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Abstract
1.	 Wind turbines and power lines can cause bird mortality due to collision or 

electrocution. The biodiversity impacts of energy infrastructure (EI) can be 
minimised through effective landscape-scale planning and mitigation. The iden-
tification of high-vulnerability areas is urgently needed to assess potential cu-
mulative impacts of EI while supporting the transition to zero carbon energy.

2.	 We collected GPS location data from 1,454 birds from 27 species susceptible 
to collision within Europe and North Africa and identified areas where tracked 
birds are most at risk of colliding with existing EI. Sensitivity to EI development 
was estimated for wind turbines and power lines by calculating the proportion 
of GPS flight locations at heights where birds were at risk of collision and ac-
counting for species' specific susceptibility to collision. We mapped the maxi-
mum collision sensitivity value obtained across all species, in each 5 × 5 km grid 
cell, across Europe and North Africa. Vulnerability to collision was obtained by 
overlaying the sensitivity surfaces with density of wind turbines and transmis-
sion power lines.

3.	 Results: Exposure to risk varied across the 27 species, with some species flying 
consistently at heights where they risk collision. For areas with sufficient track-
ing data within Europe and North Africa, 13.6% of the area was classified as high 
sensitivity to wind turbines and 9.4% was classified as high sensitivity to trans-
mission power lines. Sensitive areas were concentrated within important migra-
tory corridors and along coastlines. Hotspots of vulnerability to collision with 
wind turbines and transmission power lines (2018 data) were scattered across 
the study region with highest concentrations occurring in central Europe, near 
the strait of Gibraltar and the Bosporus in Turkey.

4.	 Synthesis and applications. We identify the areas of Europe and North Africa that 
are most sensitive for the specific populations of birds for which sufficient GPS 
tracking data at high spatial resolution were available. We also map vulnerability 
hotspots where mitigation at existing EI should be prioritised to reduce collision 
risks. As tracking data availability improves our method could be applied to more 
species and areas to help reduce bird-EI conflicts.

K E Y W O R D S
animal movement, bird conservation, collision risk, environmental impact assessment, GPS, 
renewable energy, spatial planning, telemetry

1  |  INTRODUC TION

The transition to zero carbon energy is essential to avoid runaway 
climate change (IPCC, 2018). However, the expansion of renewable 
energy infrastructure (EI) required to achieve this poses a challenge 

to wildlife conservation due to collision and electrocution risks, par-
ticularly for birds and other aerial taxa (Bernardino et al.,  2018a; 
Kiesecker et al.,  2019; Marques et al.,  2014). European, onshore 
wind energy capacity is projected to grow from approximately 169 
GW in 2018 to between 262 GW and 760 GW by 2050 with enough 

mailto:j.gauld@uea.ac.uk
mailto:jethro.g.gauld@gmail.com
mailto:jethro.g.gauld@gmail.com
mailto:a.franco@uea.ac.uk


    |  3Journal of Applied EcologyGAULD et al.

economically viable wind turbine locations (approximately 3.4 mil-
lion) for up to 13.4 TW of capacity (Ryberg et al., 2019). Countries 
in the Middle East and North Africa also have targets to increase 
the share of electricity supply from onshore wind with Morocco and 
Tunisia aiming for 100% renewable electricity by 2050 (Timmerberg 
et al.,  2019). Huge investment in the electricity transmission net-
work will accompany this expansion of renewables, with an esti-
mated fivefold increase in transmission capacity required between 
2010 and 2050 (Mckinsey & Company,  2010). However, when 
poorly designed or situated, wind farms and power lines can result 
in increased mortality of susceptible birds such as large water birds, 
gulls, ibis, storks, owls, vultures and other raptors (Janss,  2000; 
Oppel et al., 2021; Thaxter et al., 2017).

Organisations, such as energy companies, charged with sup-
porting the rollout of renewable energy generation are obliged by 
national, European legal (2009/147/EC, 2010) and pan-flyway vol-
untary (Horns & Şekercioğlu, 2018) frameworks to mitigate risks to 
birds (Gyimesi & Prinsen, 2015). Methods to evaluate and mitigate 
these impacts are relatively well understood at project-specific and 
local scales (Schaub et al., 2020; Serrano et al., 2020). However, such 
assessments often occur after a development site has already been 
selected because the initial feasibility studies for energy projects 
tend to focus on the economic viability of the development over 
other factors. The scale and pace of new development requires 
greater integration of high-level assessments of the potential cu-
mulative impact at regional and flyway scales into these feasibil-
ity studies to highlight areas where additional EI development is 
likely to significantly increase the risk to bird populations (Eichhorn 
et al., 2017; Loss et al., 2019; Thaxter et al., 2019). This is particularly 
important for migratory bird species who may experience the impact 
of multiple developments in operation within key migration routes, 
stopover sites, wintering grounds and breeding sites (Bernardino 
et al., 2018a; Gove et al., 2013).

Bird sensitivity maps can be developed to illustrate the rela-
tive risk associated with EI development for sensitive bird species 
(Vasilakis et al., 2016; Warwick-Evans et al., 2017). The distribution 
and behaviour of birds inferred from GPS tracking of individuals can 
be used to create a spatio-temporal measure of the potential im-
pact of new EI developments, by identifying where and when birds 
would be most exposed to potential collision risks from EI develop-
ments (Ross-Smith et al., 2016; Thaxter et al., 2019; Warwick-Evans 
et al., 2017). For areas with sufficient tracking data, combining sen-
sitivity maps with other inputs, such as the available wind resources, 
can help planners optimise new wind farm and power line locations 
by avoiding high sensitivity areas during the site selection stage 
of the development process (Kiesecker et al.,  2019). This, in turn, 
can reduce mitigation costs and produce better wildlife outcomes 
compared with site-based assessments alone (Bradbury et al., 2014; 
Bright et al., 2008).

Sensitivity mapping is particularly useful for assessing the po-
tential for negative interactions between birds and energy infra-
structure at the level of migratory flyways. For example, a wind 
farm sensitivity map created for the Red Sea flyway estimates the 

potential collision risks for soaring migratory birds at the flyway scale 
(BirdLife International, 2015). This tool enables preliminary impact 
assessment of wind farms by viewing protected areas and raw GPS 
tracks of susceptible bird species. However, it does not account for 
all dimensions related with collision risk, such as the height at which 
birds fly, which in turn may vary depending on landscape, meteo-
rological, seasonal and species-specific factors (Kleyheeg-hartman 
et al., 2018; Marques et al., 2020). In the terrestrial context, other 
sensitivity mapping studies largely rely on trait-based analysis in re-
lation to population densities of susceptible bird species (D'Amico 
et al., 2019; Thaxter et al., 2017).

In this context sensitivity is a measure of potential collision risk 
identifying areas where the tracked birds could collide if wind tur-
bines or powerlines are present (Thaxter et al.,  2019). We calcu-
lated this by combining susceptibility traits with GPS location and 
altitude data for individuals from 27 species, including resident and 
migratory birds in Europe and Northern Africa, to describe where 
and when the tracked birds are most sensitive to collision risks from 
terrestrial EI. Within the areas for which we obtained sufficient high 
spatial resolution GPS tracking data; this allows us to identify sen-
sitivity hotspots where future onshore EI development should be 
discouraged. However, our work cannot reveal ‘safe’ areas where EI 
development could be encouraged. We then overlay this sensitiv-
ity surface onto the density of existing EI to identify vulnerability 
hotspots where the tracked individuals are most exposed to collision 
risks due to the presence of wind turbines and powerlines. Similar 
approaches using GPS tracking data have been applied to assess the 
impacts of proposed offshore windfarm developments where sur-
vey logistics are more challenging (Bradbury et al.,  2014; Cleasby 
et al.,  2015; Lees et al.,  2016; Ross-Smith et al.,  2016; Thaxter 
et al.,  2019). Our work also highlights the spatial variation in GPS 
tagging effort and data availability which helps identify priority 
areas for future tracking studies and the need to increase data shar-
ing via online platforms such as Movebank to help fill in the gaps in 
the existing tracking data where sensitivity assessment is not cur-
rently feasible using publicly available GPS tracking data.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

An overview diagram of the methods is presented in Supporting 
Information S1, section 1. We sourced bird movement data via the 
Movebank data repository, a web-based online platform for shar-
ing data from animal tracking studies (Movebank, 2019), with a view 
to maximising coverage of Europe and North Africa. In November 
of 2018, we identified 254 bird GPS tracking studies on Movebank 
within Europe, the Mediterranean and North Africa. A literature 
search undertaken between October 2018 and March 2019 was 
used to assess whether the species in these GPS tracking studies 
were susceptible to mortality associated with EI. This literature 
search is summarised in Supporting Information S1, section 2. We 
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did not request data from tracking studies with less than five indi-
viduals unless multiple individuals of the same species were tracked 
in other Movebank studies. Data managers were contacted be-
tween October 2018 and January 2019 to request access to their 
datasets with a response deadline of the end of April 2019. Studies 
using ARGOS Doppler tags (insufficient spatial accuracy; Thomson 
et al., 2017), captive birds, laboratory-based tests of GPS devices, 
lacking altitude data or tracking predominantly pelagic species were 
not included. In total, we obtained permission to use data from 65 
suitable GPS tracking studies (Figure  1), representing 27 species 
and 1,454 individual birds. This included some data hosted on the 
University of Amsterdam Bird-tracking system database (UvA-BiTS, 
Bouten, 2018), offered for inclusion in this analysis by managers of 
some of the requested Movebank datasets. To our knowledge, all 

fieldwork associated with the movement datasets included in this 
study was undertaken with permission from the relevant licensing 
authority, further details of each dataset are provided in the Data 
References section of this paper and Supporting Information 1, sec-
tion 3. The earliest tag deployment within any of the datasets was 
2006, while the latest deployment date is 2018; the mean deploy-
ment duration was 2.7 ± 1.8 SD years.

Infrastructure and terrain data were processed in QGIS and ArcGIS 
(ESRI, 2019; QGIS Development Team, 2019). We sourced transmission 
power line data from the open infrastructure project (Garret, 2018; 
OpenStreetMap, 2018). OpenStreetMap defines transmission lines as 
>50 kV (OpenStreetMap, 2019a). Flights between 10 and 60 m above-
ground were here taken as being within the danger height for trans-
mission power lines (Figure 2) where birds risk collision (Harker, 2018; 

F I G U R E  1  (a) The location of the first 
GPS location of each dataset included 
in the analysis and the flux of individual 
birds through each 5 × 5 km grid cell (not 
controlled for year) for all areas for which 
we could source GPS tracking data. (b) 
The density of GPS locations in flight 
per 5 × 5 km grid cell for all GPS tracking 
studies included in this study
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Infante & Peris, 2003). We intersected the data with a fishnet grid con-
sisting of 554,993 individual 5 × 5 km grid cells representing a total 
area of 13.9 million square kilometres. Power line density is the total 
length in kilometres per grid cell, normalised onto a 0–100 scale.

Data on the location and size of onshore wind farms were down-
loaded from windp​ower.net (Pierrot, 2018). This dataset contained cen-
troid coordinates and information for 18,681 wind farms within Europe 
and North Africa. We used this to map the relative density of turbines 
on a 0–100 scale for each 5 × 5 km grid cell. Density was highest to-
wards the North and West of Europe. From the hub heights and blade 
lengths in this dataset, we derived a danger height (sometimes known 
as the rotor swept zone) of 15–135 m for wind turbines (Figure 2), fur-
ther details in Supporting Information S1 section 4. To our knowledge, 
all tracking datasets used were collected in line with relevant guidance 
and licensing requirements of national ethical committees.

2.2  |  Movement data analysis

Measures of GPS accuracy were not uniformly indicated across all 
studies. Where the number of satellites was provided, only GPS lo-
cations associated with ≥5 visible satellites were included (Morris 
& Conner, 2017). Duplicate GPS locations were removed. We used 
the raster package (R version 4.0.5, Hijmans, 2019) to append eleva-
tion data from two 30 m horizontal and 5 m vertical accuracy digital 
surface models (DSMs), STRM-GL1 and STRM-GL1-Ellipsoidal from 
the OpenTopography Portal (National Science Foundation,  2019; 
NGA and NASA,  2000) to each GPS location. For the small num-
ber of GPS locations at latitudes greater than 60° latitude an ALOS 
30 m DSM was used instead (JAXA, 2016). Further details of these 
DSM surfaces are in Supporting Information S1 section 5. Height 

above-ground in metres was calculated by subtracting the eleva-
tion of the ground from the altitude of the bird. Where bird altitude 
is in height above ellipsoid, ellipsoidal height of the land surface is 
used. Where altitude is relative to sea level, orthometric height of 
the land surface is used (Péron et al., 2020). In some datasets, such 
as some Lesser Black-backed Gull studies, bespoke correction to ob-
tain orthometric height had already been estimated in the database 
(Thaxter et al., 2019). GPS locations for each study were classified as 
breeding or non-breeding (including the migratory period) season by 
plotting week against latitude, (Supporting Information S1 section 6).

Because instantaneous speed was not available across all datasets 
we estimated speed in metres per second (m/s) using the time and 
distance between subsequent GPS locations derived with the anytime 
and geosphere r packages (Hijmans et al., 2015; Eddelbuettel, 2018). 
All GPS locations within the 95% confidence interval for heights rela-
tive to ground level and greater than 10 m above-ground or associated 
with speeds greater than or equal to 1.39 m/s (~5 km/hr) were clas-
sified as in flight. This approach accounts for the vertical error given 
by many GPS devices and excludes locations where the bird is likely 
to be stationary on the ground. The vertical position error associated 
with GPS tracking devices is typically in the range of 1.5 m but can be 
as large as 31 m due to the combined error of the GPS device and the 
DSM surface (Marques et al., 2020). We categorised each flying GPS 
location as within each danger height band or not (Figure 2).

Some datasets contained bursts of high frequency GPS mea-
surements (up to 1hz). Because the heights recorded in these bursts 
are not likely to be independent, the data were filtered to remove 
this potential source of bias by ensuring a minimum of 1  min be-
tween subsequent GPS locations resulting in a total sample size of 
18.0 million GPS locations. We then summarised the proportion of 
GPS locations in flight (6.6 million) observed at each danger height 
within each grid cell for each species in the dataset.

Due to the nature of data obtained from tracking studies, the 
distribution of studies and individuals was heterogeneous across the 
study region (Figure 1), hence we considered cells with more track-
ing data to have more reliable estimates of the proportion of GPS lo-
cations in flight (Péron et al., 2017; Silva et al., 2017). We accounted 
for this at the species level using the Wilson's score (Reichensdörfer 
et al., 2017) whereby the lower bound of the Wilson confidence 
interval (WCI), calculated using the binconf function in the Hmisc r 
package (Harrell, 2018), was used in place of the percentage (Lewis 
& Sauro, 2006; Lott & Reiter, 2020). Compared to a raw proportion, 
at low sample sizes, this has the effect of reducing the value assigned 
to grid cells where uncertainty is higher. For example, if a grid cell 
contained only three GPS locations, the Wilson score (WS) tended 
towards zero due to the large WCI around the central point estimate 
of the proportion of GPS locations at danger height, as sample size 
increased (n  >  50) and the WCI converged towards zero, the WS 
became comparable to a percentage (Cao, 2018). See further infor-
mation in Supporting Information S1, section 7.

We weighed this proportion of flying GPS locations to account 
for the collision susceptibility of different species using a morpho-
behavioural risk index (MBRI) based on the method utilised in D'Amico 

F I G U R E  2  Danger height band definitions for energy 
infrastructure within which birds could be vulnerable to collision. 
The majority of transmission power lines (66 kV and over) range 
from 10 to 60 m in height (National Grid, 2014). For current 
onshore wind turbines, we derive a rotor swept zone ranging from 
15 to 135 m above-ground (Pierrot, 2018; Thaxter et al., 2019)

https://www.thewindpower.net/index.php
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et al., 2019 and morphology data provided by Storchová & Hořák, 2018. 
Wing area and aspect in relation to weight is an important factor in 
avoidance ability as species with higher wing load are less able to take 
evasive action (Bevanger, 1998; Janss, 2000; May, 2015). Because wing 
area values were not available for all species, we simplified the shape 
of a bird as a rhombus and calculated a simplified area using the wing-
span (WS) and body length (BL) in metres using data from Svensson 
et al., 2016 or Storchová & Hořák, 2018. Comparing this with wing area 
data available for 17 of the 27 species (Hedenström & Strandberg, 1993) 
using linear regression (R2 = 0.61, F1,15 = 23.44, p < 0.001) suggests that 
it is a good proxy for assessing relative differences between species 
and an improvement on using wingspan alone (R2 = 0.46, F1,15 = 14.38, 
p < 0.001), further details are provided in Supporting Information S1, 
section 8. We then estimated a wing load proxy by dividing this area 
(m2) by body mass (BM) in kilograms as per Equation 2:

 We combined this wing–body mass ratio (WBMR) with several other 
factors scored as either 1 or 2 associated with avoidance ability 
(D'Amico et al., 2019). These factors include flight style (FS), flapping (1) 
versus soaring (2) because soaring species are less capable of making 
sudden changes in trajectory to avoid collision compared to flapping 
species (May, 2015); whether the species has binocular vision (BV) (1) 
or peripheral vision (2) (D'Amico et al., 2019; Martin & Shaw, 2010); 
whether the species is a flocking species (FL) (2) or not (1) and whether 
the species flies frequently at night (ND) (2) or not (1). This definition 
of MBRI is the similar to D'Amico et al., 2019 apart from the flight style 
because D'Amico et al., 2019 use flight style as a proxy for flight height 
whereas we use flight style to help infer manoeuvrability (May, 2015). 
To account for the impact of mortality on the population of each 
species, this MBRI was then combined with European conservation 
status (Least Concern = 1, Other categories = 2) to produce a morpho-
behavioural risk conservation status index (MBRCI) as per Equation 2:

MBRCI was then normalised onto a scale between zero and one by cal-
culating the ratio between the MBRCI for each species and the maxi-
mum value across all species. MBRCI for each species is detailed in the 
table in Supporting Information 1, section 8. Sensitivity at the species 
level for each grid cell was then calculated as the proportion of tracking 
locations at danger height (quantified by the Wilson Score WS) mul-
tiplied by the MBRCI to produce a value between 0 and 1. The final 
sensitivity across all species is then defined as the maximum sensitiv-
ity of any species present in each grid cell. For example, if two species 
were present and species A was associated with a sensitivity score of 
0.2 and species B was associated with a score of 0.4 the sensitivity for 
species B would be used for that grid cell. Alternative approaches using 
the raw proportion of flight locations at danger height, the Wilson score 
proportion or weighting the Wilson score proportion by conservation 

status did not alter our conclusions significantly and are provided in 
(Supporting Information 1, section 9).

2.3  |  Vulnerability to collision for GPS 
tracked birds

Vulnerability is a measure of how exposed individuals are to the 
presence of EI in horizontal and vertical space and how sensitive 
they are to the collision risks posed by this infrastructure (Thaxter 
et al., 2019). We calculated vulnerability associated with existing in-
frastructure, for each grid cell, by multiplying the relative density of 
each EI type (0–100 scale) by the sensitivity value at the relevant 
height band for each 5x5km grid cell at the species level resulting in 
a value between 0 and 100. As per Equation 3:

A score of zero indicates that either no EI is present or sensitivity is 
zero whereas vulnerability of 100 would require relative density of EI 
to equal 100 and sensitivity to equal 1. Combined vulnerability is the 
sum of vulnerability for each height band. The final vulnerability across 
all species for each infrastructure is then defined as the maximum 
value of any species present in each grid cell.

2.4  |  Defining sensitivity and 
vulnerability categories

To ensure classification of sensitivity and risk was driven by the data 
(Gouhier & Pillai, 2020), we defined categories using the 25th, 75th and 
97.5th percentiles for all grid cells where the sensitivity (or vulnerability) 
for a given height band was greater than zero. Grid cells scoring greater 
than zero but less than the 25th percentile are ‘Low’, scores between the 
25th and 75th percentile are ‘Moderate’, scores greater than the 75th 
percentile are ‘High’ and cells in the top 2.5% of observations are ‘Very 
High’. All other cells are classified as ‘Very Low’ if there are GPS locations 
but none at danger height resulting in a score of zero or ‘No Data’ if data 
were lacking. We emphasise, therefore, that our method can only iden-
tify areas where a high risk of EI exists, but that the absence of a high-
vulnerability score in our analysis cannot be interpreted as indicative of 
low impact of EI due to the potential for other bird or bat populations 
(for which no data were available in our study) to be affected.

3  |  RESULTS

3.1  |  Bird sensitivity to wind farm and power line 
development

We mapped movements of 1,454 individual birds of 27 species 
(Figure 1). The study species travel across the continent and converge 
along key migratory routes. As expected, we observed a high flux of 

(1)WBMR =
(WS∗BL) ÷ 2

BM
.

(2)MBRCI = CI∗
(WBMR∗FS∗BV∗FL∗ND)

5
.

(3)vulnerability = sensitivity∗EI density.
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individuals through the bottlenecks of the European–African Flyway, 
such as Southern Iberia, Sinai, the Gulf of Iskenderun and the Bosporus 
in Turkey. Important gaps existed in the tracking data in North Spain, 
Scotland, Scandinavia, Italy, Eastern Europe and central North Africa 
(Figure 1). The median number of individuals tracked per species was 
21, the species with the most tracked individuals was the White Stork 
Ciconia ciconia (n = 491; Supporting Information S1, section 3).

In total, 99,641 of the 554,993 5x5km grid cells in the study area 
(18%) contained at least one GPS location in flight. Sensitivity to 
wind turbines was greater than zero in 54.9% (n = 54,703) of these 
grid cells (Figure  3a). 13.57% (n  =  13,516, 337,900  km2) of these 
cells were classified as high sensitivity, that is, they were in the 
upper quartile of sensitivity scores (>0.11). There was significant 
variability in sensitivity between species (ANOVA F26,59,592 = 432.4, 

p < 0.001) with Eurasian eagle owl Bubo bubo, whooper swan Cygnus 
cygnus, eurasian spoonbill Platalea leucorodia, common crane Grus 
grus and white-fronted goose Anser albifrons exhibiting the great-
est sensitivity to wind turbines across the grid cells where data 
are available for these species (Table 1). Sensitivity to transmission 
power lines (10–60 m height band) was greater than zero in 37.64% 
(n  =  37,509) of grid cells (Figure  3b). Across Europe and North 
Africa 9.41% (n = 9375, 234,375 km2) of these cells are classified 
as high sensitivity, that is, they are in the upper quartile of sensitiv-
ity scores (>0.14). Eurasian spoonbill Platalea leucorodia, European 
eagle owl Bubo bubo, whooper swan Cygnus cygnus, Iberian imperial 
eagle Aquila adalberti and white stork Ciconia ciconia are the five 
species which exhibited the greatest sensitivity at the transmission 
power line danger height band (Table 1).

F I G U R E  3  (a) Year-round sensitivity 
to wind turbines across all species 
(n = 27) and areas for which we could 
obtain suitable GPS tracking data, (b) 
year-round sensitivity to transmission 
power lines across all species using GPS 
tracking data (n = 27) and areas for which 
we could obtain suitable GPS tracking 
data. Sensitivity at the species level for 
each grid cell was then calculated as 
the proportion of tracking locations at 
danger height (quantified by the Wilson 
score WS) multiplied by the MBRCI to 
produce a value between 0 and 1. The 
final sensitivity across all species is then 
defined as the maximum sensitivity of any 
species present in each grid cell. Maps 
for breeding and non-breeding seasons 
are provided in Supporting Information 2. 
Basemap from (OpenStreetMap, 2019b)
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Sensitivity was determined separately for breeding and non-
breeding seasons (Supporting Information 2 section 1). Although the 
proportions are similar between seasons, during the breeding season 
we observed fewer overall high sensitivity grid cells at danger height 
than during the non-breeding season (Supporting Information 2 sec-
tion 1). This clustered pattern is a product of sampling effort and is 
also indicative of the smaller scale movements of the tagged birds 
during the breeding season, which are centred on breeding locations. 
In the non-breeding season, birds move away from their breeding areas 
and we observe high sensitivity along coastlines and within major 
migratory routes. Notable sensitivity hotspots include the Western 
Mediterranean coast of France and Southern Spain, Eastern Romania, 
the Moroccan Coast, the Sinai Peninsula and the Baltic coast of 
Germany. Taxon specific maps of sensitivity are provided in Supporting 

Information S2 section 2, these can be used to compare with previous 
studies (see discussion) and highlight taxon specific gaps in the tracking 
data available on Movebank. For some taxa such as cranes, as repre-
sented by common crane Grus grus in our dataset, this highlights how 
individuals may travel long distances at altitudes where they are un-
likely to collide with EI resulting in highly localised sensitivity hotspots.

3.2  |  Vulnerability of tracked birds to energy 
infrastructure risks

We plotted the combined vulnerability score as the sum of vulner-
ability from wind turbines and power lines present in each grid cell 
(Figure 4a). The tagged birds experience some degree of vulnerability 

F I G U R E  4  (a) Vulnerability hotspots for 
wind farms where the GPS tracked birds 
(N = 1,454) are most likely to interact 
with wind turbines at danger height, 
white grid cells represent areas currently 
lacking sufficient GPS tracking data to 
assess vulnerability. (b) Hotspots where 
the GPS tracked birds (N = 1,454) are 
most vulnerable to risks associated with 
transmission power lines. Grey grid cells 
in panels b and c represent the density 
of EI in grid cells for which we do not 
have sufficient tracking data and as such 
represent areas of unknown vulnerability. 
Vulnerability categories are symbolised as 
per the legend in panel a. Basemap from 
(OpenStreetMap, 2019b)
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in 28.2% (n = 28,051) of the grid cells with at least one GPS location 
in flight. 7.0% of these grid cells (n = 7,013) are high-vulnerability 
with values in the upper quartile of vulnerability scores (>1.13) and 
1.7% (n = 702) are very high-vulnerability as they fall in the upper 
2.5 percentile (>9.03). Fewer high-vulnerability grid cells are associ-
ated with wind turbines (n = 483, Figure 4b) compared with trans-
mission lines (n = 6,861, Figure 5c). This suggests that transmission 
power lines are currently a more ubiquitous source of potential colli-
sion risks than wind turbines.

High-vulnerability areas were not distributed evenly across the 
study area (Figure  4a): just five countries (Germany, Spain, France, 
Turkey and Poland) accounted for 50.5% (n  =  3,539) of the high-
vulnerability grid cells. Measuring this relative to the percentage area 
of each country, the five countries with the most high-vulnerability 
grid cells were Liechtenstein (14.2%, n = 1), Germany (7.2%, n = 1,028), 
Israel (5.8%, n  =  48), Lebanon (5.4%, n  =  22) and Portugal (5.0%, 
n = 176; Supporting Information S2, Section 3). However, it must be 
noted that this ranking will at least be partly influenced by the distri-
bution of available tracking data. In the case of Turkey, Spain, Israel, 
Lebanon and Portugal, this indicated high densities of EI within im-
portant migratory bottlenecks where there is high flux of tracked birds 
at danger heights. On the other hand, for Central Europe, this high-
vulnerability is likely associated with the high density of wind turbines. 
Germany alone accounted for 55.2% (n = 267) of the 483 grid cells 
associated with a high-vulnerability from wind turbines (Figure 4b). 
There were marked differences in vulnerability between species, with 
mean combined vulnerability ranging from 0.042 ± 0.081 SD for west-
ern marsh harrier Circus pygargus to 2.14  ±  3.62 SD for white stork 
(Table 1).

4  |  DISCUSSION

For areas with sufficient tracking data (currently 18% of the study 
area), our sensitivity surface identifies sensitivity hotspots associ-
ated with different height bands for wind turbines and transmission 
power lines (Figure  3). These are the areas where the tracked in-
dividuals are most sensitive to collision with EI. While not replac-
ing the need for environmental impact assessment at more local 
and site-specific scales of relevance to local bird populations, our 
analysis successfully identified, areas where wind turbine and trans-
mission powerline development should be minimised to protect the 
integrity of the flyway. As expected, many of these areas coincide 
with key migratory bottlenecks, such as the coasts of either side 
of the Strait of Gibraltar (Martín et al., 2018), the Bosporus Strait, 
Gulf of Iskenderun and the southern Sinai Peninsula (Buechley 
et al.,  2018). This supports the idea that further development of 
EI within these migratory bottlenecks where species fly at danger 
height is likely to exacerbate existing anthropogenic mortality risks. 
Rigorous ecological impact assessment, spatial planning and mitiga-
tion at the local scales are needed within these bottleneck areas, as 
highlighted in other studies (De Pascalis et al., 2020; Martín et al., 
2018). Comparing our results for the Laridae species included in our 

analysis (lesser black-backed gull Larus fuscus) with previous work 
by Thaxter et al., 2019, which differed in methodology but utilised 
many of the same L. fuscus datasets, reveals similar patterns in sensi-
tivity across the region for this species, supporting the validity of our 
approach (Supplementary information S2, section 2).

Our results also highlighted differences in sensitivity to EI be-
tween species and which type of EI poses the most risk to each spe-
cies (Table 1). It is beyond the scope of this study to provide specific 
ecological explanations for this observed variation as this is an on-
going topic of research in of itself, however, this is likely a product of 
ecological and morphological factors such as flight style (flapping vs. 
soaring), migratory behaviour, habitat preference and how foraging 
strategy influences flight heights relative to the danger height bands 
(Bernardino et al., 2018a; Martin & Shaw, 2010; Thaxter et al., 2017).

Despite efforts to obtain as complete coverage of the study re-
gion as possible, we acknowledge gaps were present in the avail-
able GPS tracking data, particularly within areas such as northern 
France, northern Spain, Scandinavia, Algeria and Libya. These gaps 
reflect geographical and seasonal variation in the availability of bird 
telemetry data (Bouten et al., 2013). As such, our results success-
fully highlight where sensitivity and vulnerability to collision with EI 
occurs, but cannot indicate where vulnerability does not occur. Our 
sample includes only a subset of the most susceptible species, most 
of which are larger birds with a body mass of 350 g or more, and only 
a subset of populations of these species, leading to sampling-related 
bias which is most evident during the breeding season (Supporting 
Information 2, section 4). These sampling-related biases are a com-
mon issue in ecology, and collision risk cannot be inferred for areas 
where information is not available (Brotons et al., 2004). Despite 
these limitations, the approach used, based on existing tracking 
data, accounting for species susceptibility to collision and the pro-
portion of GPS records at danger height, provides a simple way to as-
sess risk in the areas where data are available. As more tracking data 
become available, this analysis can be updated using the code pro-
vided in supplementary material 3 and data from (Movebank, 2019). 
This study highlights the benefits of data sharing and we expect data 
availability to increase significantly in the near future as GPS telem-
etry becomes more affordable and miniaturisation enables tracking 
devices to be fitted to smaller bird species (Bouten et al.,  2013). 
Advances in sensor technology may also soon allow collision mor-
tality to be detected in real-time (O'Donoghue & Rutz, 2016). One 
priority to aid future research is to help fill these gaps by improving 
data sharing via platforms such as Movebank or UvA-BiTS, promo-
tion of new bird tracking studies in under-represented areas and 
taxonomic groups, improved standardisation of biologging datasets 
and deployment of loggers outwith the breeding season (Sequeira 
et al., 2021). Other methods to address these data gaps may include 
the use of GPS data to model the relationship between flight heights 
and spatio-temporal factors such as weather, time of year, topogra-
phy and land cover. However, such an analysis is beyond the scope 
of this paper.

Overlaying sensitivity with the existing wind farms and transmis-
sion lines identified a number of vulnerability hotspots where the 
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tracked birds are vulnerable to collision with EI (Figure 4). While it is 
beyond the scope of this paper to evaluate the effectiveness of dif-
ferent mitigation options, we suggest that for areas with sufficient 
GPS tracking data, the vulnerability map can help identify priority 
areas for mitigation of impacts of EI, to reduce risks to birds. For 
existing power lines this could include line marking to increase visi-
bility, burying cables or altering routes to avoid high sensitivity areas 
(Jenkis et al., 2010). For wind turbines, options include repowering 
with fewer larger turbines (Arnett & May, 2016), marking blades (May 
et al., 2020), temporary shutdown periods during the peak of the mi-
gratory season (de Lucas et al., 2012) which is already a requirement 
in some countries such as Jordan (Tomé et al., 2017). Another option 
is to retrofit radar or camera-based systems to monitor bird move-
ments and automatically shut down turbines during periods of high 
migratory movement (McClure et al., 2018). Future analyses could 
be improved if official, multi-country, energy network spatial data-
sets were composed and made available to researchers. This would 
enable consideration of lower voltage distribution power lines which 
are under-represented in open-source data and are associated with 
electrocution, which was not considered in this study, as a major 
cause of injury and mortality (Garret, 2018; Hernández-Lambraño 
et al., 2018). In a European study with Northern Bald Ibises 45% of 
the losses were caused by electrocution (Fritz et al., 2019). As with 
collision, there are several options such as retrofitting insulators or 
perches to reduce electrocution risk (Dixon et al.,  2019), but the 
problem could be entirely avoided by constructing safe poles that 
eliminate electrocution risk in the first place (AEWA, 2012).

5  |  IMPLIC ATIONS FOR MANAGEMENT 
AND CONSERVATION

To our knowledge, this is the first time that an assessment of this 
kind has been undertaken at the flyway scale across multiple species. 
Our methodology provides a readily transferable approach to assess 
sensitivity and vulnerability for other species and areas as more GPS 
tracking data become available. The results presented here do not 
preclude the need for detailed local environmental impact assess-
ment of the potential ecological impacts of EI on birds and other 
wildlife combined with post-construction monitoring to assess the 
risks due to disturbance, habitat loss, electrocution as well as col-
lision which was the focus of this paper (Bernardino et al.,  ; Gove 
et al., 2013). However, for areas with sufficient GPS tracking data, 
our sensitivity maps can inform where new wind farms and power 
lines should not be constructed and help include consideration of 
these impacts early in the site selection process for developments. 
Moreover, the vulnerability maps can help more effectively target 
areas for surveys to identify specific locations where mitigation of 
existing wind farms and power lines should be implemented. In our 
race to tackle the climate crisis, it is vital that we do not neglect the 
biodiversity crisis (Vasilakis et al., 2016), sensitivity and vulnerability 
maps derived from GPS tracking data will be an important tool to 
help protect wildlife as our energy system transitions to zero carbon.
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