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Abstract 

Multiaxial fatigue tests are carried out on plain and notched specimens extracted from EN-GJS-600-3 pearlitic 

DCI heavy-section castings. Two notches of different severities were combined for the determination of mode 

I and mode III critical distances, along with the related intrinsic fatigue strengths. SEM and CT clearly showed 

that fatigue cracks initiated from graphite nodules and shrinkage pores in notched and plain specimens, 

respectively. Different multiaxial criteria were compared, and best predictions obtained with the Carpinteri et 

al. criterion with four parameters: axial and torsional intrinsic fatigue strengths, combined with the two 

different related critical distances. 
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Nomenclature 

area  geometrical parameter of the defect 

CT  computed tomography 

D  notched specimen bar diameter 

DCI  ductile cast iron 

dF  defect Feret diameter 

HV  Vickers hardness 

Kf  axial fatigue stress concentration factor 
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KfT  torsional fatigue stress concentration factor 

Kr  ratio of the axial fatigue stress concentration factors 

KrT  ratio of the torsional fatigue stress concentration factors 

Kt  theoretical axial stress concentration factor 

KtT  theoretical torsional stress concentration factor 

L*  mode I critical length according to LM estimated from two notched specimen geometries 

L*'  mode I critical length according to PM estimated from two notched specimen geometries 

*

TL   mode III critical length according to LM estimated from two notched specimen geometries 

*

TL    mode III critical length according to PM estimated from two notched specimen geometries 

LM  line method 

Nf  number of cycles to failure 

PM  point method 

R  load ratio 

rms  root mean square 

S  standard deviation 

SU  ultimate tensile strength 

SY  yield strength 

TCD  theory of critical distances 

  material parameters of a multiaxial fatigue criterion 

   notch opening angle

fl  plain fatigue strength range 

N,fl  notch fatigue strength range 

*

fl   intrinsic plain fatigue strength range 

  phase shift angle between axial and torsional load waveforms 

  biaxiality 

a  nominal axial stress amplitude on the net cross-section 

w  high cycle fatigue strength predicted by area  models 

a  nominal torsional stress amplitude on the net cross-section calculated on the outer surface 

 

Subscripts  

1  sharp notch 

2  blunt notch 

 

1. Introduction 

Ductile cast iron (DCI), also known as nodular cast iron or spheroidal graphite iron, finds increasing 

application in the production of moderately stressed components for the wind energy, handling and transport, 
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machine tool, presses and infrastructure industries [1]. The high castability conferred by its high carbon content 

allows the fabrication of parts with intricate geometries, such as gearboxes, crankshafts, and planet carriers 

[2]. The addition of Si- and Mg-based inoculants promote the precipitation of carbon in the form of spheroidal 

graphite particles, conferring superior ductility [3], [4] and, ultimately, higher fatigue strength compared to 

other grades of cast iron [5], [6]. Adequate fatigue properties are achieved only under a strict control of the 

microstructure, which mainly depends on the chemical composition and the solidification conditions [7]. 

Typical casting defects that adversely affect the mechanical properties of thick-walled castings, especially 

fatigue strength, are degenerate graphite [8] and microshrinkage porosity [9]. The formation of chunky 

degenerate graphite can be fought by adding small amounts of Sb [10] or Bi [11], while the appearance of 

pores and / or the overgrowth of graphite nodules can be shifted to less critical locations of the component by 

accelerating the solidification phase through localized heat removal. To this regard, Vaško et al. [5] showed 

that a microstructure with more but smaller graphite nodules has better mechanical properties and, in turn, 

higher fatigue strength. 

Extensive research has been carried out so far to devise fatigue assessment methods able to take into account 

the role of defectiveness on the fatigue strength of DCI [9], [12]. Such defects may show even a large scatter 

in size, on the order of hundreds of microns, and an interesting correlation was found by Nasr et al. [12] 

between the S-N curves and the ranges of size of the observed defects. Endo and Yanase [13] noticed initiation 

from both shrinkage pores and in regions where no cavities were present, thus they considered as possible 

initiation sites not only shrinkage pores but also graphite nodules, and they evaluated the lower bound of the 

fatigue limit according to the well-known Murakami equation [14]. This relates Vickers hardness and the 

area  parameter, to the power of 1/6, with the fatigue limit. Modifications to this model have recently been 

proposed to incorporate the effect of the load ratio [15]. Borsato et al. [16] replaced Vickers hardness with a 

combination of ultimate strength and yield strength to better capture the effect of nodular graphite morphology. 

The investigations reported so far were mainly carried out on plain samples, where the fatigue strength is 

dominated by the most critical defect in terms of sqrt(area). This scenario is however even more complicated 

in the case of notch fatigue [17], [18]. The non-homogeneous stress distribution introduced by the notch makes 

the defects differently critical against fatigue not only depending on their area  but also on their location 

with respect to the notch stress peak. In a recent investigation [19], we found a significant difference in the 

defectiveness triggering the fatigue damage. In plain samples, a few and large shrinkage pores were found in 

the gage section through computed tomography (CT) analyses. The largest of them was responsible for the 

initiation of fatigue cracks. In notched samples, the likelihood that such a critical pore is in the process zone 

ahead of the notch tip is very low; therefore, the fatigue damage was promoted by the largest graphite nodule 

located therein. This evidence has important consequences when devising a notch fatigue assessment method 

for DCI. For example, when the Theory of Critical Distances (TCD) [20] is applied to predict the notch fatigue 

strength of DCI, a fatigue strength and a critical distance length that are actually representative of the local 

properties of the material that rule in the neighborhood of the tip of the notch must be used. In [19], we found 

that these fatigue properties are captured more effectively by an inverse search procedure based on the use of 
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two optimized notched geometries that differ in the radius of the root of the notch and therefore in the resulting 

stress concentration factor. A better agreement with the experimental data was obtained with respect to 

predictions made with critical distance estimations based on the plain fatigue strength and/or the crack growth 

threshold affected by fatigue and crack shielding mechanisms [21] not representative of those occurring at the 

notch tip. The necessity of adjusting the plain fatigue strength to the length scale of the fatigue damage that 

occurs in the notched components was also noted in [22], [23] where a probabilistic notch fatigue assessment 

was devised. 

