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Abstract

The Chaboche isotropic-kinematic hardening (CIKH) model provides a versatile and realistic description of the
material stress-strain behavior under generic multiaxial cyclic loadings. However, identifying the backstress
parameters is challenging, and can be formulated as an optimization problem using different approaches. Instead
of a computationally expensive pointwise search, in this paper the global properties of the cyclic curves are fitted
to the experimental data. The conditions introduced are the hysteresis areas, peak stress values and tangent moduli
at the extreme points, however the framework can be easily adapted to other target quantities. One linear and
two non-linear backstress components of the kinematic hardening model are introduced, although the analytical
equations developed can be used to refine the model further, with more components. Two stabilized cycles are
required to identify the main kinematic parameters. New analytical expressions for asymptotic ratcheting rates
in uniaxial tests are developed and then used to tune the dynamics of the slightly non-linear (hence, slowest)
backstress component. After obtaining the kinematic parameters, isotropic hardening laws can also be identified,
by considering the evolution of the extreme points of the strain-controlled cycles before stabilization. Practical
demonstrations of the procedure are provided by experimental tests carried out on a 7075-T6 aluminum alloy,
42CrMo4+QT steel, and a high-silicon ferritic ductile cast iron. An accurate reproduction of the material
behavior is achieved, at a negligible computational cost.

Keywords: Stress relaxation (A); Constitutive behavior (B); Elastic-plastic material (B); Mechanical testing
(C); Numerical algorithms (C).

Highlights

• A procedure is proposed for identifying Chaboche model parameters.

• The main global properties of the stabilized cycles and the ratcheting are imposed.

• The isotropic component parameters are easily found after the kinematic ones.

• Analytical expressions for the asymptotic ratcheting rate are found and implemented.

• Applications of the procedure on different metals are provided with validations.
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Nomenclature

CIKH Chaboche isotropic-kinematic hardening
σ stress component for a uniaxial stress state
E Young’s modulus
ν Poinsson’s ratio
ε strain along the direction of σ
εe elastic component of the strain ε
εp plastic component of the strain ε
χ total uniaxial backstress, along the direction of σ
χi i-th uniaxial backstress component (i = 1, . . . , n)
n number of backstress components (in the application of the present study study: n = 3)
χk possible linear backstress component
σ0 initial elastic limit or initial yield surface size
σY generic elastic limit depending on the isotropic hardening
σL elastic limit after isotropic hardening saturation
Q, b Parameters of Voce’s law, multiplicative and exponential terms, respectively
Ci, γi parameters of the i-th backstress component, linear and rate terms, respectively
Cj, γj parameters of a slightly non-linear backstress component (γj � γi ∀i), if present
Ck, γk parameters of the linear backstress component (γk = 0), if present
λ root of a characteristic polynomial, for stability testing
χmax
i , χmin

i i-th backstress maximum and minimum asymptotes, respectively
χi,0 initial value of the i-th backstress component at the beginning of each ramp
χk,0 initial value of the linear backstress component
εi,0 initial i-th plastic strain value at the beginning of each ramp
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εmin
p , εmax

p Minimum and maximum plastic strain of a plastic strain controlled cycle
∆εp Plastic strain amplitude of a cycle
χmin
i,N, χ

max
i,N Minimum and maximum backstress values of N-th cycle

N number of cycle
χmin
i,stab, χ

max
i,stab Minimum and maximum backstress values of the stabilized cycle

χmin
k,stab, χ

max
k,stab Minimum and maximum stabilized values of the linear backstress component

σmin
N , σmax

N Minimum and maximum stress of N-th cycle
σmin

stab, σ
max
stab Minimum and maximum stress of a stabilized cycle

σm mean stress of a stabilized cycle, or that of the ratcheting loading
∆σ stress full range of a stabilized cycle, or that of the ratcheting loading
A Area of the hysteresis loop of the stabilized cycle
σmin, σmax Minimum and maximum stresses of the ratcheting test
∆ε+p,N,∆ε

−
p,N plastic strain amplitude, at cycle N , during ascending and decreasing ramp, respectively

εmax
p,N , ε

min
p,N maximum and minimum plastic strain during a ratcheting cycle, at the generic cycle N

∆εa
p,N,∆ε

s
p,N ratcheting plastic strain amplitude and shift, respectively, at the generic cycle N

∆εa
p, ∆εs

p ratcheting plastic strain amplitude and shift, respectively, stable values
∆εr

p,N ratcheting plastic strain rate per cycle, at the generic cycle N

∆εr
p ratcheting plastic strain rate per cycle, stable value

εmax
p,stab, ε

min
p,stab maximum and minimum plastic strain of the stabilized ratcheting cycle, if present

εm
p,stab mean value between εmax

p,stab and ε
min
p,stab

εm
p mean value of the plastic strain of a stabilized cycle
εm

p,I, ε
m
p,II mean value of the plastic strain of the stabilized cycles I and II

σm,I, σm,II mean stress of the stabilized cycles I and II
∆σI,∆σII stress full range of the stabilized cycles I and II
∆εp,I,∆εp,II Plastic strain amplitude of the stabilized cycles I and II
σmax

stab,I, σ
max
stab,II Maximum stress of the stabilized cycles I and II

aI, aII, bI, bII dummy variables for the determination of C1 and C2

σL,I, σL,II identified elastic limits of the stabilized cycles I and II
AI, AII hysteresis area of the stabilized cycles I and II
Σ relative peak stress error
ΛI,ΛII relative hysteresis area error for the stabilized cycles I and II
Ψ(γ1) dimensionless error function for the determination of the parameter γ1

R stress ratio σmin/σmax, in ratcheting tests
Rε strain ratio εmin

p /εmax
p , in relaxation tests

εd transverse or diametrical experimental strain
Pmax maximum load applied to specimen under the experimental ratcheting test
B coefficient of the geometric progression followed by ∆εs

p,N
ω common ratio of the geometric progression followed by ∆εs

p,N
G alternative representation of ω as exp(−G∆εa

p)

χm
i average of maximum and minimum i-th backstress values of a cycle
χm
i,N average of maximum and minimum i-th backstress values during the N-th cycle
χm,forced
i,N forced response of the linear difference equation which describes the evolution of χm

i,N

χm,free
i,N free response of the linear difference equation which describes the evolution of χm

i,N

θi coefficient of the free response of χm
i,N , to be determined with boundary constraints
3
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1. Introduction

An accurate description of the elastic-plastic behavior of metals is usually recommended for the reliable
prediction of the mechanical responses of components and structures beyond the elastic limit. There are many
industrial applications involving plasticity, such as the contact mechanics over the elastic limit (Mohammadpour
and Chakherlou, 2016), and the fatigue loading of mechanical components (Paul et al., 2014; Paul, 2020).
During load cycling, the local stress and strain histories can be significantly affected by the plasticity, especially
at notches (Bertini et al., 2017). However, the simple linear elastic model is often used, mainly because of the
lack of information on the constitutive behavior of the material.

One of the most common constitutive rules used to model the plasticity of metals is the Chaboche kinematic
hardening model. This model was initially introduced by Chaboche (Chaboche, 1986), after developing the
Armstrong and Frederick (A-F) model (Armstrong and Frederick, 1966) by proposing the superposition of
multiple backstress components with different properties. The Chaboche model can be efficiently combined with
an isotropic hardening rule. The exponential formula proposed by Voce (Voce, 1948) is usually considered, as in
recent studies on the modeling of constitutive material behavior (Broggiato et al., 2008; Zakavi et al., 2010; Nath
et al., 2019). By combining Chaboche kinematic hardening and Voce isotropic hardening, a complete model
is obtained, which is usually referred to as Chaboche (or Chaboche-Lemaitre) combined isotropic-kinematic
hardening (CIKH). Despite several modifications and new approaches were provided, such as (Chaboche, 2008),
this hardeningmodel remains the benchmark, for both the kinematic component alone and the combined isotropic-
kinematic model. It is indeed implemented in commercial finite element software packages such as Ansys (see
the theory reference manual, section 4.2 (Ansys, 2013)).

The Chaboche kinematic hardening model has been used in many applications to model different loading
conditions such as indentation (Song and Komvopoulos, 2014), residual stresses (Zobec and Klemenc, 2021),
and the simulation of sheet metal springback (Wagoner et al., 2013), etc. The elastic-plastic predictions of this
model have also been extended to fatigue analysis, when the elastic limit exceeds a volume of a certain size
around a notch, as shown for example by Branco et al. (2018), Benedetti et al. (2020) and Zhao et al. (2021). In
these latter studies, the purely elastic and total (elastic-plastic) strain energy densities were identified, which were
investigated as fatigue estimators. Another interesting contribution of the kinematic model, within the fatigue
framework, is the prediction of the mean stress relaxation during fatigue loading (Bertini et al., 2017; Chaboche
et al., 2012; Agius et al., 2017).

Different modifications of the Chaboche model have been proposed in the last few decades and also more
recently. An elaborate distortion of the yield surface was considered by Rokhgireh et al. (Rokhgireh et al., 2017),
to better predict uniaxial and multiaxial ratcheting tests. Non-proportional cyclic strain hardening was modelled
by Xue et al. (Xue et al., 2021) to better reproduce the multiaxial loading. Another modification of the original
Chaboche model is the proposal of a hardening rule with four backstress components and one with a threshold
(referred to as C-H4T (Chaboche and Jung, 1997; Han et al., 2020)) in order to obtain more realistic biaxial
ratcheting modeling. Lee et al. (2014), Ramezansefat and Shahbeyk (2015) and Kang (2008) also addressed
the need for a modification of the Chaboche kinematic hardening rule to obtain a more accurate representation
of ratcheting behavior. The original Chaboche model has also been expanded and adapted to include strain
memory effects (Zhou et al., 2018), thermal softening (Zhu et al., 2016), secondary hardening (Bemfica and
Castro, 2021), creep deformation (Zhang and Xuan, 2017) and dynamic strain aging (Cao et al., 2021). The
constitutive models obtained are phenomenological: they describe macroscopic behavior through mathematical
equations whose parameters are, however, not trivially related to a measurable quantity. On the other hand, the
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development of crystal plasticity models which connect the macroscopic behavior with the underlying physical
micro-scale mechanisms have attracted increasing interest (Bandyopadhyay et al., 2021; Li et al., 2022a).

Uniaxial stress- or strain-controlled cyclic tests are frequently performed to characterize thematerial response,
and different behaviors can be observed: purely elastic, elastic shakedown, plastic shakedown, or ratcheting,
often with a steady strain increment (Koo et al., 2019; Paul, 2019). However, when a small portion of the material
undergoes cyclic plasticity and that volume is surrounded by the bulk of material remaining below the elastic
limit (as in notched components), the resulting loading at the notch root can be interpreted as a mixed stress-
and strain-controlled loading. More precisely, as described in Fig. 1, three regions can be distinguished around a
notch under fatigue loading beyond the elastic limit, as noted by Paul and Tarafder (2013). The outer region (far
from the stress concentration) remains elastic and provides a deformation constraint for the inner region. The
intermediate region experiences an elastic shakedown, while the material around the notch tip undergoes a plastic
shakedown. In this latter (and most critical) region, when the external load imposes an asymmetric cycle, a stress
relaxation is initially observed, which in principle is beneficial for fatigue under tensile stresses. This stress
relaxation near the notch was modeled and also experimentally observed by Shekarian and Varvani-Farahani
(2019, 2021). After some relaxation, this initial trend usually evolves into a ratcheting behavior until complete
stabilization, as shown in Fig. 1 and discussed by Paul (2016); Zhao et al. (2021). Ratcheting and stabilized
behavior are thus arguably the most critical aspects of material modeling in the fatigue of notched components.

Strain

St
re

ss

Point B

Point C

Point A

Stabilized cycle

(a) (b)

Elastic domain

Notch bisector

Cyclic elastic-
plastic region

A B C

Relaxation
→ Ratcheting

→ Stabilization

Elastic shakedown 
region

Figure 1: Elastic and elastic-plastic shakedown at the notch root while the outer volume remains elastic.

Ratcheting can induce either ductile or brittle (low-cycle) fatigue failure (Kang et al., 2008, 2009), which can
evolve as an elastic-plastic shakedown or continue until specimen failure. When the latter occurs, the ratcheting
evolution can be divided into primary, secondary and tertiary zones (or stages), as in Paul et al. (2010); Paul
(2012); Zhang et al. (2020). In the secondary zone, an approximately constant ratcheting rate (intended as
the strain increase per cycle) is observed. This is a well-known experimental result, as shown by Hassan and
Kyriakides (1992); Kreethi et al. (2017); Zhang et al. (2020), and the modeling of this phenomenon is among the
main targets of various proposals regarding hardening rules. A detailed review of both experimental observations
and constitutive modeling aspects of ratcheting can be found in (Kang, 2008).

Using either the original Chaboche model or one of the modified models, evaluating the material parameters
and in particular the backstress coefficients is challenging. Different approaches to this identification problem are
available in the literature. An interesting approach was proposed by Liu et al. (2019) referring to stabilized (and
symmetric) cycles for the identification process, while tuning the value of the smallest γi to meet the ratcheting
strain prediction. Lee et al. (2014) also proposed the combination of uniaxial strain-controlled cycling loadings
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at different strain amplitudes, in combination with additional ratcheting tests to verify and fine-tune the material
model. As detailed later, this paper also follows a similar approach. Hai et al. (2021) used strain-controlled
tests, and both the isotropic and kinematic rules were modified with respect to the original Chaboche model, also
including the evolution of the elastic modulus depending on the (cumulative) plastic strain. The identification
of parameters is often performed using ratcheting tests (both uniaxial and biaxial, the latter obtained as axial
load plus torsion), as in Agius et al. (2017); Abdel-Karim (2010); Ding et al. (2012); Bari and Hassan (2000);
Hamidinejad and Varvani-Farahani (2015).

When the material model is particularly refined and the kinematic hardening parameters are only a subset
of a larger parameter set, a numerical optimization is usually used (Zhu et al., 2016; Cao et al., 2021; Burgold
et al., 2020; Egner et al., 2020; Esmaeili et al., 2017; Hwang et al., 2020; Okorokov et al., 2019; Song and
Komvopoulos, 2014; Cheong et al., 2018; Xie et al., 2019; Xu et al., 2016, 2022), in order to minimize the
deviation between experimental and simulated stress histories. In these cases, as observed by Cao et al. (2021)
and Okorokov et al. (2019), a strategy that decouples the effects of some parameters and identifies them separately
is fundamental. For example, stabilized hysteresis loops often identify kinematic hardening parameters alone
(Xie et al., 2019). Xu et al. (2016) verified their model (which included Chaboche kinematic hardening) by also
comparing simulated and experimental hysteresis areas. As the complexity of constitutive models has increased,
machine learning approaches have been used to obtain data-driven material models (Abueidda et al., 2021; Li
et al., 2022b).

Several examples of parameter identifications using genetic algorithms have been presented (Nath et al.,
2019; Mahmoudi et al., 2011; Badnava et al., 2012; Nath et al., 2021). Mahmoudi et al. (2011) proposed a multi
objective optimization with two fitness functions, using a genetic algorithm search for the Chaboche kinematic
hardening parameters. One of these fitness functions was aimed at accurately reproducing the hysteresis cycle,
while the other was used to model ratcheting behavior, and the results were similar to the C-H4T model, also for
multiaxial ratcheting. Another example of multi-objective optimization was proposed by Sinaie et al. (2014) and
the target consisted in a pointwise modeling of experimental load histories, until a Pareto frontier was reached.
Wójcik and Skrzat (2020, 2021) implemented a fuzzy logic approach for the correction and optimization of the
Chaboche parameters. A particle swarm optimization algorithm was implemented by Moslemi et al. (2020) and
then used to model uniaxial and biaxial ratcheting tests of AISI 316L stainless steel.

A more direct approach can be obtained by using backstress components to model the hardening behavior at
different length scales. Instead of running a complex optimization task, the cyclic curves can be considered in
segments, and the most effective coefficients of each of them can be obtained in a stepwise manner (Arora et al.,
2021; Das et al., 2020; Yuenyong and Uthaisangsuk, 2020; Yang et al., 2020).

Fu et al. (2016) determined the model parameters with the virtual fields method, in combination with a
full-field deformation measurement, and different numbers of backstress components (from one to three) were
considered, just to fit the initial loading cycles. Nath et al. (2019) argued that ratcheting tests can be accurately
simulated only if isotropic hardening is also included, and that the absence of isotropic hardening in cyclically
stable materials should be carefully evaluated on a case-by-case basis.

This paper considers the original Chaboche kinematic hardening model, and an identification procedure is
presented along with experimental data on 7075-T6 aluminum, 42CrMo4+QT steel, and a high-silicon ferritic
ductile cast iron. After obtaining the kinematic parameters of these materials, the models are also refined with
the introduction of an isotropic hardening law such as Voce’s equation, thus creating a full CIKH model. As
clarified in Section 2, since the procedure is initially aimed at reproducing quantities that do not depend on the
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specific isotropic hardening behavior, the choice of the that model does not affect the identification process.
Hence, the isotropic model parameters can be identified later when the kinematic parameters are available. For
this reason, more complex isotropic hardening laws can be included.

The classical CIKH model has some limitations. For example, it does not consider non-proportional
hardening and strain memory effects. However, for many engineering and building materials, it represents a
solid compromise between accuracy and complexity, requiring only 6 kinematic (in the 3-backstress setup) and
2 isotropic parameters, in addition to the material elastic properties.

The proposed identification process only requires uniaxial tests to determine the whole set of CIKH pa-
rameters, thereby keeping experimental requirements to a minimum. Given that the Chaboche model has some
limitations and its backstress components are not directly related to physical quantities, in principle there are no
correct parameters, thus the identification should be performed for a specific target, as discussed for example
by Djimli et al. (2010). In other words, the right parameters are those that work best at predicting the material
behavior in some loading conditions of practical interest. More specifically, the main target of the present
procedure is to accurately reproduce the stabilized cycles obtained under strain-controlled conditions. This target
is of particular interest for the fatigue of notched components, in which a portion of the volume at the notch
undergoes cyclic plasticity, while the surrounding material remains elastic (as in Fig. 1). However, since a
short ratcheting phase is often present in this case, the aim is also to achieve a realistic reproduction of uniaxial
ratcheting. Proportional loadings are very common when notched components are tested under fatigue, as loads
are usually scaled over time. In addition, tensile and bending tests induce a moderate multiaxiality at the notch
tip, so this configuration is similar to proportional uniaxial loading.

As shown in the following of the paper, ratcheting behavior has a substantial dependence on parameters that
have a negligible effect on stabilized cycles, therefore accurate identification cannot be based only on the latter.
Although the classical CIKH model is often believed to be unsatisfactory in reproducing even uniaxial ratcheting
tests, accurate results are possible if the calibration process takes advantage of at least one stress-controlled
test. Parameter identification is implemented by imposing global properties of stabilized uniaxial cycles and
not by minimizing a pointwise discrepancy function. The global properties considered are the hysteresis area
of the stabilized loop, the peak stress values, and the tangent modulus at the extreme points. These properties
are the main interesting ones in the fatigue assessment, while the transitional evolution of the initial cycles
leading to stabilization is considered less critical, since it is usually short in comparison. This approach is not
limited to fatigue modeling, since it can be used to decouple kinematic hardening parameters from an unknown
isotropic law and therefore to determine them independently. In order to let stabilized cycles have non-zero mean
stresses, a linear backstress component (with γi = 0) is imposed, and only two other (non-linear) components
are considered, although the addition of more components is addressed. Analytical expressions are provided
for the conditions to be matched, and the whole identification is reduced to the numerical minimization of a
single-variable function, leading to an easy determination of the parameters.

Hassan et al. (2008) showed that, by tuning the smallest γi, the asymptotic ratcheting rate can be matched
without affecting the reproduction of strain-controlled cycles. This paper similarly shows that the identification
of the smallest γi is mainly governed by the approximately constant ratcheting rate in the secondary phase, and
analytical relations between those two quantities are presented. To the best of our knowledge, to date no analytical
expression for the stabilized ratcheting rate has been published.

An additional factor plays an important role in the identification of constitutive laws from experimental
data. Since the problem is highly non-linear, numerical algorithms are used, whose complexity often increases
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with that of the constitutive model requiring identification. The existence of a single set of globally optimal
parameters can seldom be taken for granted, which gives the identification process a significant degree of
arbitrariness. For example, the starting point of the optimization algorithm, the termination criteria for numerical
iterations, and the optimization algorithm itself affect the results obtained. Even the simple non-linear regression
of three A-F exponential laws on a stabilized cycle is often seriously ill-conditioned. In contrast, the proposed
procedure is deterministic. Once the global properties of stabilized cycles are available, the corresponding
model parameters are unambiguously determined. In fact, the only numerical computation required is the
global minimization of a single-variable (and quite smooth) function ranging on a limited domain, which can be
performed deterministically in negligible time. Then, although some tools to fine-tune the identification process
are provided (as detailed in Section 3), numerical issues are avoided.

2. Formulation of the cyclic loading modelling

2.1. Chaboche kinematic hardening model

In uniaxial stress conditions, σ is the single non-zero principal stress for a uniaxial loading, such as in a
simple plain specimen under pure tension, and the strain along that direction is ε, which is the sum of the elastic
and plastic strains:

ε = εe + εp (1)

A kinematic hardening model is described by the following constitutive equation:

|σ − χ | ≤ σY (2)

where σY is the material elastic limit. In uniaxial conditions σ is a scalar value, and the choice of a specific
yield surface (e.g., Von Mises or Tresca) does not change the yield behavior, as it is completely defined by the
parameters χ and σY. For this reason, when plastic flow is active, Eq. (2) can be rewritten as:

σ = χ ± σY (3)

where the sign depends on whether the load is towards tension or compression.
According to the Chaboche model (Chaboche, 1986), the (total) backstress can be considered as the sum of

multiple backstress components:

χ =

n∑
i=1

χi (4)

and each of them evolves according to the well-known differential equation:

dχi = Cidεp − γi χi |dεp | (5)

Eq. (2) controls the shift of the yield surface through a scalar backstress χ, which defines the current centre of
the surface. Since a purely kinematic hardening is described, the radius of the yield surface is kept constant and
it is the saturated value of elastic limit σY, which is referred to as σL (limit) in the present paper. Note that in
other works the symbol σ0 is frequently used, while here the limit value σL will be distinguished from the initial
value σ0. However, the isotropic hardening component will be addressed later.
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Eq. (4) states that the backstress χ is decomposed as a sum of i additive components χi, where i ranges from 1
to n. Each backstress component behaves according to an Armstrong-Frederick (A-F) hardening rule (Armstrong
and Frederick, 1966), found in Eq. (5) in its differential form and determined by two positive parameters Ci and
γi which can be defined, respectively, as the the linear and the rate coefficients.

Due to the simultaneous presence of terms dεp and |dεp |, Eq. (5) does not have a general solution in closed
form. However, it can be split into two cases, obtaining two linear differential equations:

dχi
dεp
= Ci − γi χi if dεp > 0

dχi
dεp
= Ci + γi χi if dεp < 0

(6)

Thus, for a given sign of dεp (namely, an algebraically increasing or decreasing load), Eq. (5) becomes a first-
order linear differential equation. Eqs. (6) are usually solved as Cauchy initial-value problems: for a known
initial value of χi, its evolution with respect to εp is simulated. Depending on the sign of dεp, the first or the
second equation is active and controls the behavior of χi.

If γi > 0 (strictly positive), the equilibrium points of the system of Eqs. (6) can be easily obtained by setting
dχi/dεp = 0 and are denoted with χmax

i and χmin
i :

χmax
i =

Ci

γi
ascending ramp

χmin
i = −

Ci

γi
descending ramp

(7)

Both Eqs. (6) share their characteristic polynomial, which is λ + γi = 0, so they have the same negative
characteristic root λ = −γi and their behavior is asymptotically stable. Thus, all solutions monotonically tend
to one of their equilibrium points χmax

i or χmax
i (depending on the sign of dεp), regardless of the initial value of

χi. The well-known general solution of Eqs. (6) can be obtained through direct integration:

χi (εp) =
Ci

γi
+

(
χi,0 −

Ci

γi

)
exp(−γi (εp − εp,0)) if εp − εp,0 > 0

χi (εp) = −
Ci

γi
+

(
χi,0 +

Ci

γi

)
exp(−γi (εp,0 − εp)) if εp − εp,0 < 0

(8)

where εp,0 is the initial value of εp and χi,0 is the corresponding initial value of χi, namely: χi,0 = χi (εp,0). As
predicted, the solutions of Eqs. (8) asymptotically tend to the equilibrium values reported in Eqs. (7): Ci/γi for
εp � εp,0 and −Ci/γi for εp � εp,0, respectively.

If there is a backstress component, denoted with a specific index k, having γk = 0, Eq. (5) becomes
dχk = Ckdεp, so the relationship between χk and εp is linear and does not depend on the sign of dεp:

χk (εp) = χk,0 + Ck (εp − εp,0) (9)

For this reason, χk is commonly referred to as the linear backstress component, while the other components
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χi, with γi > 0, are the non-linear ones, as they model non-linear trends in the constitutive behavior. Note that
having more than one linear component would be redundant, since from Eq. (9) they would be equivalent to a
single linear component obtained by summing their χk,0 and Ck parameters.

When a material undergoes a cyclic loading which generates a hysteresis loop, backstress components
χi alternatively switch between the two Eqs. (6), depending on whether the specimen is in the ascending or
descending ramp. Since every ramp has a finite amplitude, the two equilibrium points χmax

i and χmin
i are never

reached. The behavior defined by Eqs. (8) is shown in Fig. 2, where the linear term is also reported, according
to Eq. (9).

Backstress ,
i k

 

slope: 
k

C
,0k



p

max
lim i

i i

i

C


 

→
= =

p

Plastic

strain 

p

min
lim i

i i

i

C


 

→−
= = −

p,0 ,0

Different initial

value: , 
i

 

linear backstress:

0
k

 =

Figure 2: Asymptotes of a non-linear backstress along the two ramps and simple relationship of the linear backstress.

In formal terms, the Chaboche model takes a set of material parameters and a set of test parameters as
input and yields a stress-strain history as an output. On the other hand, a parameter identification procedure
takes experimental data as input and yields a set of material parameters. In the framework of inverse problem
theory (see the textbook of Hansen (2010) for an engineering reference), these two processes would be called,
respectively, a direct problem and its inverse problem.

An implicit assumption of every parameter identification strategy is that the experimental data are always
a valid output of the model whose parameters are to be identified. Equivalently, the direct and the inverse
problem share their mathematical model, yet with partially reversed relations between input and output variables.
That assumption is clearly ideal, seldom attainable in practice, and it introduces errors in the predictions of
experiments, which often cannot be phenomenologically distinguished from errors in the identification process.
This error source is commonly referred to as model error in inverse problem theory. For example, a material
stress-strain history might be affected by some degree of creep or strain-memory effects, which could not be
modeled by Eqs. (2), (4) and (5). In addition, the number n of backstress components controls the degrees of
freedom of the Chaboche model. In absence of physical hints on how many components shall be included, n

should be chosen as a tradeoff between model complexity and predictive performances. This choice will be
addressed in Section 3.3.

Since a general analytical solution of the direct problem is not available (mainly due to Eq. (5)), an analytical
inversion of the mathematical relations between the Chaboche material parameters and their corresponding
stress-strain histories is unfeasible. Thus, a different approach is pursued here. In the following sections, the
direct problem is studied further, in order to obtain analytical relations between a set of model parameters
(assumed to be known) and some appropriately defined quantities of practical interest which can be measured
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in an experimental test. Eventually, the inversion can be carried out on those quantities and not on the entire
stress-strain histories, with clear computational advantages.

2.2. Uniaxial cyclical test in plastic strain control

Although uncommon in the experimental practice, an effective test would be a relaxation test under plastic
strain control (instead of total strain).

The plastic strain ranges from εmin
p to εmax

p , so the cycle amplitude is ∆εp = ε
max
p − εmin

p . χmax
i,N and χmin

i,N are
defined as the values of backstress component i at the end of the ascending and descending ramp of cycle N .
Strictly positive γi’s are assumed for now, and every cycle is conventionally assumed to start with an ascending
ramp. Applying the first of Eqs. (8) to χmax

i,N , a closed-form expression for χmin
i,N can be found:

χmin
i,N = −

Ci

γi
+

(
χmax
i,N +

Ci

γi

)
exp(−γi∆εp) (10)

The subsequent ascending ramp can be computed, to find χmax
i,N+1:

χmax
i,N+1 =

Ci

γi
+

(
χmin
i,N −

Ci

γi

)
exp(−γi∆εp) (11)

Eq. (10) can be substituted in Eq. (11), obtaining the following expression, which relates the maximum backstress
at cycle N + 1 to the one at cycle N :

χmax
i,N+1 =

Ci

γi
(1 − exp(−γi∆εp))2 + χmax

i,N exp(−2γi∆εp) (12)

Being Ci, γi and ∆εp constants, Eq. (12) is a first-order linear difference equation, whose characteristic root is
λ = exp(−2γi∆εp); since |λ | < 1, it is asymptotically stable. In agreement with Chaboche (1986), the stabilized
value χmax

i,stab can be found by setting χmax
i,N = χmax

i,N+1 = χmax
i,stab in Eq. (12). The following well-known relation is

obtained:

χmax
i,stab =

Ci

γi

1 − exp(−γi∆εp)
1 + exp(−γi∆εp)

=
Ci

γi
tanh

(
γi∆εp

2

)
(13)

The same procedure can be analogously applied to χmin
i,N , obtaining:

χmin
i,stab = −

Ci

γi
tanh

(
γi∆εp

2

)
(14)

Due to asymptotic stability of Eq. (12), χmax
i,N and χmin

i,N tend to the stabilized values χmax
i,stab and χ

min
i,stab, respectively,

regardless of any initial value χi,0. Moreover, χmin
i,stab = −χ

max
i,stab, meaning that each backstress reaches stability as

a symmetrically alternating component, with null mean value. The peak stress values at the end of each loading
ramp can be easily found by combining Eqs. (3) and (4):

σmax
stab =

n∑
i=1

χmax
i,stab + σL

σmin
stab =

n∑
i=1

χmin
i,stab − σL

(15)

The stabilization behavior of the extreme values of σ is schematically described in Fig. 3(a). As described in

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



max max

stab ,stab L1

n

ii
  

=
= +



p
max

p
min

p


p


max max

1 , 1 L1

n

N i Ni
  

+ +=
= +

max max

, L1

n

N i Ni
  

=
= +

min min

stab ,stab L1

n

ii
  

=
= −

min min

, L1

n

N i Ni
  

=
= −

min min

1 , 1 L1

n

N i Ni
  

+ +=
= −

min max

stab stab
 = −

(a)


p


(b)

0, 0
k k

C  =

max max max

stab ,stab ,stab L

1,

n

i k

i i k

   
= 

= + +

min min min

stab ,stab ,stab L

1,

n

i k

i i k

   
= 

= + −

p
/ 2

p
/ 2

max

p
min

p


m


2



max
stab

p

d

d
 




=

A

2



Midpoint of the 

stabilized cycle

Figure 3: Definition of cycle variables at the extreme points of cycles in plastic strain control. Stabilized cycles are in red. (a) When only
non-linear components are present, the stabilized cycle is symmetric regardless of any initial asymmetry. (b) Asymmetry is controlled
by the parameters of the linear backstress component.

the figure, the mean stress of the stabilized cycle is zero. Equivalently, σmin
stab = −σ

max
stab . However, this significant

result is only valid if all the backstress components are non-linear (γi > 0). If a linear backstress is introduced
(which will be denoted here with the special index k), the additional two terms below need to be considered:

χmax
k,stab = χk,0 + Ckε

max
p

χmin
k,stab = χk,0 + Ckε

min
p

(16)

The evolution of this backstress component is simply a straight line in the σ vs. εp plane, therefore these two
extreme values are already the stabilized ones. The mean stress of the cycle when including the linear backstress
is:

σm =
σmin

stab + σ
max
stab

2
= χk,0 + Ck

εmin
p + εmax

p

2
(17)

and its effect is shown in Fig. 3(b). The stress full range is:

∆σ = σmax
stab − σ

min
stab =

n∑
i=1

(
χmax
i,stab − χ

min
i,stab

)
+ 2σL =

n∑
i=1, i,k

2
Ci

γi
tanh

(
γi∆εp

2

)
+ Ck∆εp + 2σL (18)

The equations that have been developed up to this point are well-known in the literature on the Chaboche
model, but they provide common ground for the new analytical relations that will be provided in this manuscript
from now on.

In many practical cases, the area of the stabilized hysteresis cycle is needed as an input for other predictive
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models (e.g., for low-cycle fatigue). As shown in Appendix A.1, it can be expressed as follows:

A =

σ dεp = 2σL∆εp + 2

n∑
i=1, i,k

*
,

Ci

γi
∆εp − 2

Ci

γ2
i

tanh
(
γi∆εp

2

)
+
-

(19)

Chaboche himself (Chaboche, 1986) suggests that a linear backstress component should be used to model the
approximately linear last part of a single large loading ramp, where the tangent modulus is much smaller than
Young’s modulus. Therefore, the relation between the ramp slope just before load inversion and the model
parameters is of particular interest. The evaluation of this slope can be found in Eq. (20) (details are in
Appendix A.2):

dσ
dεp

�����σ=σmax
stab

=

n∑
i=1 i,k

Ci

(
1 − tanh

(
γi∆εp

2

))
+ Ck (20)

and the same value can be obtained for the end of the descending ramp, at σ = σmin
stab.

A limit case arises when a non-linear backstress component has a very small rate coefficient with respect to
the cycle amplitude. The special index j will be used in this particular case. More precisely, this happens when
0 < γj∆εp � 1. Then, the following first-order approximations hold:

exp(−γj∆εp) ≈ 1 − γj∆εp

tanh
(
γj∆εp

2

)
≈
γj∆εp

2

(21)

Eqs. (13) and (14) become:

χmax
j,stab =

Cj∆εp

2

χmin
j,stab = −

Cj∆εp

2

(22)

as the component j does not contribute to the hysteresis area. The area calculation reduces to:

A =

σ dεp = 2σL∆εp + 2

n∑
i=1, i,j,k

*
,

Ci

γi
∆εp − 2

Ci

γ2
i

tanh
(
γi∆εp

2

)
+
-

(23)

The contribution of the j-th term to the slope is just linear, like the k-th term, and Eq. (20) becomes:

dσ
dεp

�����σ=σmax
stab

=

n∑
i=1 i,j,k

Ci

(
1 − tanh

(
γi∆εp

2

))
+ Cj + Ck (24)

In other words, the j-th backstress behaves similarly to the k-th one, i.e. its cycle collapses to a line, and in
particular the contribution to the hysteresis area is null. However, its initial value χ j,0 vanishes in a similar way
like the other non-linear terms, though after many cycles. In fact, over many consecutive cycles the evolution
of the extreme values follows Eq. (12), which has a characteristic root λ = exp(−2γj∆εp), very close but not
equal to 1. This is sufficient to generate convergence to the equilibrium values of Eqs. (22). As γj → 0, the
convergence gets slower, but the equilibrium point is maintained. Instead, in the case γk = 0, the characteristic
root is exactly 1, so the initial value χk,0 of the backstress component χk remains constant after a (theoretically)
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infinite number of cycles.

2.3. Uniaxial cyclic test in total strain control

A plastic strain control would require a non-trivial implementation. Therefore, a total strain control, easily
achieved with an extensometer, is usually preferred. The peak stress values generally vary cycle after cycle, and
so does the elastic portion of the total strain. This means that, as load cycles are carried out, the applied extreme
values of plastic strain vary too. Strictly speaking, the analysis of the last section is not valid anymore, but some
considerations can be done.

There are combinations of imposed total strains which lead to an elastic shakedown, a situation where the
stabilized cycle lies entirely in the material elastic range and the backstress components are frozen to the last
values they achieved during a plastic deformation. This happens when ∆ε < 2σL/E. Since the target is to extract
the whole set of Chaboche parameters from stabilized hysteresis cycles, this case is not meaningful and will
be excluded a priori. From a practical point of view, if elastic shakedown was attained during an experimental
test used to calibrate the Chaboche parameters, the imposed strain amplitude would be increased. Numerical
simulations generally show that for ∆ε > 2σL/E a plastic shakedown, thus a stabilized hysteresis cycle is always
reached. That is quite intuitive: the variation range of peak stress values is usually limited (especially after the
first cycles), so the cycle is almost in plastic strain control. Even if a formal demonstration is not trivial, it is not
needed in the context of a parameter identification, where experimental evidence is already given.

If a stabilized cycle is available, the specific control strategy used to enforce it is irrelevant to the material,
so it may also be seen as a cycle in plastic strain control. Since the last section proved that a test under plastic
strain control always yields a unique stabilized cycle, it must match the obtained experimental cycle. Eventually,
the results of last section can be applied to any stabilized cycle, regardless of its control strategy, to identify a set
of Chaboche model parameters.

2.4. Uniaxial cyclic test in stress control

If a cyclic loading is carried out in stress control ranging from σmin to σmax, ratcheting may occur, and a
closed cycle may never be attained. First, some variables are defined, according to Fig. 4. ∆ε+p,N and ∆ε−p,N refer
to the absolute plastic strain delta during the ascending and descending ramps of cycle N . An average plastic
strain amplitude of the generic cycle is defined as:

∆εa
p,N =

∆ε+p,N + ∆ε
−
p,N

2
(25)

Since the cycle N is open in general, an average plastic strain shift per load ramp is defined:

∆εs
p,N =

∆ε+p,N − ∆ε
−
p,N

2
(26)

Superscripts “a” and “s” in Eqs. (25) and (26) stand for “amplitude” and “shift”; respectively. The mean stress
σm = (σmax +σmin)/2, where σmax and σmin are the imposed maximum and minimum stresses, is kept constant
during the entire test. For now, it is assumed that a linear backstress component is absent; its effects will be
discussed separately.

As done in the study of a cycle in plastic strain control, the sequences χmax
i,N and χmin

i,N are analyzed. By
applying Eqs. (8), it holds:

χmin
i,N = −

Ci

γi
+

(
χmax
i,N +

Ci

γi

)
exp(−γi∆ε−p,N ) (27)
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max
p,Nε max

p, 1Nε +

min
p,Nε min

p, 1Nε +

pε

σ

maxσ

minσ

r
p,Nε∆

a
p,Nε∆ s

p,Nε∆

p,Nε +∆

p,Nε −∆

Figure 4: Stress and strain definitions of the cycle of a ratcheting test.

Then, the maximum backstress of the subsequent cycle is:

χmax
i,N+1 =

Ci

γi
+

(
χmin
i,N −

Ci

γi

)
exp(−γi∆ε+p,N ) (28)

By substituting the term χmin
i,N of Eq. (27) into Eq. (28), and considering the definitions of Eq. (25) and Eq. (26),

the maximum backstress can be reformulated as follows:

χmax
i,N+1 = 2

Ci

γi
exp(−γi∆εa

p,N )(1− exp(−γi∆εs
p,N ))+

Ci

γi
(1− exp(−γi∆εa

p,N ))2+ χmax
i,N exp(−2γi∆εa

p,N ) (29)

Since ∆εa
p,N and ∆εs

p,N may vary at each cycle (as they depend on the behavior of backstress components
themselves), Eq. (29) is highly non-linear and the sequence χmax

i,N cannot be studied analytically in the general
case. However, some particular solutions of high practical interest can still be obtained. For example, it could be
assumed that both ∆εa

p,N and ∆εs
p,N are practically at equilibrium after a certain number N of cycles. Although

it may seem a very restrictive hypothesis, numerical simulations actually suggest that the behaviors of ∆εa
p,N and

∆εs
p,N are always asymptotically stable. Hence, the hypothesis is usually satisfied after some initial stabilization

cycles. In fact, many authors report a constant ratcheting rate after an initial settling phase (Lee et al., 2014; Paul,
2012; Zhang et al., 2020; Kreethi et al., 2017; Hamidinejad and Varvani-Farahani, 2015). Under this assumption,
in Eq. (29) the strain values ∆εa

p,N and ∆εs
p,N can be replaced with their asymptotic values ∆εa

p and ∆εs
p, i.e. not

depending on the cycle number N . Having assumed that ∆εa
p and ∆εs

p are constant values, a first-order linear
difference equation is obtained and, again, its stability can be assessed according to its characteristic polynomial.
The solution is asymptotically stable since λ = exp(−2γi∆εa

p), so |λ | < 1. By setting χmax
i,N+1 = χmax

i,N = χmax
i,stab,
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after a few algebraic steps (similarly applied to the term χmin
i,stab), it holds that:

χmax
i,stab =

Ci

γi
(1 − exp(−γi∆εs

p)) csch(γi∆εa
p) +

Ci

γi
tanh

(
γi∆ε

a
p

2

)

χmin
i,stab =

Ci

γi
(exp(γi∆εs

p) − 1) csch(γi∆εa
p) −

Ci

γi
tanh

(
γi∆ε

a
p

2

) (30)

where csch(γi∆εa
p) = 2 exp(−γi∆εa

p)/(1− exp(−2γi∆εa
p)), an alternative expression for the hyperbolic cosecant

function.
By comparing Eqs. (30) with Eqs. (13) and (14), it follows that:

• If ∆εs
p > 0 (a constant ratcheting rate towards positive strains), both χmax

i,stab and χmin
i,stab are algebraically

higher than the values they would have attained in a cycle in strain control having equal amplitude.

• If ∆εs
p < 0 (a constant ratcheting rate towards negative strains), both χmax

i,stab and χmin
i,stab are algebraically

lower than the values they would have attained in a cycle in strain control having equal amplitude.

• If ∆εs
p = 0 (a plastic shakedown occurred and the cycle is stable), both χmax

i,stab and χmin
i,stab match their

corresponding equilibrium values in a cycle in strain control having equal amplitude.

This scenario is coherent with the experimental observations. A cycle with significantly asymmetric peak stress
values is needed to develop ratcheting.

Eqs. (30) concern a single backstress component. Since peak stress values σmax and σmin are imposed, Eq.
(3) must also be satisfied, which leads to:

σmax =

n∑
i=1

χmax
i,stab + σL =

Ci

γi
(1 − exp(−γi∆εs

p)) csch(γi∆εa
p) +

Ci

γi
tanh

(
γi∆ε

a
p

2

)
+ σL

σmin =

n∑
i=1

χmin
i,stab − σL =

Ci

γi
(exp(γi∆εs

p) − 1) csch(γi∆εa
p) −

Ci

γi
tanh

(
γi∆ε

a
p

2

)
− σL

(31)

By adding and subtracting the two equations, after a few arrangements the following relations are obtained:

σm =

n∑
i=1

Ci

γi

sinh(γi∆εs
p)

sinh(γi∆εa
p)

∆σ

2
=

n∑
i=1

(
Ci

γi

1 − cosh(γi∆εs
p)

sinh(γi∆εa
p)

+
Ci

γi
tanh

(
γi∆ε

a
p

2

))
+ σL

(32)

where, according to alternative expressions of hyperbolic functions:

sinh(γi∆εs
p) =

1 − exp(−2γi∆εs
p)

2 exp(−γi∆εs
p)

cosh(γi∆εs
p) =

1 + exp(−2γi∆εs
p)

2 exp(−γi∆εs
p)

(33)

If an experimental test is available, which stabilizes on a constant strain amplitude and a constant ratcheting rate,
the system of Eqs. (32) provides two conditions on the Chaboche model parameters. The two equations depend,
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respectively, on the average cycle stress and on the stress amplitude. Note that if ∆εs
p = 0, the first of Eqs. (32)

states that σm must be null as well. Thus, in this specific condition where the linear backstress component is
not considered, the Chaboche model predicts that a plastic shakedown can occur only if the input stresses are
symmetric. In this case, the second of Eqs. (32) becomes:

∆σ

2
=

n∑
i=1

Ci

γi
tanh

(
γi∆ε

a
p

2

)
+ σL (34)

which is similar to Eq. (18), without a linear backstress component that still has to be included in the analysis.
Analogously, the first of Eqs. (32) states that a constant ratcheting rate ∆εs

p > 0 can be obtained only with
σm > 0, and vice versa, ∆εs

p < 0 only with σm < 0. Without additional hypotheses, Eqs. (32) cannot be further
simplified.

The ratcheting rate per cycle can be now introduced, which is usually the quantity of interest in a ratcheting
test: ∆εr

p,N = 2∆εs
p,N . Its equilibrium point is denoted with ∆εr

p. See Fig. 4 for a graphical representation.
When γi∆εs

p � 1 for each backstress component i = 1 . . . n (which is a fairly common case, due to the typically
small strain increments per cycle), the hyperbolic functions involving ∆εs

p can be approximated with their first
order Taylor polynomial, obtaining:

σm =
∆εr

p

2

n∑
i=1

Ci

sinh(γi∆εa
p)

)

∆σ

2
=

n∑
i=1

Ci

γi
tanh

(
γi∆ε

a
p

2

)
+ σL

(35)

The second of Eqs. (35) is still equivalent to Eq. (18), so that the cycle averaged strain amplitude and its stress
amplitude are related as in a stabilized cycle in strain control. The first of Eqs. (35) relates the equilibrium
ratcheting rate with the average stress, the Chaboche parameters, and the cycle strain amplitude. If the stricter
condition γi∆εa

p � 1 is also valid for each index i, Eqs. (35) can be further approximated as:

σm =
∆εr

p

2∆εa
p

n∑
i=1

Ci

γi

∆σ

2
=

n∑
i=1

Ci∆ε
a
p

2
+ σL

(36)

The approximations can also be performed on individual backstress components, simplifying only some terms
of Eqs. (32).

2.5. Ratcheting with linear and slightly non-linear backstress components

As discussed before, a slightly non-linear and a linear backstress components behave very similarly in a
strain-controlled stabilized cycle, except for the stabilized extreme values. In the first case, they take algebraically
opposite values, regardless of their starting ones. On the contrary, in the second case, they depend on the initial
backstress value χk,0. Since γi controls the convergence rate of χi through Eq. (12), it may be argued that the
smallest non-null γi could be detected from the convergence rate of σmax

N and σmin
N to their stabilized values, but

that is quite difficult on the practical side, due to: 1) experimental errors, 2) influence of the isotropic hardening
on the convergence rate, 3) backstresses χi being not individually observable, as only their sum is physically
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measured.
Chaboche himself (Chaboche, 1986) recommend that a linear backstress component should be used to model

the approximately linear final part of a single large loading ramp, where the tangent modulus is much smaller
than Young’s modulus and almost constant. That is a widely-employed method (Zobec and Klemenc, 2021;
Arora et al., 2021; Das et al., 2020). If a single ramp or stabilized cycle is available, it is a reasonable strategy.
Its results may however be in contrast with the necessary conditions imposed by Eq. (17). In fact, maintaining
index k for the linear component, the values of Ck and χk,0 define a linear relation between the average plastic
strain and the average stress. The angular coefficient Ck of that line might in general be significantly different
from the tangent modulus at high strains (that is actually the case in the present work). Due to this, Ck will be
identified from the linear relation between average stress and average strain, through two (or, possibly, more)
experimental cycles, and not from the slope at extreme points.

Moreover, as observed by Bari and Hassan (2000), a Chaboche model should have a slightly non-linear
backstress component (having a small γi) in order to predict the ratcheting behavior correctly, because a linear
component forces a plastic shakedown to occur, which is not always true in the experimental practice. By
denoting the slightly non-linear backstress component with the index j (as previously done), since γj usually
turns out to be in the order of 1–10, it most likely satisfies γj∆εp � 1 in a strain-controlled test, so that the
approximations of Eqs. (21)−(24) hold. In particular, that component behaves linearly in practice, with a slope
depending on its coefficient Cj (and not on γj). Eventually, Cj can be used to model the linear asymptote of a
large loading ramp, while γj , whose effect on a stabilized cycle is negligible, is identified through the asymptotic
slope of a ratcheting test and the first of Eqs. (32) or, possibly, Eqs. (35)– (36), as shown in the following. Note
that, by using Cj to model the plastic tangent modulus at high strains, its value usually lies in the range 103–104,
so it generally occurs that Cj/γj � Ci/γi for all indexes i , j. If that is true and both γi∆εs

p � 1 and γi∆εa
p � 1

for all indexes i, then the first of Eqs. (36) can be approximated to a simple expression:

σm =
Cj

γj

∆εr
p

2∆εa
p

(37)

which can be rewritten as:

γj =
Cj∆ε

r
p

2∆εa
pσm

(38)

If these assumptions are valid, Eq. (38) is a particularly simple and meaningful relation that allows to obtain
γj from an experimental ratcheting test and from Cj . Since a stabilized cycle obtained in strain control is
influenced by Cj but is negligibly affected by γj , a ratcheting test provides through Eqs. (32), (35), (36) and (38)
a piece of information that is complementary to strain-controlled tests. Note that Eq. (38) does not imply that the
ratcheting rate ∆εr

p is influenced only by the backstress component j alone. In fact, the equilibrium value of ∆εa
p

depends on all backstress components, through the second equation in systems (32), (35) and (36). Nevertheless,
if ∆εa

p and ∆εr
p are available from an experimental test, a relation like Eq. (38) provides a condition on γj that is

decoupled from the strain-controlled tests.
When a linear backstress component is considered (with usual special index k), Eq. (29) becomes:

χmax
k,N+1 = χmax

k,N + Ck (∆ε+p,N − ∆ε
−
p,N ) = χmax

k,N + Ck∆ε
r
p (39)

Eq. (39) implies that a constant ratcheting rate ∆εr
p , 0 cannot be obtained in the presence of a linear backstress

component. Since the cycle is carried out in stress control, due to Eqs. (3)–(4) the backstress cannot grow
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Figure 5: (a) Ratcheting rate stabilization without a linear backstress. (b) Ratcheting arrest with a linear backstress, and stabilized cycle
when the linear backstress equals the mean stress.

indefinitely. Therefore, if a linear backstress component is present, the only achievable equilibrium state is a
plastic shakedown (∆εr

p = 0) ranging between the plastic strains εmin
p,stab and ε

max
p,stab, as already stated by Bari and

Hassan (2000), and numerically observed by Koo et al. (2019). In this case, all other backstress components are
stabilized to algebraically opposite values±Ci/γi tanh((γi∆εa

p)/2) (see Eqs. (30)), so the whole stress asymmetry
is absorbed by the linear backstress component. This allows to predict the point where the ratcheting will stop,
expressed in terms of average plastic strain of the stabilized cycle:

σm = χk,0 + Ck

εmax
p,stab + ε

min
p,stab

2

εm
p,stab =

εmax
p,stab + ε

min
p,stab

2
=
σm − χk,0

Ck

(40)

A pictorial representation of the effect of a linear backstress component is provided in Fig. 5. As Ck is increased,
the ratcheting curve diverges from the linear asymptote corresponding toCk = 0 and increases its concavity, since
it must reach plastic shakedown at a lower strain (a numerical example is provided in the Discussion section).
An interesting consequence is that ratcheting curve can either tend to a constant value or diverge indefinitely
with a constant slope. Actually, as shown in (Paul, 2012) and in the present work, experimental ratcheting curves
often show a final part where the maximum strain diverges from the linear asymptote until specimen failure.
This behavior cannot be modeled with the original Chaboche model unless other phenomena such as damage in
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the specimen are incorporated, as observed in Kang et al. (2009); Zhang et al. (2020). Interestingly, Zhu et al.
(2016) showed that this behavior can also be explained by the occurrence of thermal softening effect during the
ratcheting test.

Since the proposed identification process will always yield a Ck which is non-null in general, its presence
should be addressed in the identification process, since, strictly speaking, it prevents the possibility of modeling
a constant ratcheting rate ∆εs

p , 0. In this case, a strategy is presented in Appendix A.3. Nevertheless, in order to
successfully implement this strategy in the inverse problem, the whole convergence to plastic shakedown would
be required to be experimentally available, which is often false due to specimen failure. In practice, a simpler
approach may be pursued.

The effect of Ck becomes significant when the strain is high enough to generate a substantial linear backstress
component, which absorbs the stress asymmetry. Since Ck is assumed to control the change in average stress
following a variation in average strain, stress relaxation phenomena generally ensure that its value is moderate.
For example, consider that Ck ≈ 1000 MPa implies that shifting a strain-controlled cycle by 1% would yield a
variation in the order of 10 MPa for the average stabilized stress, which is already quite a significant amount. In
this case, the ratcheting curve is only marginally affected by Ck , especially in its first part. Its curvature is almost
negligible, and its slope can be considered as approximately equal to the case Ck = 0. As a matter of fact, since
a practically constant ratcheting rate is often observed in experimental tests (in the secondary phase), it can be
effectively considered for the calibration of γj parameter, as discussed in Section 4.

2.6. Isotropic hardening

The experimental elastic limit (or, more properly, the yield surface size) also depends in general on the
cumulated plastic strain, therefore showing an isotropic hardening behavior. Whenever the isotropic component
is neglected, the unique value of the elastic limit is σ0, and it is constant over time. In this analysis, σ0 just refers
to the initial yield surface size, then the elastic limit σY can increase or decrease. For the sake of simplicity, it is
assumed that σY evolves according to Voce’s (Voce, 1948) exponential equation:

σY = σ0 +Q(1 − exp(−bp)) (41)

where Q and b are the Voce’s equation parameters, respectively the multiplicative and the exponential one. The
cumulated plastic strain p, for a uniaxial test is:

p =
ˆ
|d εp | (42)

The integral is evaluated on the whole plastic history starting from the initial condition where the yield surface
size is σ0. After that large plastic strains have been cumulated, the elastic limit stress is obtained:

σL = σ0 +Q = σY(p→ ∞) (43)

The variation term Q can be either positive (cyclic hardening) or negative (cyclic softening).
In the present study, since the stabilized cycles are used for calibration, the limit value σL is initially found

together with the kinematic hardening parameters, while the transient during the initial cycles of the test can
be considered afterwards, to find Q and b. More specifically, Eq. (3) can be applied in its general form to the
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maximum stress σmax
N of a generic cycle N :

σmax
N =

n∑
i=1

χmax
i,N + σ0 +Q(1 − exp(−bp)) =

n∑
i=1

χmax
i,N + σL −Q exp(−bp) (44)

Eq. (44) divides the hardening process into a known kinematic term and an unknown isotropic term. Eqs. (43)
and (44) can be rearranged into:

σY − σL =

n∑
i=1

χmax
i,N − σ

max
N − σL = −Q exp(−bp) (45)

Since p is available from experimental data, Q and b can be obtained with a least-squares fit of Eq. (45) over the
extreme points of available test cycles, as shown in Section 4.

As long as the material shows a Masing behavior (Jiang and Zhang, 2008), Eqs. (44)-(45) can be fitted with
any isotropic law which is dependent on the cumulated plastic strain. When strain memory effects are present
(Zhang and Jiang, 2008), another approach shall be adopted. For example, several values of σL corresponding
to different maximum plastic strains could be obtained from Eqs. (56), allowing the identification of a strain
memory surface.

3. Proposed identification procedure

Starting from the analysis of the direct problem, a procedure for the inverse problem of parameters identifica-
tion can be now proposed. Its only mathematical challenge lies in the minimization of a single-variable function
on a given interval, which can be obtained almost instantaneously on a common PC.

The identification of Chaboche parameters is ultimately done to predict the material behavior in different
and potentially more complex cases, with respect to the experimental tests. To the authors’ best knowledge,
Chaboche parameters are never involved as direct inputs to other material models and are not (currently) linked
to a measurable quantity. In formal terms, errors are to be measured in stress-strain space and not in parameters
space. This is of particular importance, because there are some combinations of very different Chaboche
parameters which yield almost indistinguishable material behaviors. For example, two sufficiently small γi’s,
potentially orders of magnitude far from each other, both lead to an approximately linear behavior on a stabilized
cycle, as seen in the end of Section 2.2. Furthermore, an increase in σL could be realized through a non-linear
backstress having a very high γi, such that its settling phase is practically negligible. To minimize these effects
(which generate an ill-conditioned inversion), experimental tests should be properly designed, aiming at a single
and reproducible identification. It may be a particularly difficult task, as the material parameters are obviously
unknown before the tests. However, as only errors in stress-strain space are considered, this fact does not
necessarily impair the quality of the identification process.

Since limiting the number of experiments is a concern of practical interest, the identifiedmodel will inevitably
bemore precise at simulating conditions that are similar to the calibration experiments, and thismust be considered
while designing the procedure. In this specific case, the procedure points towards an accurate modelling of
stabilized hysteresis cycles for low-cycle fatigue testing.

For cyclically stable materials, the direct problem may be straightforwardly inverted. In the general case,
every experimental test which generates plastic behavior gives rise to both isotropic and kinematic hardening, so
that they both concur to the mechanical behavior of the tested specimen. This implies that the experimental stress-
strain history is not an output of the direct problem arising from the Chaboche model alone. To separate those
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effects and to focus on the kinematic component alone, this identification process only concerns the stabilized
experimental behavior, where it can be safely assumed that the isotropic hardening has converged to its saturated
state. The latter is represented by un unknown value of σL, which as well is identified from experiments. A
suitable isotropic hardening law could be identified separately afterwards, starting from the obtained Chaboche
parameters. Thus, the overall complexity of the identification process is significantly reduced. The assumption
of saturated isotropic hardening is valid as long as it is quick enough to reach saturation before specimen failure
and it does not show memorization effects, which would yield a saturated σL that depends on strain amplitude
and past loading history. On the other hand, if an arbitrarily complex evolution of σL is already known through
other strategies, the developed analytical relations may still be used to identify the kinematic parameters only.

Before the identification, it is necessary to choose a specific form of the Chaboche model, namely the
number n of backstress components required to model the tested material. It is actually a maximum number of
components, since one may always set Ci = 0 to remove that component. Since there are no obvious physical
hints which point to a specific number of backstress components, this quantity is a source of arbitrariness. A good
rule of thumb would be to choose the simplest form that can model the experimental behavior with reasonable
accuracy. Leaning towards model simplicity, a total number of n = 3 backstress components are chosen, divided
as follows: a fully non-linear component χ1, a slightly non-linear component χ2 and a linear component χ3

(γ1 > γ2 > γ3 = 0). Despite having three backstress components as in the classical Chaboche model (Chaboche,
1986), this model has a subtly different setup. In fact, Chaboche suggested the use of two fully non-linear
components and a linear component, as the latter controls the tangent modulus at high strains. On the contrary,
in this case only a single backstress component shows a significantly non-linear behavior; the slightly non-linear
component is employed to tune the tangent modulus, while the linear component is used to control the value of
the stabilized mean stress. Since this may lead to inaccurate material models in some situations, a framework to
increase the number of non-linear backstress components is also presented in Section 3.3.

3.1. Procedure description

A total of 7 parameters must be identified: C1,C2,C3, γ1, γ2, χ3,0 and σL. In fact, recall that γ3 = 0 and that
χ1,0 and χ2,0 do not affect the stabilized behavior, so only χ3,0 affects stabilized cycles in strain control. Eq.
(17) provides an equation containing only C3 and χ3,0, if a stabilized cycle is available:

χ3,0 + C3 *
,

εmin
p + εmax

p

2
+
-
=
σmin

stab + σ
max
stab

2
(46)

If two stabilized cycles are available, two of Eq. (46) can be joined in a linear system, obtaining C3 and χ3,0.
Note that, in principle, the two stabilized cycles can be obtained from the same specimen, unless failure occurs
before completion of the test. The mean plastic strain of the cycle is defined as: εm

p = (εmin
p + εmax

p )/2. By using
indexes “I” and “II” for the two available experimental cycles, it holds that:

χ3,0 + C3 ε
m
p,I = σm,I

χ3,0 + C3 ε
m
p,II = σm,II

(47)
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whose solution is:

C3 =
σm,II − σm,I

εm
p,II − ε

m
p,I

χ3,0 =
εm

p,II σm,I − ε
m
p,I σm,II

εm
p,II − ε

m
p,I

(48)

For the system to be well-conditioned, εm
p,I and ε

m
p,II must be significantly different: in other words, the average

strains of the experimental cycles must be sufficiently spaced. As a rule of thumb, setting εmin
p = −εmax

p for the
first cycle and εmin

p = 0 for the second is usually a good choice. To obtain stabilized cycles, it is advised to
carry out cyclic tests in strain control instead of stress control, to avoid ratcheting. The first stabilized cycle shall
be large enough to show an approximately linear plastic region, a sign that non-linear backstress components
reached saturation.

Eq. (20) provides another condition from the slope at cycle extreme points, involving all Ci and γi:

dσ
dεp

�����σ=σmax
stab

= C1

(
1 − tanh

(
γ1∆εp

2

))
+ C2

(
1 − tanh

(
γ2∆εp

2

))
+ C3 (49)

By assuming that γ2 is only slightly non-linear, γ2∆εp � 1 will hold in most practical cases, so Eq. (49) becomes:

dσ
dεp

�����σ=σmax
stab

= C1

(
1 − tanh

(
γ1∆εp

2

))
+ C2 + C3 (50)

Since at least two cycles are needed for C3 and χ3,0, two of Eq. (50) will be available. The same stabilized cycles
can be used, or, if necessary, any two different cycles.

Note that, if γ1 was known in advance (as well as C3, known from Eqs. (48)), the two coefficients C1 and C2

could be identified from the resulting linear system:

C1

(
1 − tanh

(
γ1∆εp,I

2

))
+ C2 = −C3 +

dσ
dεp

�����σ=σmax
stab,I

C1

(
1 − tanh

(
γ1∆εp,II

2

))
+ C2 = −C3 +

dσ
dεp

�����σ=σmax
stab,II

(51)

whose solution is:

C1 =
bII − bI
aII − aI

C2 =
aIIbII − aIbI

aII − aI

(52)

where aI and aII are defined as:

aI = 1 − tanh
(
γ1∆εp,I

2

)

aII = 1 − tanh
(
γ1∆εp,II

2

) (53)
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and:

bI = −C3 +
dσ
dεp

�����σ=σmax
stab,I

bII = −C3 +
dσ
dεp

�����σ=σmax
stab,II

(54)

The system of Eqs. (51) is non-singular as long as aI , aII. To be more precise, a well-conditioned system is
obtained if the quantities tanh

(
γ1∆εp,I

2

)
and tanh

(
γ1∆εp,II

2

)
are significantly different. Since the optimal γ1 is not

known a priori, a physical condition is instead suggested. The first cycle should be just large enough to show
an approximately linear plastic flow near its extremities, which would testify that fully non-linear backstress
components have saturated. Then, the second cycle should be performed at a significantly lower plastic strain
amplitude (something like a half of the previous one). That would yield a not-yet-saturated first component and
a significantly different tangent modulus at extremities.

Eq. (18) provides another condition on the stress amplitude of the stabilized cycle, involving all parameters
except χ3,0:

2
C1
γ1

tanh
(
γ1∆εp

2

)
+ 2

C2
γ2

tanh
(
γ2∆εp

2

)
+ C3∆εp + 2σL = ∆σ (55)

From a physical point of view, Eq. (55) relates the plastic strain amplitude with its corresponding stress amplitude,
and it can be used to find σL after having found all the other parameters. The saturated elastic limit can be
identified from both stabilized cycles, under the previous assumption that γ2∆εp � 1:

σL,I =
∆σI

2
−

C1
γ1

tanh
(
γ1∆εp,I

2

)
−

C2 + C3
2
∆εp,I

σL,II =
∆σII

2
−

C1
γ1

tanh
(
γ1∆εp,II

2

)
−

C2 + C3
2
∆εp,II

(56)

These two values are the limit stresses deduced from the full ranges of the two stabilized cycles. If the material
actually behaves as supposed by the Chaboche model, the “correct” γ1 yields σL,I = σL,II. In practice, that will
never occur exactly, so σL is chosen as the average between the two:

σL =
σL,I + σL,II

2
(57)

C3 and χ3,0 are known, while C1, C2 and σL can be explicitly evaluated if the value of γ1 is known or assumed.
Moreover, γ2 is assumed small, so it has negligible effects on the stabilized cycles. This means that C1,C2 and
σL can be seen as single-variable functions, depending on γ1. Then, a complete set of parameters (except for γ2)
can be obtained for each trial value of γ1.

An error function Σ can now be introduced, to measure the error in predicting the cycle amplitudes from Eqs.
(56) and (57):

Σ =
�����
σL,II − σL,I

σL

�����
(58)

If Σ = 0, then σL = σL,I = σL,II, so Eqs. (56) are both satisfied at the same time and stress amplitudes are
reproduced with no error.
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Figure 6: Stabilized cycle properties which are used in the proposed procedure. C3 and χ3,0 are directly obtained from the linear relation
between cycle mean stresses and mean plastic strains. The other overall properties of the cycles are then used for the determination of
the other parameters.

Alternatively, one may use a root-mean-square error over the entire cycle, or any other desired quantity. In
addition, another term may be added to the error function, to measure the accuracy in reproducing the hysteresis
areas. From Eq. (23), and again assuming that γ2∆εp � 1, the area of the cycle only depends on the first (fully
non-linear) backstress component, while the other two provide a contribution in terms of stress amplitude alone,
but not in terms of area:

A =

σ dεp = 2σL∆εp + 2 *

,

C1
γ1
∆εp − 2

C1

γ2
1

tanh
(
γ1∆εp

2

)
+
-

(59)

The relative error on the prediction of the hysteresis area of cycle I can be computed as:

ΛI =
2σL∆εp,I + 2

(
C1
γ1
∆εp − 2C1

γ2
1

tanh
(
γ1∆εp,I

2

))
AI

− 1 (60)

where AI is the experimental value for the hysteresis area of cycle I. The same relative error can be defined
for cycle II. A dimensionless error function can now be defined, by incorporating these stress amplitude and
hysteresis area relative deviations for both the two cycles in a single expression:

Ψ(γ1) = (1 − α) Σ2 + α(Λ2
I + Λ

2
II) (61)

where α is a user-defined parameter between 0 and 1, balancing the relative weight of the two error sources. In
fact, if α = 0, only stress amplitudes are enforced, but that may lead to a significantly different cycle, as will
be shown in Section 4. As α is increased towards 1, the accuracy of the cycle extreme points is traded for an
improved hysteresis area, which yields a better overall result.

Eventually, γ1 is chosen as a global minimizer of Ψ(γ1). From a practical point of view, Ψ(γ1) is evaluated
at equispaced trial values, belonging to a set of acceptable values. For example, one may test values in the range
100 − 2000 for most metal alloys. Since all other calculations are analytical, a single value of Ψ(γ1) can be
evaluated in negligible time on a common PC and a spreadsheet or numerical software. Fig. 6 summarizes the

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



minimum set of experimental quantities that are needed to carry out this procedure.
Once that γ1 is computed, only γ2 is missing. At a first approximation, it does not affect any stabilized cycle,

so it cannot be identified from stabilized experimental tests. If only stabilized cycles need to be simulated, γ2

can be left unknown. For numerical purposes (e.g., FEM analyses), a low value such as γ2 = 1 can be assumed.
Otherwise, a ratcheting test is required. Specifically, it is necessary to have a test that develops a significant
ratcheting behavior, in terms of ratcheting strains but also in terms of cycles before failure. This last requirement
is needed to bring ∆εa

p,N and ∆εs
p,N to their equilibrium points, past the primary settling phase, where isotropic

hardening may be significant too. No explicit prescriptions can be formulated here, since they are material
dependent. A load ratio R = σmin/σmax of about −0.7 was found to be a good choice in the present work. In
order to take advantage of the linearized version of the equations from Section 2.4, it is desirable that γ1∆ε

a
p � 1.

If this is true, γ2 can be evaluated from Eq. (38):

γ2 =
C2∆ε

r
p

2∆εa
pσm

=
C2∆ε

s
p

∆εa
pσm

(62)

while if it is not, the most appropriate among the first of Eqs. (32), (35) and (36) may be used to obtain γ2,
depending on which approximations are allowed. For example, in a rather common case where γ1∆ε

a
p � 1 does

not hold, but γ1∆ε
s
p � 1 does, it holds that:

γ2 =
asinh

(
1
C2

(
2σm
∆εr

p
−

C1
sinh(γ1∆ε

a
p)

))−1

∆εa
p

(63)

A perfectly oblique linear asymptote will not be available, because of the slight curvature induced by the
linear backstress component and because of the last part which leads to specimen failure. Hence, ∆εs

p shall be
determined with sound engineering judgement. As a consistency check on the other parameters, the experimental
∆εa

p may then be compared with the simulated one. In fact, a mismatch between those quantities would impair
the reproduction of ∆εr

p through Eqs. (62)– (63) and would point towards errors in the reproduction of stabilized
cycles. In the event that the experimental ∆εa

p data is not so accurate, the simulated ∆εa
p may be alternatively

precomputed (as it is practically independent from γ2) and then introduced into Eqs. (62)–(63).

3.2. Final algorithm

The suggested procedure can be summarized in the following steps:

• Carry out at least two experimental tests in strain control, having different amplitude.

• For each obtained stabilized cycle, record ∆εp, εm
p , ∆σ, σm, A and dσ/dεp at an extreme point.

• Evaluate C3 and χ3,0 from Eqs. (48).

• Define an array of trial values for γ1. A good choice might be equispaced samples from 100 to 2000.

• Define an error function Ψ(C1, γ1,C2, γ2,C3, χ3,0, σL) which will measure the goodness-of-fit of a param-
eter set.

• For each trial value of γ1:

– Compute aI, aII, bI and bII from Eqs. (53)–(54).

– Evaluate C1 and C2 from Eqs. (52).
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– Compute σL,I and σL,II from Eqs. (56).

– Evaluate σL from Eq. (57).

– Compute Ψ for the given trial value.

• Choose γ1 which globally minimizes Ψ and update other parameters accordingly.

• If γ2 is not needed, set it to an arbitrary low value; a good choice would be 1.

• If γ2 is needed, perform an experimental test in stress control, having non-null mean stress σm.

• Record ∆εa
p,N and ∆εs

p,N , then check that these values have practically converged to non-null values ∆εa
p

and ∆εs
p before failure.

• Evaluate γ2 from Eq. (62) or Eq. (63), depending on their domain of application. If a plastic shakedown
occurred, set γ2 to an arbitrary low value. A good choice would be in the order of 10−2, to generate a
negligible ratcheting.

• If an identification of parameters for a Voce hardening law is needed, fit Q and b in Eq. (45), applied on
any of the available tests in strain control.

3.3. Further refinements: additional backstress components

The proposed procedure assumes that the material behavior can be well represented by n = 3 backstress
components having different dynamics. This number was also suggested by Chaboche himself (Chaboche,
1986), although his arrangement of backstress components is slightly different with respect to the proposed
procedure. In fact, a traditional Chaboche kinematic model uses a single linear component, used to model the
linear asymptote of the stress-strain curve at high strains. On the other hand, as discussed in Section 2.5, the
proposed procedure uses the linear component only for describing the relation between the mean plastic strain
and the mean stress, while it uses a slightly non-linear component to tune the asymptotic tangent modulus and
the asymptotic ratcheting behavior. In other words, only a single backstress component models the non-linear
material behavior after yielding, while at least two of them are usually employed in the “classic” Chaboche
model.

Since the extreme points are the only pointwise stress values that are used, the proposed procedure is likely
to be less accurate around the elastic limit than it is at extreme points. That is in general a critical zone for the
Chaboche model itself, as it cannot reproduce a smooth elastic-plastic transition (Chaboche, 1986). However, a
very quick backstress may be used to at least improve the model performance in that zone.

In general, the relations reported in Section 2 can be used as constraints for more complex numerical methods
(Nath et al., 2019; Mahmoudi et al., 2011; Badnava et al., 2012; Nath et al., 2021; Chaparro et al., 2008), and the
results of the proposed procedure can be employed as a first guess which facilitates the convergence of the solver.
Alternatively, a framework for including that additional backstress component is provided in the following.

By running the proposed procedure with α = 0 (or approximately so) in Eq. (61), only the peak values are
enforced, without constraints on the hysteresis areas. This usually yields a cycle which is more accurate near
the extreme points, with bigger deviations at the elastic limit (e.g., see Fig. 11(c) in Section 4). The result may
be also controlled by limiting the maximum allowable value of γ1. Then, the yield zone is refined by trading
the introduction of another backstress component (C4, γ4) with a decrease in σL by C4

γ4
; by doing so, when the

added component saturates to C4
γ4
, the simulated curve turns back to the original one. C4 and γ4 can be identified
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Transverse (diametrical) 
extensometer

Axial stress σ

Diametrical strain εd
(measured & controlled)

Axial strain εd (converted 
from the diam. strain)

Axial stress σ

Not perfectly 
constant axial 
strain limit

Stab. cycle Stab. cycle

Figure 7: Hourglass specimen and transverse extensometer setup for tests under (diameter) strain control.

by minimizing the hysteresis areas relative error Λ2
I +Λ

2
II, though other discrepancy measures can be employed.

In mathematical terms:

• Generate a matrix of trial values for C4 and γ4.

• For each matrix entry, evaluate the new elastic limit at σL −
C4
γ4
.

• Minimize Λ2
I +Λ

2
II (or another functional of choice) over the trial matrix and obtain (C4, γ4), together with

the updated value of σL .

4. Application examples

4.1. Experimental setup

An experimental campaign was conducted on axisymmetric hourglass coupons (illustrated in Fig. 7) with
gage diameter of 6 mm, extracted from 60 mm diameter rolled bars. The samples longitudinal axes were aligned
with the bars rolling direction.

Cyclic tests were performed on 7075-T6 aluminum, 42CrMo4 steel, and high-silicon ferritic ductile cast iron
(Borsato et al., 2021) specimens, according to the standard ASTM E606. A servo-hydraulic universal testing
machine INSTRON 8516 was used, equipped with hydraulic grips, a load cell of 100 kN (nonlinearity ±0.1% of
R.O.) and a diametrical (transversal) extensometer (nonlinearity ±0.15% of R.O.). When strain-controlled, each
sample was subjected to strain cycles with constant amplitude, through triangular waveforms having a constant
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strain rate of 10−2s−1. The axial strain ε was deduced from the diametrical one εd according to the following
equation prescribed by ASTM E606, assuming plastic incompressibility:

ε =
σ

E
(1 − 2ν) − 2εd (64)

where for 7075-T6 aluminum E = 70.5 GPa and ν = 0.33, for 42CrMo4+QT steel E = 206 GPa and ν = 0.3,
while for high-silicon ductile cast iron E = 170 GPa and ν = 0.27. Stress-controlled tests where carried out
through feedback on load cell measurements.

4.2. Aluminum alloy 7075-T6

(a) (b)

Total strain , %Total strain , %
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Figure 8: Determination of the Chaboche kinematic hardening model parameters for the aluminum alloy 7075-T6. Stabilized cycles are
shown in (a) and (b), having different strain ratios and strain amplitudes.

First, the use of the proposed procedure is presented for the aluminum 7075-T6 results. This material showed
an almost negligible isotropic hardening, therefore the determination of the Voce’s equation parameters was not
performed, i.e. a purely kinematic model (σ0 = σL) was assumed. Moreover, for this alloy, no ratcheting test
was available. Then, the parameter γ2 was not determined, and γ2 = 1 was assumed, according to Section
3.2. Fig. 8 shows the two stabilized cycles that were required for the other parameters to be determined. As
evident in the figure and discussed above, in order to have a well conditioned identification problem, these two
cycles significantly differ in terms of strain ratio Rε , thus allowing a well-conditioned determination of the linear
backstress constant C3. The two cycles also differ in terms of plastic strain amplitude, therefore the derivatives
at the extremities are quite dissimilar. This, in turn, allows an efficient extraction of the other two coefficients
C1 and C2 as functions of γ1. Eventually, the latter was obtained by equially weighting errors on the peak stress
values and on the hysteresis areas (α = 0.5). It is quite evident that the yield region is accurately represented,
as well as the post-yield segment of both ramps. Recall that this result was obtained just imposing the global
parameters of the cycles. The identified parameters are reported in Table 1. Recall that γ∗2 is not the result of an
identification, but rather a conventional value, since ratcheting tests were not carried out. Due to this, it has been
denoted with an asterisk.

Table 1: Results of the proposed procedure for 7075-T6 specimens, in terms of identified parameters.
C1 γ1 C2 γ∗2 C3 χ3,0 σL
126 GPa 707 2.83 GPa 1 349 MPa −18.1 MPa 392 MPa
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4.3. Steel 42CrMo4+QT

Two samples of steel 42CrMo4+QT were tested at two different strain ratios Rε , namely −1 and 0, to produce
axial strain amplitudes of, respectively, about 2.8% and 1.7%, until a stabilized cycle was achieved. Stress-strain
histories for the two strain-controlled tests are plotted in Fig. 9.

The first specimen (having Rε ≈ −1) was subjected to 100 load cycles; then, a stabilized cycle was practically
evident, so the specimen was saved for the subsequent ratcheting test. The second specimen (having Rε ≈ 0)
was tested until failure. Its stabilized cycle was then identified as a minimum in the change rate of cycle extreme
points.

In addition, a ratcheting test was performed on the first specimen, after the strain-controlled test. For this
purpose, the maximum axial load Pmax of the stabilized cycle was recorded, then the sample was cycled in load
control between the maximum value Pmax and the minimum value −0.75Pmax (R = −0.75). These load values
correspond to axial stresses ranging between −538 MPa and 718 MPa. The stress-strain history of the ratcheting
test is reported in Fig. 10(a), from which the ratcheting curve (maximum strain vs. cycle) was extracted. The
latter is reported in Fig. 10(b).

The ratcheting curve shows the typical three phases found by other authors (Kang, 2008; Paul, 2012): a first
settling phase, an approximately linear phase, and a last phase where the ratcheting rate increases until failure.
The appropriate ratcheting rate to be fed to Eq. (63) is identified at the beginning of the second phase (around the
20th cycle), where it is assumed that ∆εs

p,N has practically converged and that the linear backstress component
has still a negligible effect. Its value is ∆εr

p = 2∆εs
p = 822 µε/cycle. The quantities needed for the application of

the procedure are reported in Table 2.
The procedure is carried out according to Section 3.2. The obtained Chaboche parameters are reported in

Table 3. For the sake of clarity, in Fig. 11 the effects of some procedure parameters are reported.
The error function defined in Eq. (61) has been used, setting α = 0.5. Experimental tests were simulated

with the obtained model and compared with measurements. Strain-controlled tests are depicted in Fig. 9, while
the experimental ratcheting and predicted curve (with tuned γ2) are reported in Fig. 10(b). Moreover, in Fig. 12
some experimental and simulated ratcheting cycles are compared in the σ − ε plane.

Voce parameters are identified by fitting Q and b in Eq. (45), applied to the lower amplitude cycle. The
experimental history of σY vs. p is reported in Fig. 13. Values of Q = −120.5 and b = 0.733 are obtained.
Novak et al. (2020) reported similar values of Q and b for this material.

(a) (b)

Total strain , %Total strain , %

, 
M

P
a



, 
M

P
a



Isotropic and 

relaxation 

stabilization

Stabilized 

cycle

p

1

(large )

R



 −



0R 

Slightly 

inaccurate 

model at 

the yield

p

0

(small )

R







Figure 9: Experimental tests under strain control. Stabilized cycles are highlighted in red. (a) Test at Rε ≈ −1. (b) Test at Rε ≈ 0.
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Figure 10: Ratcheting test in stress control. (a) Experimental stress-strain curve. (b) Evolution of maximum strain εmax
p,N with respect to

cycle number N . Three separate ratcheting phases can be identified. In phase I the ratcheting rate is decreasing, in phase II the ratcheting
rate converges to an approximately constant value ∆εr

p,N ≈ ∆ε
r
p (linear phase), while in phase III the ratcheting rate increases until

specimen failure.
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Figure 11: (a)–(b) Sweep of stabilized cycles obtained by varying γ1 with respect to the actual minimizer of Ψ(γ1), respectively for
the higher and lower strain amplitude. (c) If the hysteresis area of the cycle is not considered in Ψ(γ1) (by setting α = 0), the obtained
stabilized cycle becomes inaccurate at the yielding zone.

As suggested in Section 3.3, an identification with n = 4 backstress components was also obtained, for
reference. The procedure was carried out with n = 3 and α = 0, as in Fig. 11(c), then a fourth component
was added by minimizing the relative errors Λ2

I + Λ
2
II in describing the hysteresis areas. The complete set of
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Table 2: Global properties extracted from experimental tests, used as inputs for the proposed procedure.

Stabilized cycle I

∆εp,I 2.07%
εm

p,I 0.01%
∆σI 1479 MPa
σm,I −21.06 MPa
AI 23.08 mJ/mm3

dσ/dεp at σ = σmax
stab,I 10.09 GPa

Stabilized cycle II

∆εp,II 1.0%
εm

p,II 0.71%
∆σII 1288 MPa
σm,II −16.51 MPa
AII 9.81 mJ/mm3

dσ/dεp at σ = σmax
stab,II 17.89 GPa

Ratcheting test
σm 92.79 MPa
∆εa

p 7977 µε
∆εs

p 411 µε

Table 3: Results of the proposed procedure for 42CrMo4+QT specimens, in terms of identified parameters.
C1 γ1 C2 γ2 C3 χ3,0 σL
57.5 GPa 238 8.62 GPa 5.18 643 MPa −21.1 MPa 398 MPa

Cycle 1

Total strain , %

Cycle 10 Cycle 25 Cycle 40 Cycle 55

range where the ratcheting slope was fitted

, 
M

P
a



Figure 12: Comparison of experimental and simulated cycles drawn from the ratcheting test. For clarity, only some cycles are reported.

parameters (kinematic and isotropic) for the identification with 4 backstress components is reported in Table 4,
and the corresponding stabilized cycles are reported in Fig. 14.

Table 4: Complete set of parameters for the CIKH model after introducing the isotropic and 4-th backstress component.
C1 γ1 C2 γ2 C3 χ3,0 C4 γ4 σL Q b
27.1 GPa 117 5.01 GPa 3.13 643 MPa −21.1 MPa 109 GPa 714 334 MPa −122 MPa 0.686

4.4. High-silicon ferritic ductile cast iron

Two samples of high-silicon ferritic ductile cast iron were tested in strain control, with amplitudes of about
1.2% and 0.75%. Both the strain ratios Rε were set at approximately −1. In principle, this is in contrast with
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Figure 13: Experimental history of σY vs. p, used to fit the Q and b parameters of Voce hardening law.

(a) (b)

Total strain , %Total strain , %
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More accurate 

model at the yield

1R  − 0R 

More accurate 

model at the yield

Figure 14: Further refinement of the obtained results, achieved by adding a fourth highly-dynamic backstress component.

the recommendations of Section 3; however, in this specific case the system (47) was still reasonably well-
conditioned, and that allowed the identification of the linear backstress component. These tests are reported in
Fig. 15(a). To identify the slightly non-linear backstress component, a ratcheting test was also performed on the
first specimen, after the strain-controlled test. Axial stresses ranged between −298 MPa and 523 MPa, and the
corresponding ratcheting curve is reported in Fig.16.

The full procedure with 4 backstress components was carried out, according to Sections 3.2 and 3.3. The
corresponding simulated tests are shown in Fig. 15(a) and Fig. 16. The parameters for a Voce isotropic hardening
were identified by fitting Q and b in Eq. (45), analyzing the load history of the test with higher strain amplitude.
The final set of parameters is reported in Table 5.

After the identification of a complete CIKH model, additional tests were performed to validate the obtained
parameters. Another specimen was tested in strain-control, with an amplitude of about 1%. Its experimental
stress-strain history is reported in Fig. 15(b), together with its simulated stabilized cycle. Its entire stress-strain
history is also simulated with the obtained CIKH model, and the simulated trend of the maximum peak stress
values is compared with the experimental values in Fig. 17. Two more specimens were tested in stress-control,
with stress ranges of −284 to 504MPa and −291 to 484MPa. Their corresponding ratcheting curves are reported
in Fig. 16, with their simulated counterparts.
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Table 5: Complete set of parameters for the CIKH model for the high-silicon ferritic ductile cast iron. A 4-backstress identification was
performed.

C1 γ1 C2 γ2 C3 χ3,0 C4 γ4 σL Q b
82.1 GPa 841 12.1 GPa 13.5 1124 MPa 42.1 MPa 798 GPa 4538 172 MPa 39.3 MPa 5.02

(a) (b)

Total strain , %Total strain , %

, 
M

P
a



, 
M

P
a



Large and small 

Δεp stab. cycles, 

for calibration

Independent 

stab. cycle,

for a validation

Loading 

cycle I

Loading 

cycle II
Loading 

cycle III

Figure 15: (a) Experimental strain-controlled cyclic tests used to calibrate the Chaboche parameters. The simulated stabilized cycles are
reported in green. (b) Additional strain-controlled test used to validate the obtained model.

Single ratch. test 

for the calibration

of γ2

Number of cycles, N

m
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N
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Independent 

ratcheting tests, 

for validation

Figure 16: Ratcheting curves corresponding to the three stress-controlled tests. The test with higher stress amplitude was used to calibrate
the model, while the other two tests serve as a validation of the obtained parameters.

5. Discussion

5.1. General considerations

Since the system composed by Eqs. (51) was solved exactly, the tangent moduli at the extreme points were
reproduced perfectly by the identified set of parameters, at least for the strain amplitudes of the experimental
tests. The same can be said for average stresses and average strains, because of Eqs. (48). On the other hand, the
error function involving hysteresis areas and stress amplitudes is minimized to a value that is non-null in general,
therefore those two quantities are reproduced with some errors. As evident in Figs. 8, 9 and 15, these errors
are barely appreciable and negligible in engineering practice. As anticipated in the Introduction, the parameters
were identified with a deterministic process from the experimental tests.
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Figure 17: (a) Calibration of a Voce isotropic hardening law on the stress history of the first strain-controlled test. (b) Correlation between
experimental and simulated peak stress history on the third strain-controlled test, used for validation.

Table 6: Accuracy in the reproduction of stress amplitudes and hysteresis areas for the two 42CrMo4+QT experimental stabilized cycles.
Stabilized cycle I Experimental Simulated Variation
∆σI 1479 MPa 1463 MPa −1.08%
AI 23.1 mJ/mm3 22.5 mJ/mm3 −2.60%
Stabilized cycle II Experimental Simulated Variation
∆σII 1288 MPa 1304 MPa 1.23%
AII 9.81 mJ/mm3 10.06 mJ/mm3 2.55%

5.2. Aluminum alloy 7075-T6
As ratcheting tests were not available, the procedure assumed a low γ2, in this case equal to 1. Its effect on

the tangent slope at extremities is thus that of a linear backstress, although it avoids the corresponding effect on
the shift of cycle mean stress values. Note in Fig. 8 that the simulation of stabilized cycles for aluminum 7075-T6
is particularly accurate. This fact does not imply that a ratcheting test would be accurately predicted by the
obtained parameters. As shown in Section 2.4 and in Fig. 18(b), the ratcheting behavior is mainly governed by
the rate value of the smallest non-linear backstress component (namely, γ2), whereas it has almost no influence
on the stabilized cycles, as long as γ2∆εp � 1. Therefore, the obtained model can be expected to work well in
predicting other stabilized cycles, but should not be used for stress-controlled tests.

5.3. Steel 42CrMo4+QT
The steel 42CrMo4+QT was characterized by both strain- and stress-controlled cycles. Two strain-controlled

cycles and a single ratcheting test were available, which is the minimum set of tests required to carry out the
entire procedure proposed. Starting with the input data in Table 2, the stabilized cycles in Fig. 9 were obtained,
and a detailed analysis of the identification errors is reported in Table 6. Despite some slight inaccuracies near
the elastic limit, all relative errors were below 3%. The cycles were reproduced very accurately especially near
the peak stress values. In our opinion, this level of accuracy is more than enough to use the constitutive model
obtained as an input for other applications such as fatigue life models. As shown in Fig. 13, the model obtained
can then be easily paired with a Voce isotropic hardening law. Except for the first few cycles, where the evolution
of the elastic limit does not seem to follow an exponential law, the Voce law describes the material behavior well.
A complete CIKH model was thus obtained deterministically and in almost negligible computational time.

The accuracy in reproducing the ratcheting test is notable, especially because the only imposed condition is
the slope of its approximately linear phase, which is used to tune γ2. In fact, the simulated test is very close to the
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Figure 18: Effect of C3 and of γ2 on the simulated ratcheting curve. (a) C3 is varied between 0 and 2000 MPa while C2 is updated
accordingly to maintain the same tangent modulus at high strains. All other parameters in Table 3 are kept constant. At C3 = 2000 MPa
the concavity of the ratcheting curve is significantly higher than the experimental one. (b) γ2 is varied between 0 and 10. All other
parameters in Table 3 are kept constant.

experimental one, not only in terms of maximum cycle strain (see Fig. 10) but also in the shape and amplitude
of the translating hysteresis cycle (see Fig. 12) which has a lower amplitude than the calibration cycles. This
supports the hypothesis that the model is consistent with the material behavior. In fact, no information on the
shape of the ratcheting cycle was given as input to the procedure. Only the asymptotic ratcheting rate was used,
while the cycle shape followed from the parameters obtained through the stabilized cycles. As discussed in
Section 2.5, the last part of the ratcheting curve with an increasing ratcheting rate cannot be reproduced with
the Chaboche model in this uniaxial framework, at least not without taking potential geometry changes in the
specimen into account, as observed in (Paul, 2012).

The effects of variations of C3 on the ratcheting simulations are reported in Fig. 18(a). If the reproduction of
the tangent modulus at high strains had been performed using C3 only, a value near 9345 MPa (current value of
C2 +C3) would have been obtained, which would have produced unmanageable concavity of the ratcheting curve
(see Fig. 18 (a)) and the reproduction of the experimental test would not have been possible. This effect has
already been observed, for example in (Ramezansefat and Shahbeyk, 2015). In contrast, the proposed procedure
yielded a much smaller C3, which is still compatible with the experimental data. Fig. 18(b) shows an example
of how γ2 affects ratcheting curves. Note that values of γ2 in the considered range have negligible effects on
stabilized cycles.

By setting α = 0.5 in the error function of Eq. (61), the hysteresis areas of stabilized cycles were enforced. A
practical explanation can be found in Fig. 11(c), where the smaller simulated cycle is compared with the results
obtained with α = 0. Although the extreme points are always well reproduced, by also minimizing errors on
hysteresis areas, the simulated cycle is forced to be extremely close to the experimental cycle also at intermediate
strain values.

The addition of another backstress component (starting with the parameters obtained with α = 0) yields a
more accurate prediction of the mechanical behavior in the yield zone, as shown in Fig. 14. Since the prediction
with three backstresses is already fairly accurate, the increased complexity of the procedure should be evaluated
on a case-by-case basis.
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5.4. High-silicon ferritic ductile cast iron

Since the tangent moduli are always reproduced exactly, the obtained Chaboche parameters should be able
to model moderate amplitude variations accurately, at least with a first approximation. In addition, as two
experimental cycles are provided, it is also reasonable to expect that intermediate amplitudes are modeled
reliably.

This hypothesis was tested with the experimental campaign on a high-silicon ferritic ductile cast iron. After
the complete procedure was carried out (including the additional fourth backstress component), the obtained
model was validated with additional experimental tests. An additional strain-controlled cycle was performed
at an intermediate (but significantly different) amplitude between the two calibration cycles. As shown in Fig.
15(b), the stabilized cycle is well predicted, with an accuracy that is comparable with that of the calibration
cycles.

Three ratcheting tests were also performed, although only the asymptotic ratcheting rate of the one with the
highest amplitude was used to calibrate the parameter γ2. Some interesting conclusions can be drawn from Fig.
16. In fact, the procedure yields a set of parameters that satisfies a constraint on the asymptotic ratcheting rate,
however the point-wise absolute value of the ratcheting strain is not guaranteed to match the experimental data.
In fact, the CIKH model obtained for the high-silicon ferritic ductile cast iron yields a ratcheting curve that is
slightly shifted with respect to the calibrating test (see Fig. 16). Compared with the highly accurate ratcheting
prediction of Fig. 10 for the steel 42CrMo4+QT, its relative error is higher, but in absolute terms it represents a
moderate discrepancy (see the different Y -scale in Fig. 16). By correctly predicting the asymptotic slope, this
error also remains approximately constant across multiple stress cycles.

On the other hand, the prediction accuracy for the two additional validation cycles is notable. The one with
the intermediate amplitude is well reproduced, except for a slight discrepancy in the asymptotic ratcheting rate.
The one with the lowest amplitude is reproduced with almost no error at all, both in terms of absolute ratcheting
strain and ratcheting rate.

The isotropic hardening is well reproduced by aVoce law (see Fig. 17), although in this case a pure exponential
form is probably not the best function to fit the experimental data. However, errors are limited to a maximum of
approximately 10MPa. When the overall CIKHmodel is used to predict the peak stress values of the independent
strain-controlled cycle, as in Fig. 17(b), a similar accuracy is achieved, and the trend is well predicted.

6. Conclusions

This work explores a possible analytical procedure for the identification of Chaboche parameters. Analytical
expressions for asymptotic ratcheting rates in uniaxial tests are provided. By attempting to identify a Chaboche
model with three backstress components, one of which is assumed to be linear, while another is assumed to be
only slightly non-linear, an almost fully analytical procedure is proposed. The aim is to reproduce some global
quantities of stabilized cycles which are often important for the prediction of other phenomena such as fatigue.
The only numerical part involves the minimization of a single-variable function, depending on γ1. As the latter
can be reasonably assumed to lie in a given interval, this process is particularly easy and can also be done with a
common spreadsheet file. The proposed procedure uses the hysteresis area, cycle peak stress values and slope at
extreme points as inputs. However, the framework can be adapted to minimize the error evaluated on any other
desired property, by defining an appropriate error function.

Although only global conditions are imposed, the model identified actually achieves a great correlation
over the entire range of the ramps of the stabilized cycles. Even though the results are validated in a uniaxial
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setting, the stabilized behavior is believed to still be satisfactory in multiaxial conditions with a dominant stress
component or at least under proportional loadings. In addition, the uniaxial ratcheting is accurately reproduced
with various input conditions, though only its asymptotic slope is imposed. This highlights the self-consistency
of the identified model, and relating the ratcheting slope to the model parameters is an innovative contribution
of this work.

The Chaboche model parameters were obtained with a deterministic process and without any manual tuning,
which is a strong point of the procedure. As shown, the obtained model could still be improved by adding more
(highly dynamic) backstress components, if necessary. It should be underlined that the proposed procedure runs
in negligible computational time on a typical personal computer.

Although more refined models may be more accurate at predicting the material behavior in a variety of
different conditions, they often need an extensive experimental campaign to be calibrated. In contrast, this
procedure only requires three tests (possibly on the same specimen) to identify the full parameter set of a CIKH
model. This is a particularly advantageous feature for example when the main target of a study is to characterize
the fatigue behavior of newmaterials (e.g., regarding their notch sensitivity). In fact, most of the fatigue life under
proportional loading is usually spent under stabilized conditions, which are the main focus of this procedure.

The analytical relations obtained may also be used as constraints for any of the other identification algorithms
available in the literature, and the obtained parameters could even be introduced as reliable initial values to
attain numerical convergence. In addition, the approach of imposing a correct prevision on independent loading
conditions is recommended to optimize the determination of the parameters of any other material model or
constitutive equation.
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Appendix A. Derivation of analytical expressions for hysteresis area, ramp slope and ratcheting rate

Appendix A.1. Hysteresis Area

By denoting the linear backstress component with the usual special index k, from Eqs. (3) and (4) the
hysteresis area of a stabilized cycle can be expressed as:

A =

σ dεp =

ˆ εmax
p

εmin
p

*
,

n∑
i=1 i,k

χi + χk + σL+
-

dεp +

ˆ εmin
p

εmax
p

*
,

n∑
i=1 i,k

χi + χk − σL+
-

dεp =

= 2σL∆εp +

n∑
i=1 i,k

ˆ εmax
p

εmin
p

χi dεp +

n∑
i=1 i,k

ˆ εmin
p

εmax
p

χi dεp +

ˆ εmax
p

εmin
p

χk dεp +

ˆ εmin
p

εmax
p

χk dεp

(A.1)

The terms in Eq. (A.1) can be individually evaluated. Since χk is on a biunivocal relationship with εp (see Eq.
(9)), it follows that:

ˆ εmin
p

εmax
p

χk dεp = −

ˆ εmax
p

εmin
p

χk dεp (A.2)

In fact, a linear backstress component does not contribute to the area of the hysteresis cycle.
In the ascending ramp dεp > 0, so the first of Eqs. (6) holds, which can be rewritten as:

χidεp =
Ci

γi
dεp −

1
γi

dχi (A.3)
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which, integrated, becomes:

ˆ εmax
p

εmin
p

χidεp =
Ci

γi
∆εp −

χmax
j,stab − χ

min
j,stab

γi
=

Ci

γi
∆εp − 2

Ci

γ2
i

tanh
(
γi∆εp

2

)
(A.4)

With similar considerations, it can be shown that:
ˆ εmax

p

εmin
p

χidεp =

ˆ εmin
p

εmax
p

χidεp (A.5)

In other words, the ascending and descending ramps equally contribute to the hysteresis area.
By substituting in Eq. (A.1), the total hysteresis area is found:

σ dεp = 2σL∆εp + 2

n∑
i=1 i,k

*
,

Ci

γi
∆εp − 2

Ci

γ2
i

tanh
(
γi∆εp

2

)
+
-

(A.6)

Appendix A.2. Tangent modulus at cycle extreme points

From the first of Eqs. (6), for dεp > 0 it holds:

dχi
dεp

�����χi=χmax
i,stab

= Ci − γi χ
max
i,stab = Ci

(
1 − tanh

(
γi∆εp

2

))
(A.7)

Deriving Eq. (3) and substituting Eq. (A.7):

dσ
dεp

�����σ=σmax
=

n∑
i=1

dχi
dεp

������χi=χmax
i,stab

=

n∑
i=1 i,k

Ci

(
1 − tanh

(
γi∆εp

2

))
+ Ck (A.8)

The index k could be left in the sum (having γk = 0 in the hyperbolic tangent terms), but it was left alone for the
sake of clarity. The same value can be obtained for the end point of the descending ramp.

Note that differentiability at yield of the stress-strain curve cannot be obtained. In fact, that would require
Eq. (A.8) to tend to infinity as ∆εp → 0, which cannot be satisfied.

Appendix A.3. Rate of convergence to plastic shakedown

When a linear backstress component is present, a plastic shakedown is the only equilibrium state and the
first of Eqs. (32) cannot be used to estimate the smallest non-linear backstress component. In fact, there will
be ratcheting only until a point where the linear backstress component reaches an average value that is equal to
the mean cyclic stress. There will be a primary phase where non-linear backstress components are settling and
potentially an isotropic hardening occurs. Then, the cycle will stabilize its overall shape as non-linear backstress
components reach their equilibrium extreme points: in this phase ratcheting may be reasonably approximated
as a translation of the equilibrium cycle (though, strictly speaking, the latter is still open). Some considerations
can be made on the convergence rate of ∆εs

p,N to 0, which allows an identification of the smallest non-linear
backstress component.

As experimental evidence, confirmed by numerical simulations, it is supposed that ∆εa
p,N has reached an

approximately constant value ∆εa
p and that ∆εs

p tends to 0 with a geometric convergence rate, that is:

∆εs
p,N = BωN (A.9)
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where B , 0 and 0 < ω < 1. Just for convenience, express ω as exp(−G∆εa
p) with G > 0, so that Eq. (A.9)

becomes:

∆εs
p,N = B exp(−G∆εa

pN ) (A.10)

Since ∆εs
p,N → 0, at some point the approximation 1 − exp(−γi∆εs

p,N ) ≈ γi∆εs
p,N will be sufficiently precise,

independently from the magnitude of γi. Therefore, Eqs. (29) and (39) can be rewritten as:

χmax
i,N+1 = exp(−2γi∆εa

p) χmax
i,N + 2Ci exp(−γi∆εa

p)∆εs
p,N +

Ci

γi
(1 − exp(−γi∆εa

p))2

χmin
i,N+1 = exp(−2γi∆εa

p) χmin
i,N + 2Ci exp(−γi∆εa

p)∆εs
p,N +

Ci

γi
(1 − exp(−γi∆εa

p))2

χmax
k,N+1 = χmax

k,N
+ 2Ck∆ε

s
p,N

χmin
k,N+1 = χmin

k,N
+ 2Ck∆ε

s
p,N

(A.11)

The quantity χm
i,N = ( χmin

i,N + χ
max
i,N )/2 is defined. Eqs. (A.11) can be combined as follows:

χm
i,N+1 = 2Ci exp(−γi∆εa

p)∆εa
p,N + exp(−2γi∆εa

p) χm
i,N (A.12)

which is also valid for γk = 0.
Since the constraint on imposed stresses must be fulfilled, Eq. (3) becomes:

n∑
i=1

χm
i,N = σm (A.13)

Note that Eq. (A.13) represents a hyperplane in the space (χm
1 , . . . , χ

m
n ), where n is the total number of back-

stresses. At cycle N , the point (χm
1,N, . . . , χ

m
n,N ) must belong to that hyperplane. The evolution law in Eq. (A.12)

can be divided into two steps, as depicted in Fig. A.19:

χm
i,N −→ exp(−2γi∆εa

p) χm
i,N −→

2Ci exp(−γi∆εa
p)∆εs

p,N + exp(−2γi∆εa
p) χm

i,N = χm
i,N+1

(A.14)

After the first step Eq. (A.14), the point (exp(−2γ1∆ε
a
p) χm

1,N, . . . , exp(−2γn∆εa
p) χm

n,N ) in general does not
belong to the hyperplane of Eq. (A.13). In the second step of Eq. (A.14), ∆εs

p,N restores the hyperplane
constraint. Being ∆εs

p,N the same for every χm
i , it does so through a translation along a line defined by the vector

(2C1 exp(−γ1∆ε
a
p), . . . , 2Cn exp(−γn∆εa

p)), which meets the hyperplane at a unique point. Thus, for each cycle
there is a unique value of ∆εs

p,N which ensures the fulfilment of the imposed stress constraints.
Eq. (A.12) is a first-order linear difference equation, having a characteristic root λ = exp(−2γi∆εa

p) <

1. ∆εs
p,N constitutes an external input which generates the forced response of Eq. (A.12). Since ∆εs

p,N =

B exp(−G∆εa
pN ), the latter will have the general form:

χm,forced
i,N = Fi exp(−G∆εa

pN ) (A.15)

where Fi , 0.
Eqs. (A.10) and (A.15) are substituted in Eq. (A.12) in order to find the value of Fi, obtaining the following
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Figure A.19: Representative example of the evolution law Eq. (A.12), involving only two backstress components for clarity purposes.

result:

Fi =
2CiB

exp((γi − G)∆εa
p) − exp(−γi∆εa

p)
(A.16)

Note that Fi cannot be null unless Ci or B are zero as well. When γk = 0, Eq. (A.16) becomes:

Fk = −
2CkB

1 − exp(−G∆εa
p)

(A.17)

The solution of Eq. (A.12) will be the superposition of the forced response from Eq. (A.15) with its free evolution,
expressed by:

χm,free
i,N = θi exp(−2γi∆εa

pN )

χm
i,N = χm,free

i,N + χm,forced
i,N = θi exp(−2γi∆εa

pN ) + Fi exp(−G∆εa
pN )

(A.18)

where θi depends on the boundary conditions.
Substituting Eq. (A.18) in the constraint (A.13), it follows that:

σm =

n∑
i=1 i,k

θi exp(−2γi∆εa
pN ) +

n∑
i=1 i,k

2CiB
exp((γi − G)∆εa

p) − exp(−γi∆εa
p)

exp(−G∆εa
pN )

+θk −
2CkB

1 − exp(G∆εa
p)

exp(−G∆εa
pN )

(A.19)

Eq. (A.19) implies that:

• θk = σm, in fact all other terms tend to zero as N → ∞, except for θk .

• G < 2γi for all index i , k. If this is not true, then the forced responses, proportional to exp(−G∆εa
pN ),

would at somepoint be negligiblewith respect to the slower free evolutions, proportional to exp(−2γi∆εa
pN ).

In fact, if a backstress component (denoted with index h) satisfies G > 2γh, Eq. (A.19)is approximated by:

θh exp(−2γh∆εa
pN ) + θk = σm (A.20)
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By substituting θk = σm:

θh exp(−2γh∆εa
pN ) = 0 (A.21)

which cannot be satisfied for all N .

Instead, if G < 2γi for all indexes i, Eq. (A.19) is approximated by:

n∑
i=1 i,k

Ci

exp((γi − G)∆εa
p) − exp(−γi∆εa

p)
=

Ck

1 − exp(G∆εa
p)

(A.22)

Keeping usual index j for the smallest γi > 0, the constraint on G becomes 0 < G < 2γj . In that interval,
the right hand side of Eq. (A.22) monotonically decreases from +∞ to Ck/(1 − exp(2γj∆εa

p)), while the left
hand side monotonically increases from

∑
i,k Ci/(2 sinh(γi∆εa

p)) to +∞. Eventually, for any parameter set, there
always exists a unique G which satisfies Eq. (A.22) and therefore the stress constraints. