and full model and data spaces (a), and b), respectively). c) Posterior standard 663 

deviation estimated by the MCMC inversion working in the compressed domains.   664 

  665 



 666 

Figure 7: Standard deviation sections derived from inversion tests that employ different 667 

numbers of models in the ensemble (N). a) ES-MDA inversion with DCVAE. b) ES-MDA 668 

inversion without model and data compression.  669 
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 671 

Figure 8: Evolution of the negative log-likelihood for the 30 chains during the MCMC 672 

sampling. b) For some model parameters we show the evolution of the PSRF. The red line 673 

represents the threshold of convergence fixed (as usual) at 1.1.  674 
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 676 

Figure 9: Some examples of prior (a) and posterior (b) resistivity models forming, 677 

respectively, the initial and final ensemble of the ES-MDA inversion running in the 678 

compressed spaces. 679 
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 681 

 682 

Figure 10: a) Observed pseudosection. b) Data predicted from the most likely solution of the 683 

ES-MDA inversion with DCVAE. c) Data predicted from the most likely solution of the ES-684 

MDA inversion without DCVAE. d) Data predicted from the most likely solution of the 685 

MCMC inversion. e) Data computed from the gradient-based result.  686 

  687 



 688 

Figure 11: Comparison between the observed data (black line), the data computed on the 689 

initial ensemble of models (cyan lines), and the data associated with the models at the last 690 

ES-MDA iteration (red lines). For graphical convenience, all the computed pseudo sections 691 

have been flattened to 1D vectors. This figure refers to the inversion running in the 692 

compressed domains, but similar conclusions would have been drawn for the ES-MDA 693 

inversion running in the full model and data spaces. 694 
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 696 

 697 

Figure 12: The observed data (yellow line) compared with the data computed on the mean 698 

prior model (red line) and the 95% confidence interval (blue dotted lines) derived from data 699 

generated on prior realizations. 700 
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 702 

Figure 13: a) Example of DCVAE approximations of resistivity models extracted from the 703 

test set. b) The corresponding original, uncompressed models. 704 
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 706 

Figure 14: a) The most likely model estimated by the ES-MDA inversion with DCVAE. b) 707 

The most likely model provided by the ES-MDA without DCVAE. c) Model estimated by 708 

the gradient-based inversion. 709 
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 711 

Figure 15: Posterior standard deviation estimated with the ES-MDA inversion running in the 712 

compressed spaces. b) Posterior uncertainty provided by the ES-MDA inversion without 713 

compression.  714 
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 716 

Figure 16: Models extracted from the ensemble at the last ES-MDA inversion working in 717 

the compressed model and data domains.  718 
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 720 

TABLES 721 

 Layer Dimension 

 Input  12×36 

E
N

C
O

D
E

R
 

Conv2D(FilterSize =3×3, Layers=8, Stride=2)+LeakyRelu(0.1)+BatchNorm 6×18×8 

Conv2D(FilterSize =3×3, Layers=16, Stride=2)+LeakyRelu(0.1)+BatchNorm 3×9×16 

Conv2D(FilterSize =3×3, Layers=32, Stride=2)+LeakyRelu(0.1)+BatchNorm 2×5×32 

Flatten 320 

Fully Connected Layer (Dropout 10%) 80 

L
a
te

n
t 

S
p

a
ce

 

 

Mean 

Variance 

40 

40 

D
E

C
O

D
E

R
 

Fully Connected Layer 27 

Reshape 3×9 

TransposeConv2D(FilterSize=3×3,Layers=32, Stride=2)+LeakyRelu(0.1)+BatchNorm 6×18×32 

TransposeConv2D(FilterSize =3×3,Layers=16,Stride=2)+LeakyRelu(0.1)+BatchNorm 12×36×16 

TransposeConv2D(FilterSize =3×3,Layers=1,Stride=1)+LeakyRelu(0.1)+BatchNorm 12×36 

Table 1: Network architecture of the DCVAE used for model compression in the synthetic 722 

example.  723 

  724 



 725 

 Layer Dimension 

 Input  198 

E
N

C
O

D
E

R
 

Conv1D(FilterSize =3×1, Layers=8, Stride=2)+LeakyRelu(0.1)+BatchNorm 99×8 

Conv1D(FilterSize =3×1, Layers=16, Stride=2)+LeakyRelu(0.1)+BatchNorm 50×16 

Flatten 800 

Fully Connected Layer (Dropout 10%) 100 

L
a

te
n

t 

S
p

a
ce

 

 

Mean 

Variance 

50 

50 

D
E

C
O

D
E

R
 Fully Connected Layer 99 

TransposeConv1D(FilterSize =3×1, Layers=16, Stride=2)+LeakyRelu(0.1)+BatchNorm 198×16 

TransposeConv1D(FilterSize =3×1,Layers=1,Stride=2)+LeakyRelu(0.1)+BatchNorm 198 

Table 2: Network architecture of the deep convolutional VAE used to compress the data 726 

space in the synthetic example.  727 

  728 



 RMSE Model RMSE Data 90% coverage ratio 

ES-MDA with DCVAE 114.11 3.12 84.31% 

ES-MDA without DCVAE 113.26 3.02 86.64% 

MCMC with DCVAE 114.40 3.08 88.24% 

Gradient-Based 118.03 4.10 Not available 

Table 3: Table listing for each considered inversion approach the RMSE between the true 729 

and the predicted models (shown in Figure 5), the RMSE between the observed and the data 730 

computed on the predicted models (see Figure 10), and for the three probabilistic inversions 731 

the 90% coverage ratios. 732 
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 734 

 Layer Dimension 

Input  16×48 

E
N

C
O

D
E

R
 

Conv2D(FilterSize =3×3, Layers=16, Stride=2)+LeakyRelu(0.1)+BatchNorm 8×24×16 

Conv2D(FilterSize =3×3, Layers=32, Stride=2)+LeakyRelu(0.1)+BatchNorm 4×12×32 

Conv2D(FilterSize =3×3, Layers=64, Stride=2)+LeakyRelu(0.1)+BatchNorm 2×6×64 

Flatten 768 

Fully Connected Layer (Dropout 10%) 300 

L
a

te
n

t 

S
p

a
ce

 

 

Mean 

Variance 

150 

150 

D
E

C
O

D
E

R
 

Fully Connected Layer 48 

Reshape 4×12 

TransposeConv2D(FilterSize=3×3,Layers=32, Stride=2)+LeakyRelu(0.1)+BatchNorm 8×24×32 

TransposeConv2D(FilterSize =3×3,Layers=16,Stride=2)+LeakyRelu(0.1)+BatchNorm 16×48×16 

TransposeConv2D(FilterSize =3×3,Layers=1,Stride=1)+LeakyRelu(0.1)+BatchNorm 16×48 

Table 4: Network architecture of the DCVAE used to compress the model space in the field 735 

data application. 736 

  737 



 Layer Dimension 

 Input  360×1 

E
N

C
O

D
E

R
 

Conv1D(FilterSize =3×1, Layers=8, Stride=2)+LeakyRelu(0.1)+BatchNorm 180×1×8 

Conv1D(FilterSize =3×1, Layers=16, Stride=2)+LeakyRelu(0.1)+BatchNorm 90×1×16 

Flatten 1440 

Fully Connected Layer (Dropout 10%) 160 

L
a

te
n

t 

S
p

a
ce

 

 

Mean 

Variance 

80 

80 

D
E

C
O

D
E

R
 Fully Connected Layer 180 

TransposeConv1D(FilterSize =3×1, Layers=16, Stride=2)+LeakyRelu(0.1)+BatchNorm 360×1×16 

TransposeConv1D(FilterSize =3×1,Layers=1,Stride=2)+LeakyRelu(0.1)+BatchNorm 360×1 

Table 5: Network architecture of the DCVAE used to compress the data space in the field 738 

test. 739 
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