Since components made of DCI are typically exposed in service to complex time-varying loads, the present 

paper aims to extend the research described above to the multiaxial notch fatigue strength of DCI. To date, the 

multiaxial fatigue strength of this material class has been investigated in a few publications [24]–[26]. They 

permitted to highlight the peculiar fatigue characteristic of DCI resulting in preferential crack initiation on 

planes undergoing the largest normal stress amplitude, in contrast to conventional structural metals in which 

this mechanism is usually governed by the largest shear stress amplitude. Berto et al. [27] investigated the 

multiaxial fatigue strength of severely notched cast iron specimens and were able to rationalize the 

experimental results according to an average strain energy density approach [28] only by introducing two 

different sizes of the control volume under axial and torsional types of loading. A similar finding was found 

in a very recent publication [29] aimed at devising an inverse search approach of the TCD critical length under 

mode III type of loading. Fatigue experiments carried out on 42CrMo4 steel specimens tested under axial and 

torsional loading attested critical distance lengths that differ by a factor of about 9. Similar differences were 

found for 39NiCrMo3 steel [30] and PMMA [31]. Despite this experimental evidence, the applications of TCD 

to multiaxial fatigue reported in the literature [32] assume for the sake of simplicity the same value of mode I 

and mode III critical lengths. On the base of this literature survey, it is evident that still unexplored issues in 

the multiaxial notch fatigue assessment, especially of DCI, need to be addressed. For this reason, the present 

paper aims to investigate (i) which multiaxial fatigue criterion can be suitably combined with TCD to predict 

the notch fatigue strength of DCI; (ii) whether the critical distance length of DCI depends on the loading mode 

and how this dependency can be incorporated into a multiaxial fatigue criterion; (iii) how defectiveness affects 

the multiaxial fatigue properties of DCI. Accordingly, this paper is organized as follows. Section 2 describes 

the DCI investigated in this work and the procedures for its experimental characterization. Section 3 illustrates 

the results of the fatigue tests and fractographic analyses. In Section 4, the critical distance length of the 

material is deduced according to a procedure based on two notch variants. The mathematical formulation is 

available in [19] for the axial loading and described in Appendix A of the this paper for the torsional loading. 

The entire procedure can be found as an editable script file for the MATLAB® software in Appendix B. 

Section 5 analyzes the ability of some multiaxial fatigue criteria in combination of the TCD approach devised 

in Section 4 to predict the multiaxial plain and notch fatigue strength of DCI. Concluding remarks are given 

in Section 6. 
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2. Material and experimental procedures 

The experimentation was carried out on an EN-GJS-600–3 pearlitic DCI. Details about the chemical 

composition, solidification conditions, and microstructure can be found in our recent publication [19]. The 

quasi-static mechanical properties are listed in Table 1. 

The fatigue characterization was carried out using the axisymmetric specimen geometries illustrated in Figs. 

1a-i. Specifically, the plain (smooth) specimen geometry shown in Figs. 1a and b was used to determine the 

material's baseline fatigue S-N curve under monoaxial and multiaxial loading, respectively. The V-notched 

specimen geometries reported in Fig. 1c-i are characterized by a notch depth that was optimized in [33] and 

[29] to maximize the intensity of the asymptotic stress field term under axial and torsional loading, 

respectively. In this way, it is possible to minimize the sensitivity of the inverse search of the critical distance 

to the experimental uncertainties. Specimens (c-e) and (f-h) have a V-notch opening angle of 60° and differ 

only in the notch tip radius and are referred to as "sharp" and "blunt" notches, respectively. Specimen (i) has 

a V-notch opening angle of 90° and will be used to collect independent fatigue results to validate the mean 

stress sensitivity of the devised fatigue assessment methods. Because of the fundamental role played by the 

notch root radius on the notch stress field, its actual value was verified by means of stereomicroscopic 

measurements and reported in Table 2 along with the corresponding theoretical stress concentration factor Kt. 

The measured notch root radii reported in Table 2 were used in the following TCD calculations. 

Specimens (a), (c), (f) and (i), provided with threaded ends, were tested under axial fatigue loading according 

to the ASTM E466 standard in a laboratory environment using two Rumul (Switzerland) Testronic resonant 

testing machines, operating at a nominal frequency of 150 Hz under load control, one with 150 kN and the 

other with 50 kN load capacity. Specimens (a), (c) and (f) were tested under zero mean stress (load ratio R = 

− 1), while specimens (i) under load ratio R = 0.1. 

The remaining specimens provided with flat cylindrical ends were fatigue tested in a laboratory environment 

using a Walter + Bai (Switzerland) LFV100-T1000-HH biaxial servo-hydraulic testing machine equipped with 

hydraulic grips and a biaxial load cell with axial and torsional load capacities of 100 kN and 1000 Nm, 

respectively. The load control imposed a sinusoidal waveform with a frequency comprised between 15 and 20 

Hz, depending on the geometry of the specimen. Specifically, fully reversed (R = − 1) pure torsional loading 

was applied to a batch of samples (b), (d), and (g). Finally, batches of samples (b), (e), (h) were subjected to 

combined tension and torsion loading with load ratio R = − 1 and biaxiality ratio  = 1. The latter expresses 

the ratio of the nominal torsion shear stress amplitude a (calculated on the specimen outer surface) to the 

nominal axial stress amplitude a. Two phase angles  were explored, namely =0°, in-phase loading, and 

=90°, out-of-phase loading. 

The medium-to-high-cycle fatigue life in the range between nearly 5×104 and 5×106 cycles was explored 

employing at least 12 plain or notched specimens, and runout tests were terminated at 5×106 cycles when no 

fracture took place. The axial fatigue curves corresponding to the probability of 50% failure were represented 

by the following asymptotic equation to smoothly capture the knee exhibited by the experimental SN data: 
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Torsional and combined axial and torsional fatigue tests did not show an appreciable change in the slope of 

the SN curve, which was then expressed by the well-known Basquin’s equation: 

3 3
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f f
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             (1b) 

The coefficients kj (j=1,2,3) were determined by fitting the log(Nf) versus log(a) or log(a) results. The scatter 

of the fatigue data was assessed by computing the estimated regression variance which was assumed to be 

uniform for the entire fatigue life range, and expressed by: 
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where σa,i (a,i) is the i-th fatigue amplitude data point, 
a,i̂  (

a,i̂ ) is its estimator, n is the number of data 

elements, and p is the number of parameters in the regression (p = 2 or 3 in the present case). 

Material characterization was complemented by fractographic analyzes carried out on fatigued samples using 

a JEOL JSM-IT300LV scanning electron microscope (SEM). Care was taken in identifying the microstructural 

feature triggering the fatigue damage. In addition, small coupons (6.5 mm diameter) were extracted from the 

same casting and analysed through metrological X-ray computed tomography (CT). In this way, it was possible 

to detect and measure internal voids as well as graphite nodules in terms of dimension (projected area and 

maximum Feret diameter), shape, and position. More details on the experimental procedures are given in [19].  

 

3. Experimental results and discussion 

The results of the fatigue tests carried out on all the specimen variants are compared in Fig. 2. Fitting curves 

corresponding to 50% (solid line), 10% and 90% (dashed lines enclosing a colored scatter band) failure 

probability, expressed by Eq. (1), are also plotted in Fig. 2. The best-fit parameters, the fatigue strength at 

5×106 cycles, and the standard deviation S are listed in Table 3. Figures 2a-d report the results of fatigue 

experiments carried out on plain and notched specimens under pure axial, pure torsional, combined in-phase 

and combined out-of-phase axial and torsional loading, respectively. 

Looking at Fig. 2a, it can be observed that the fatigue curves of the plain notched variants tested at R = − 1 

approximately scale according to the notch stress concentration factor Kt. The application of a positive mean 

stress to the sharp notched samples (i) tested at R = 0.1 results in a considerable reduction in fatigue strength, 

which confirms the remarkable mean stress sensitivity of DCI [15], [27], [34]. The scenario depicted by the 

pure torsional tests shown in Fig. 2b is completely different: the blunt notched specimens exhibit the highest 

fatigue strength, while the smooth sample displays an intermediate behavior in the medium- and even the 

lowest fatigue strength in the high-cycle fatigue (HCF) regime. On the contrary, the application of the axial 

stress in the combined axial and torsional fatigue tests (Fig. 2c-d) restores the expected decreasing strength 

order: plain, blunt, and sharp-notched specimens, especially in the case of out-of-phase loading (Fig. 2d), on 
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which the effect of the axial stress is more evident. When comparing Figs. 2c and d, it can be noted that in-

phase loading results in slightly lower fatigue strength, thus confirming the load phase effect already observed 

for DCI in [26]. 

SEM analyses were conducted to identify the dominant crack initiation mechanisms acting in the HCF regime 

in all the investigated experimental conditions. A meaningful example of the crack initiation site found in plain 

specimens is illustrated in Fig. 3a, c-d, g-h, and i, for axial, torsional, in-phase and out-of-phase combined 

loads, respectively. Importantly, in all the smooth samples investigated, the crack was found to start in the 

vicinity of a large near-surface solidification shrinkage pore, whose intricate geometry is indicated by red 

arrows. Completely different is the scenario depicted by the notched variants in Fig. 3b, e-f, j-k, and l for axial, 

torsional, in-phase and out-of-phase combined loads, respectively. In fact, the crack initiation site (marked by 

a red arrow) was found in the vicinity of a large graphite nodule or near the crater left by the fractured graphite 

nodule located in the neighborhood of the notch tip. Similar findings were found in [13] for DCI tested under 

rotating bending fatigue, which, similarly to notches, introduces a notable stress gradient towards the interior 

of the specimen, thus inhibiting crack initiation from most of the few pores located immediately below the 

outer surface or close to the notch tip. 

SEM micrographs shown in Fig. 3 also give indications about the morphology of the fracture surface. Axial 

loading resulted in crack propagation orthogonal to the specimen axis in both plain (Fig. 3a) and notched 

specimens (Fig. 3b). Torsional loading promoted the early crack propagation on a plane inclined with respect 

to the specimen axis, especially in the plain sample (Fig. 3c). The notch forced the crack to remain on the notch 

bisector plane, resulting in a factory roof type of fracture morphology (Fig. 3e). However, the factory roof 

morphology is much less pronounced than that reported for more ductile metals, such as steel [35] or Ti alloys 

[36]. The combined in-phase and out-phase loading promoted crack propagation inclined with respect to the 

specimen axis in the plain sample (Figs. 3g and i) and growth of multiple cracks inclined with respect to the 

specimen axis in the notch sample (Figs. 3k and l). Out-of-phase loading produced flatter and smoother fracture 

surfaces. This has been attributed in [27] to abrasion and consequent debris creation produced by the interfering 

crack faces loaded under torsion when no axial loading is applied. 

To shed light on the inclination of the fatigue crack initiated in fractured plain samples photographs were taken 

in the vicinity of the crack initiation site. They are reported in Fig.4a-d, for specimens tested under axial, pure 

torsion, combined in-phase and out-of-phase loads, respectively. Interestingly, the crack growth plane is 

approximately inclined orthogonally to the maximum principal stress axis under axial, torsion, and combined 

in-phase loading, i.e. when the direction of the principal stress axis is fixed over time (proportional loading). 

The direction of the principal stress axis is, in fact, inclined by an angle of 0°, 45° and 58°, respectively. 

Conversely, the out-of-phase load results in a higher inclination angle of the crack propagation plane (66°), 

thus indicating that the axial loading influences on a larger extent the crack propagation plane with respect to 

the torsion. 

 

4. Inverse search of mode I and mode III critical distances 
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A robust notch fatigue assessment method needs to take into account the material's notch sensitivity factor 

[37]. TCD provides an effective tool for this purpose, as it can be easily combined with several multiaxial 

fatigue criteria [38]–[41]. The TCD postulates that a notched or cracked component is under fatigue critical 

conditions when a suitable stress component averaged over a domain of a certain critical size equals a stress 

value representative of the fatigue failure in a smooth part. For this reason, the critical length could be in 

principle indifferently deduced from two independent specimen geometries, of which at least one carries a 

stress raiser. However, this assumption might be inappropriate if the fatigue damage mechanism is controlled 

by a length-scale dependent defectiveness, as in the DCI under examination. As demonstrated by the 

fractographic analyzes portrayed in Fig. 3, the fatigue damage of plain samples is controlled by a few large 

defects (pores) dispersed in the large gage volume of the specimen, while that affecting notched samples is 

governed by much smaller graphite nodules located in the immediate vicinity of the notch tip. This scenario is 

well explained by the elaboration of CT analyses done in [19] on the defect distribution detected in the present 

material. Figure 5a illustrates the statistical distribution of pores and graphite nodules elaborated according to 

the statistics of the largest extreme value distribution (LEVD) using the Maximum Likelihood Method [14], 

[42]. Specifically, all pores detected in the scanned volume are included in this analysis, while only the graphite 

nodules comprised in a toroidal volume centered on the notch tip and having a radius equal to the critical 

distance determined in [19]. It can be noted that the maximum expected nodule size maxarea  corresponding 

to a cumulative probability F of 99% is much smaller in the case of graphite nodules (156 m) than in that of 

pores (1137 m). In addition, nodules are found to have an approximate spheroidal shape, while pores exhibit 

a very intricate 3D geometry, as demonstrated by the CT reconstruction shown in Fig. 5b. We expect therefore 

that the plain fatigue strength is not representative of the intrinsic fatigue strength of the material in the 

immediate neighborhood of the notch tip. The interesting investigations done in [43] also highlighted the need 

to investigate the damage mechanisms of DCI on a microscopic scale. For this purpose, we proposed in [19] 

to deduce the critical distance L* under axial loading from two notched specimen geometries, whose fatigue 

characteristics are representative of the fatigue damage occurring at the notch tip. In this paper, we extend this 

approach to the determination of intrinsic fatigue strength *

fl  and critical distance length *

TL  under torsional 

loading. The mathematical formulation is explained in Appendix A.1 for both the line (LM) and point (PM) 

of the TCD and is based on the inverse search procedure proposed in [29] for mode III type of loading. 

Appendix A.2 describes the use of an editable MATLAB script, available with the online version of this paper, 

for a rapid implementation of the two proposed procedures. 

The results of this double-notch inversion method according to the LM applied under axial and torsional 

loading are summarized in Table 4. The input fatigue properties were taken from the SN curves measured on 

sharp and blunt notch specimen geometries tested under axial (specimens (c) and (f)) and torsional (specimens 

(d) and (g)) loading. Figure 6 shows the results of Monte Carlo simulations carried out according to the 

procedure described in [44] to assess the effect of the stochasticity of the input fatigue properties on the 

statistical distribution of the intrinsic fatigue strength and the critical distance length. In summary, the input 

properties are assumed to obey a Gaussian distribution from which random variates are extracted to generate 
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individuals that are then organized in the histograms shown in Fig. 6a and b, for the critical length and the 

intrinsic fatigue strength, respectively. Looking at Fig. 6a, it can be noted that L* and *

TL  exhibit a unimodal 

probability density function (PDF) with a longer right-side tail. The two statistical distributions are little 

overlapped (the mean values differ by a factor of 2.5), thus supporting the idea that DCI displays a distinct 

notch sensitivity under axial and torsional loading. The intrinsic fatigue strengths shown in Fig. 6b and listed 

in Table 4 exhibit a much more symmetric unimodal PDF. The two distributions are largely overlapping, thus 

confirming experimental evidences that the fatigue strength of DCI is dominated by the first principal stress, 

resulting in nearly equal axial and torsional fatigue limit [26]. Interestingly, as widely discussed in [19] and 

summarized in Table , the axial intrinsic fatigue strength *

fl / 2  is in very good agreement with the HCF 

fatigue strength predicted by the following expression proposed by Borsato et al. [16]: 

 

 
U Y

W 1/6

max

0.62 0.32locF S S

area


  

          (3) 

if the critical defect size maxarea  is taken equal to that of the largested expected graphite nodule indicated 

in Fig. 5a and the location factor Floc is taken equal to 1.56 (internal defect). In this case, 
W 269 MPa   is 

obtained. It is also interesting to observe that the ratio * *

fl fl/ 0.90     agrees very well with the values of 

0.85 and 0.95 reported for DCI in [45] and [26], respectively. Similar findings have also been reported for an 

AISI 4140 steel weakened by hard nonmetallic inclusions [46]. 

To summarize, we can observe that the devised double-notch inversion method is able to predict fatigue 

strength values consistent with the defectiveness found in the vicinity of the notch tip and indicates a different 

material's notch sensitivity under axial and torsional loading. In particular, the longer mode III critical length 

*

TL  supports empirical evidences reported in the technical literature [30], [35] of a notch-strengthening effect 

under torsion due to the tendency of the crack to form a factory roof morphology. All these considerations will 

be used in the next section to identify suitable multiaxial fatigue criteria in combination with a TCD approach 

to notch sensitivitiy. 

 

5. Multiaxial fatigue criteria 

In this paper, we will focus our attention on critical plane (CP) based approaches, since strain energy- and 

stress invariants-based approaches cannot be applied to nonproportional (out-of-phase) loading. We will 

consider CP approaches according to Fatemi‐ Socie [47], Modified-Wöhler-Curve-Method (MWCM) [48] 

and Carpinteri et al. [49], since in [38], [40], [41], [50] they were successfully applied in combination with 

TCD. In view of the important role of the principal stress evidenced in Section 3, we will also explore a 

modification of the SWT normal stress CP criterion [51] proposed by Chu [52] and effectively used in [53] to 

assess the fatigue strength in the presence of multiaxial residual stresses. 

The Fatemi-Socie criterion is based on the identification of the CP experiencing the maximum range of shear 

strain γa. Furthermore, it incorporates the mean stress using the maximum value of the normal stress σn,max, 

acting on the plane of the maximum shear strain range: 
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,max

Y

1
n

a FS FS
S


  
 
  

 
          (4) 

where SY is the material’s yield stress.  

The MWCM is a CP-based criterion, which may be written as: 

 
,maxn

a MWCM MWCM

a


  


                       (5a) 

where the amplitude of the shear stress a and the maximum normal stress n,max are calculated on the CP that 

experiences the largest amplitude of the shear stress. This fatigue criterion must satisfy the condition: 

n,max MWCM

a MWCM2

 

 
                       (5b) 

since, beyond this upper limit, material failure is expected to be no longer influenced by the amplitude of shear 

stress [48]. 

Carpinteri et al. [39] observed that the CP orientation depends on the ductility of the material and assumed it 

to be a function of the fully reversed axial and torsional fatigue strength AF, AF. Accordingly, the normal to 

the CP is assumed to be inclined by the angle  with respect to the averaged direction of maximum principal 

stress expressed as: 

2

AF

AF

3
1

8






  
   
   

                      (6a) 

The fatigue criterion is a quadratic combination of the shear stress amplitude a and the normal equivalent 

stress n,eq acting on the CP: 

2

2 2AF
n,eq a AF

AF


  



 
  
 

                    (6b) 

Where n,eq is a linear (Goodman) combination of the amplitude n,a and the mean value n,m of the normal 

stress component [49]: 

n,m

n,eq n,a AF

US


  

 
   

 
                    (6c) 

where SU is the ultimate tensile strength of the material.  

The modified SWT criterion is expressed by: 

mSWT
mSWT max mSWT

max,

1
2

2 


     

 
     

 
                 (7) 

where and are the normal stress and shear stress, respectively, in a material plane.  and  are the normal strain 

and the shear strain, respectively. The symbol  denotes range in a loading cycle. The symbol  represents 
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the MacCauley bracket (   / 2x x x  ). The CP is defined as the material plane that experiences the 

maximum fatigue parameter mSWT. 

The two-parameter fatigue criteria described above will be used in combination with the LM of TCD to predict 

the experimental data collected in this work. LM was selected instead of PM because it proved in [50] to yield 

more accurate predictions when used in conjunction with a multiaxial fatigue criterion. As schematically 

illustrated in Fig. 7a, the axial normal i (i=r, , z) and torsional shear stresses z are averaged along the notch 

bisector over the material's critical distances according to two distinct approaches, termed "4p" and "3p". In 

"4p", the two critical distances L and LT are allowed to take different values, while in "3p" a unique critical 

distance is imposed for both mode I and III types of loading. In the former case, the resulting multiaxial+TCD 

fatigue criterion depends on four materials parameters (whence the notation "4p"), whereas in the latter one on 

three parameters ("3p") only.  

A careful reader might object that the adopted formulation of TCD in combination with a CP-based fatigue 

criterion is in contrast with many similar attempts [40], [41] proposed in the literature, wherein the stresses are 

averaged along a path lying on the CP. However, we deem our approach reasonable, mainly for the following 

motivations: (i) the proposed approach is of easier implementation, as it does not require to average the stresses 

along a CP of unknown inclination, therefore an iterative procedure is not necessary; (ii) empirical evidence, 

also shown in Section 3 and other relevant literature [50], [54], attest to the propensity of fatigue cracks to 

extend along the notch symmetry plane; (iii) a systematic analysis [55] comparing the fatigue calculations 

performed averaging the stress components along either the notch bisector or the CP did not show any 

significant difference in prediction accuracy. 

The four or three material-dependent parameters of the fatigue criteria described above are calibrated from 

four or three independent fatigue data. More specifically, the axial and torsional fully-reversed fatigue strength 

of sharp- and blunt-notched specimens are used in the calibration of the "4p" approach, while the parameters 

of the "3p" approach are calibrated on the basis of the axial fatigue strength of both notched geometries as well 

as of the torsional fatigue strength of the sharp-notched variant only. The values of the parameters calibrated 

in the HCF regime (Nf=5×106) are listed in Table 5. The superscript "*" denotes the fact that the parameters 

were inferred from notched geometries, therefore they are representative of fatigue properties reflecting the 

defectiveness ruling the notch tip region. Interestingly, the critical distance values according to the 4p method 

are identical to less than a few microns to those listed in Table 4 and assessed using the double notch inversion 

method applied separately to the axial and torsional loading. Therefore, this latter method turns out to be very 

useful also for the calibration of multiaxial fatigue criteria. Furthermore, the material parameters 
* *,  AF AF   of 

Carpinteri et al. criterion are nearly identical to the intrinsic fatigue strengths listed in Table 4. Finally, it can 

be observed that the unique critical distance assumed by the "3p" method is close to the mode I critical distance 

assessed according to the corresponding "4p" method. Lastly, the conditions set according to the "3p" method 

for the MWCM resulted in an equation system with no real roots. Therefore, in the following, no predictions 

will be made according to this approach. 
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Table 6 compares the fatigue criteria in terms of prediction accuracy of the HCF strength of independent load 

conditions applied to notched specimens not used for the criterion calibration. Looking at the "4p" methods, it 

can be observed that Carpinteri et al. and modified SWT criteria are the only ones able to keep the maximum 

absolute error and the rms error below 15% and 10%, respectively. This is not surprising given the important 

role played in DCI by the maximum normal tensile stress, whose influence is better captured by the last-

mentioned criteria. In particular, the nearly equal values of the materials parameters 
* *,  AF AF   of Carpinteri 

et al. criterion make the angle  nearly equal to zero, thus making preponderant the contribution of the normal 

equivalent stress n,eq acting on the CP. The shear-based criteria of Fatemi-Socie and especially of MWCM 

are instead affected by larger errors. When we focus on "3p" methods, we can observe that assuming the same 

notch sensitivity factor under tension and torsion leads to a certain error in the estimation of the blunt-notched 

variant under pure torsion. More importantly, the calibration of the Carpinteri et al. criterion under this 

assumption leads to some inaccuracies in the estimation of the materials parameters 
* *,  AF AF   and, ultimately, 

in fatigue estimations affected by largest maximum absolute and rms erros. In summary, we can conclude that 

a correct assessment of the multiaxial notch fatigue strength of DCI requires a normal stress-based fatigue 

criterion that incorporates the different notch sensitivity of the material under mode I and III loading. 

For these reasons, in the next we further develop only the Carpinteri et al. criterion in the "4p" formulation, as 

it proved to ensure the lowest maximum absolute error and rms error among the explored approaches. A first 

improvement of this approach is its extension to the prediction of the fatigue strength in the presence of 

defectiveness different from that present in coupons used for its calibration, for instance, the microshrinkage 

porosity found in plain specimens. To this regard, it is interesting to check if Eq. (3) can correctly predict the 

axial plain fatigue strength. The estimations listed in Table 7 were obtained considering the maximum expected 

pore size corresponding to a cumulative probability F of 99% (see Fig. 5a). The pore size is expressed in terms 

of both the square root of the area projected on the plane normal to the loading axis and the maximum Feret 

diameter dF. It can be noted that the prediction made considering this latter definition of the pore size is in very 

good agreement with the experimental data. When analyzing the fatigue strength of cast Al-alloys, Wang et 

al. [56] and later Nicoletto et al. [57] came to the same conclusion, viz. the effect of the intricate geometry of 

microshrinkage pores (see Fig. 5b) is better captured by dF. For this reason, we propose to tune the parameters 

,  AF AF   of plain samples weakened by pores of characteristic size dF by rescaling the intrisic fatigue 

characteristics 
* *,  AF AF   according to the 1/6 power law dependency upon the defect size expressed by Eq. 

(3): 

1/6 1/6

max max
* *nodule nodule

pore pore

;   =AF AF AF AF

F F

area area

d d
   

   
   
   
   

     (8) 

A careful reader might object that the pore size should also be in terms of Feret diameter. This leads however 

to negligible differences given the nearly spherical shape exhibited by graphite nodules. 
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Table 8 lists the values of ,  AF AF   and the prediction of the plain fatigue strength in the explored loading 

conditions. It can be noted that the maximum absolute error and the rms error are on the same order of 

magnitude of those listed in Table 7 for the notch fatigue predictions, thus confirming the possibility of 

extending the calibration of the proposed approach to fatigue scenario affected by defectiveness different from 

those present in notched geometries used for the parameter calibration. 

To conclude, the present fatigue calculation method is extended to the medium cycle fatigue regime. Therefore, 

the four criterion parameters are calibrated from sharp- and blunt- notch axial and torsional fatigue data taken 

at different fatigue lives Nf. Their dependency on Nf is shown in Fig. 8a. As expected, the intrinsic plain fatigue 

strengths 
* *,  AF AF   decrease with increasing number of cycles to failure, whereas the critical distances L* and 

*

TL  are fairly independent of Nf. Figure 8b,c,d plots the SN curves calculated for the sharp-, blunt-notched, 

and smooth geometries, respectively. In the last case, the fatigue calculations are done using ,  AF AF   

deduced from 
* *,  AF AF   according to Eq. (8). The predicted SN curves agree well with the trend of the 

experimental data, especially for long fatigue lives (Nf≥5×106). In any case, the predicted data fall in an error 

band comprised between ±15%, which is reasonable given the large dispersion in the fatigue properties of the 

investigated material. 

 

6. Conclusions 

This paper explored the multiaxial fatigue strength of a ductile cast iron (DCI) EN-GJS-600–3 fabricated under 

conditions representative of heavy-section castings. Defects were characterized through fractographic and CT 

scan analyses. The fatigue data were used to calibrate a multiaxial fatigue criterion in combination with a TCD 

method to account for the material notch sensitivity. The following conclusions can be drawn: 

1. Significant differences in the defectiveness that triggers fatigue damage were found in smooth and 

notched samples. In the former, the largest shrinkage pore is responsible for the initiation of fatigue 

crack. Its effect on fatigue strength is better captured by the maximum Feret diameter with respect to 

the projected area. In the latter, the fatigue damage is promoted by the largest, nearly spheroidal, 

graphite nodule located in the vicinity of the notch tip. 

2.  TCD critical lengths were deduced from notched specimen geometries with notches of different 

severity. In this way, it is also possible to infer the intrinsic fatigue strength of the material in the 

vicinity of the notch tip. The mode III critical distance *

TL  was found to be 3 times larger than that in 

mode I L*, thus indicating a different material's notch sensitivity under torsion and axial loading. 

3. The multiaxial fatigue behaviour of DCI was found to be predominantly controlled by the maximum 

principle stress. For this reason, normal stress-based criteria such as modified SWT and the Carpinteri 

et al. criteria were found to yield the most accurate fatigue predictions. This last criterion works best 

if it is combined with a TCD method considering different TCD critical lengths under mode I and III 

type of loading. 
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4. The devised multiaxial fatigue criterion can be extendend to multiaxial fatigue scenarios affected by 

defectiveness different from that present in the notched geometries used for its calibration through 

simple scaling of the material parameters according to the 1/6 power law dependency upon the defect 

size. 
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Appendix 

A.1 Numerical example applied to the experimental data 

In this appendix, the procedure for the determination of the torsional critical distance and the corresponding 

torsional fatigue limit is described. The procedure already presented in [19] is exploited by combining the 

fatigue strengths of two notches, namely a sharp and a blunt notch. The reported example refers to the 

experimental data reported above in Section 3. The geometry parameters are in Eq. A.1: 

1 1

2 2

60

18.6mm, 0.23mm

18.6mm, 1.0mm

D R

D R

  

 

           (A.1) 

The size ratio with these two specimens is unity, 
1 2/ 1D D   , nevertheless this procedure can be used 

with different outer diameters of the two specimens, or even more generalized with different notch opening 

angles  , either 60° or 90°. The specimen 2 is the blunter, and hence the (nominal) fatigue limit is higher, 

Eq. A.2: 

N,fl,1

N,fl,2

344 MPa

383 MPa





 

 
           (A.2) 

With these two torsional fatigue strengths as input, the ratio between the fatigue stress concentration factors 

can be obtained, even without the inherent (or plain specimen) fatigue limit which is an output of the procedure: 

* *
fT,1 N,fl,2fl fl

rT

N,fl,1 N,fl,2fT,2 N,fl,1

1.114
K

K
K

 

  

 
   

  
        (A.3) 

From the geometry parameters in Eq. A.1, the torsional notch stress concertation factors can be initially 

evaluated, Eq. A.4: 

tT,1

tT,2

2.691

1.675

K

K




            (A.4) 

The procedure optimal range of the torsional fatigue critical distance can be deduced from the formulation 

reported in [19], for both the two specimens, specimen 1: 0.0168 mm – 0.8110 mm, and specimen 2: 0.0543 

mm – 1.2606 mm. The intersection of these two ranges is *

T 0.0543 mm 0.8110 mm:L  . This critical 

distance range can be divided into many samples, such as 103, and for each value, the fatigue stress concertation 
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factors of the two samples can be deduced, and then the ratio can be easily calculated. In this way, the fatigue 

factor ratio curves can be obtained according to the Line and Point Methods, Fig. A.1. 

Using a simple numerical interpolation tool, the critical distance of interception between the experimental rTK  

value and the two curves is obtained. The resulting torsional critical distance *

TL   and the corresponding fK  

values are listed below, in Eqs. A.5 and A.6, for the Line and the Point Methods, respectively: 

*

T

fT,1

fT,2

 = 0.3325 mm

 = 1.405

 = 1.262

L

K

K

           (A.5) 

*

T

fT,1

fT,2

= 0.4175 mm

 = 1.513

 = 1.359

L

K

K



           (A.6) 

Since fatigue stress concentration factors are available now, the inherently fatigue limit can be easily deduced 

from the experimental strengths of the two notches. For each method, the fatigue limit is a unique result either 

obtained with specimen 1 or specimen 2, while, however, a small difference remains by comparing Line and 

Point methods, Eq. A.7: 

*

fl

*

fl

(LM) = 483 MPa

(PM) = 520 MPa








           (A.7) 

 

A.2 Supplementary material 

In the online version of the paper a MATLAB script file is available for quicky performing the calculation 

steps described in Appendix A. 
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Figure 1. Geometry of the specimens used for the fatigue characterization. (a)-(b) plain, (c)-(i) notched 

specimens. (a), (c), (f), (i) used for axial fatigue tests, (b), (d), (e), (g), (h) for torsional and multiaxial fatigue 

tests. Dimension in mm. Fatigue data obtained from specimen geometries (c) and (f) were used to determine 

the mode I critical distance L*, (d) and (g) to determine the mode III critical distance *

TL . 
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Figure 2. SN curves. Solid lines represent 50% failure probability, while dashed lines refer to 10% and 90% 

failure probability. Arrows indicated runout tests. (a) axial, (b) pure torsion, (c) in-phase combined axial and 

torsional, (d) out-of-phase combined axial and torsional fatigue tests. 
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Figure 3. SEM micrographs of the fracture surfaces around the fatigue crack initiation site. The red arrows 

indicate the microshrinkage pore or the graphite nodule causing the crack initiation. (a) plain sample (a) under 

axial loading (σa = 170 MPa, Nf = 2.1×106). (b) Fracture surface of a runout blunt-notched specimen (c) under 

axial loading (σa = 110 MPa, Nf = 5×106) and then broken under tension-tension fatigue. (c) Overview and (d) 

detail of the fracture surface of a plain sample (b) tested under torsional loading (a = 240 MPa, Nf = 2.1×105). 

(e) Overview and (f) detail of the fracture surface of a sharp-notched sample (d) tested under torsional loading 

(a = 180 MPa, Nf = 6.5×105). (g) Overview and (h) detail of the fracture surface of a plain sample (b) tested 

under in-phase combined loading (a = a = 100 MPa, Nf = 1.9×106). (i) Overview of the fracture surface of a 

plain sample (b) tested under out-of-phase combined loading (a = a = 140 MPa, Nf = 2.1×106). (j) Overview 
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and (k) detail of the fracture surface of a sharp-notched sample (e) tested under in-phase combined loading (a 

= a = 85 MPa, Nf = 1.6 × 106). (l) Overview of the fracture surface of a sharp-notched sample (e) tested under 

out-of-phase combined loading (a = a = 100 MPa, Nf = 2.4 × 106). 

 

 

Figure 4. Optical micrographs of the crack path observed in the vicinity of the crack initiation site in plain 

samples tested under (a) axial (σa = 160 MPa, Nf = 1.8 × 106), (b) torsional (a = 180 MPa, Nf = 7.5 × 105), (c) 

in-phase axial+torsional (a = a = 100 MPa, Nf = 1.9 × 106), (d) out-of-phase axial+torsional loading (a = a 

= 140 MPa, Nf = 1.4 × 106). 

 

  

Figure 5. (a) Cumulative probability distributions of graphite nodules and shrinkage pores detected in [19] via 

CT scans. The analysis of graphite nodules is restricted to a toroidal volume centered on the notch tip and 

having radius equal to twice the critical distance of the material. The analysis of pores is performed on the 

whole scanned volume in terms of both square root of the projected area area  and maximum Feret diameter 

dF. (b) CT reconstruction of the largest pore found in the scanned specimen. The effect of the very irregular 

pore morphology on the fatigue strength is better captured by the Feret diameter dF. 
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Figure 6. Histograms obtained from Monte Carlo simulations to assess the probability distribution function 

(PDF) of (a) the critical lengths * *

T,L L  and (b) the intrinsic fatigue strengths * *

fl fl,    deduced from the 

double notch inversion methods devised in [19] and in the present paper for mode I and mode III loading, 

respectively. 

 

 

Figure 7. Schematic illustration of the TCD method applied in conjunction with a multiaxial fatigue criterion. 

Axial normal and torsional shear stresses are averaged along the notch bisector. In "4p" the average axial 

normal and torsional shear stresses are averaged along mode dependent critical distances, whereas in "3p" they 

are computed considering the same critical length. 

 

(a)

L*

LT
*

Δσfl/2
*

Δτfl/2
*

(b)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

  

Figure 8. (a) Parameters 
* * * *

T,  , ,AF AF L L   of the TCD+Carpinteri et al. multiaxial fatigue criterion assessed 

according to the double-notch inversion method as a function of the number of cycles to failure. (b), (c), (d) 

Prediction of the fatigue curves of independent plain, sharp- and blunt- notched variants, respectively, not used 

for the calibration of the TCD+multiaxial fatigue criterion. 

 

 

Figure A.1. Determination of the critical distances for which the 
fK  ratio curves meet the experimental ones. 
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Tables 

 

Table 1. Monotonic properties and Brinell hardness (based on four replicated tests). Standard error 

corresponds to 1σ uncertainty band. 

E (GPa) G (GPa) SY (MPa) SU (MPa) T.E. (%) HB 

174±2 68.5±1.3 363±8 458±15 2.1±0.5 198±4 

E: Young's modulus; G: elastic shear modulus; SY: 0.2% yield stress; SU: ultimate tensile strength; T.E.: total 

elongation; HB: Brinell hardness 

 

Table 2. Notch root radius measured in the notched variants and corresponding stress concentration factor. 

Specimen geometry Notch root radius (mm) Theoretical stress concentration 

factor Kt 

Sharp Notch 60° R0.2 (c) 0.30±0.01 4.95 (axial) 

Sharp Notch 60° R0.2 (d) 0.23±0.02 2.69 (torsional) 

Sharp Notch 60° R0.2 (e) 5.61 (axial), 2.74 (torsional) 

Blunt Notch 60° R1 (f) 1.00±0.01 2.87 (axial) 

Blunt Notch 60° R1 (g) 1.68 (torsional) 

Blunt Notch 60° R1 (h) 2.87 (axial), 1.69 (torsional) 

Sharp Notch 90° R0.2 (i) 0.22±0.03 4.46 (axial) 

 

Table 3. Best-fit coefficients of Eq. (1) used to interpolate the SN curves. S indicates the standard deviation. 

The high-cycle fatigue strength was assessed at 5×106 cycles. 
Specimen 

geometry 

type Loading type k1 (MPa) k2 

(MPa) 

k3 S 

(MPa) 
fl N,fl

fl N,fl

/ 2,  / 2

/ 2,  / 2

 

 

 

 
 

at 5×106 cycles (MPa) 

Plain (a) Axial, R = –1 123 3304.9 0.288 10 161 

(b) Torsion, R = –1 - 899.20 0.112 9.2 159 

(b) Axial+Torsion 

R = –1,  = 1,  = 0° 

- 761.48 0.138 7.4 90.5 

(b) Axial+Torsion 

R = –1,  = 1,  = 90° 

- 374.78 0.068 5.5 131 

Sharp 

Notch 60° 

R0.2 

(c) Axial, R = –1 79.2 12062 0.432 5.0 94.6 

(d) Torsion, R = –1 - 470.29 0.065 5.1 172 

(e) Axial+Torsion 

R = –1,  = 1,  = 0° 

- 285.18 0.088 3.6 73.5 

(e) Axial+Torsion 

R = –1,  = 1,  = 90° 

- 421.60 0.098 3.2 92.7 

(f) Axial, R = –1 78.2 2980.9 0.280 5.8 118 

(g) Torsion, R = –1 - 593.91 0.073 3.9 191 
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Blunt 

Notch 60° 

R1 (c) 

(h) Axial+Torsion 

R = –1,  = 1,  = 0° 

- 609.69 0.129 6.3 83.7 

(h) Axial+Torsion 

R = –1,  = 1,  = 90° 

- 442.71 0.093 5.5 106 

Sharp 

Notch 90° 

R0.2 (d) 

(i) Axial, R = 0.1 21.0 722.99 0.198 3.8 55.1 

 

Table 4. Results of the double-notch inversion method. 
Loading type Critical distance (mm) Intrinsic fatigue strength (MPa) 

Axial *L  
0.134 *

fl / 2  
269.5 

Torsional *

TL  
0.333 *

fl / 2  
241.5 

 

Table 5. Material parameters of the TCD+multiaxial fatigue criteria. 
Criterion Method Parameter 1 Parameter 2 Critical distances 

Symbol Value Symbol Value *  (mm)L  
*

T  (mm)L  

Fatemi-

Socie 

4p *

FS  
1.800 *

FS  
3.506×10-3 0.0867 0.336 

3p 3.702 5.002×10-3 0.0953 0.0953 

MWCM 4p *  (MPa)MWCM  
100.5 *  (MPa)MWCM  

240.0 0.0841 0.300 

3p* - - - - 

Carpinteri 

et al. 

4p *  (MPa)AF  
260.5 *  (MPa)AF  

218.3 0.131 0.336 

3p 316.0 316.0 0.121 0.121 

Modified 

SWT 

4p *

mSWT  
0.4956 *

mSWT  
0.8467 0.130 0.337 

3p 0.6343 1.084 0.130 0.130 

* No solution was found for the set of calibration equations 

 
Table 6. High‐ cycle fatigue strength predictions (5×106 cycles) for independent fatigue configurations. 

Sample Load Exp. Method Fatemi-Socie MWCM Carpinteri et al. Modified SWT 

Pred. Err. 

(%) 

Pred. Err. 

(%) 

Pred. Err. 

(%) 

Pred. Err. 

(%) 

Blunt Tors. 191 3p 226 18.4 - - 214 11.8 217 13.6 

Sharp Ax. + 

Tors. 

=0° 

73.5 4p 72.5 -1.31 61.6 -16.2 74.8 1.80 73.1 -0.53 

3p 

61.7 -16.1 - - 

76.9 

4.59 65.9 -10.3 

Sharp Ax. + 

Tors. 

=90° 

92.7 4p 92.7 0.02 60.2 -35.1 82.3 -11.3 91.8 -0.93 

3p 

92.6 -0.10 - - 

90.2 

-2.71 102 9.71 

Blunt Ax. + 

Tors. 

=0° 

83.7 4p 90.6 8.19 88.0 5.17 90.5 8.09 90.8 8.52 

3p 

83.2 -0.54 - - 

98.5 

17.7 91.8 9.73 

Blunt Ax. + 

Tors. 

=90° 

106 4p 118 11.3 108 1.91 100 -6.06 118 11.3 

3p 

118 11.3 - - 

114 

7.70 118 11.3 

Sharp 

90° 

Ax. 

R=0.1 

55.1 4p 71.7 30.1 -87.0 -258* 57.0 3.48 63.4 15.1 

3p 68.3 24.0 - - 58.0 5.20 74.1 34.5 

Method 4p 3p 4p 3p** 4p 3p 4p 3p 

Max abs. error (%)  30.1 24.0 258 - 11.3 17.7 15.1 34.5 

RMS error (%)  13.1 14.7 75.7 - 6.39 9.7 8.46 17.3 

* Condition set by Eq. (5b) is violated 

** No solution was found for the set of calibration equations 

 

Table 7. Prediction of plain fatigue strength according to Eq. (3). 

Floc W (MPa) 
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SU 

(MPa) 

SY 

(MPa) 

Exp. fl / 2  (MPa) F,max 2388 d m  
max 1137 area m  

1.41 458 363 161 164 186 

 

Table 8. Carpinteri et al. criterion parameters for plain specimens (Eq. (8)) and predictions incorporating size dependent 

critical defect. 

Parameters of Carpinteri et al. 4p model for plain samples 

 (MPa)AF   (MPa)AF  

165.1 138.4 
Load Exp. Pred. Err. (%) 
Axial 161 168 4.34 

Torsion 159 152 -4.40 

Axial+Torsion  = 0° 90.5 102 12.7 

Axial+Torsion  = 90° 131 111 -15.2 

Max abs. error (%) 15.2 

RMS error (%) 10.4 
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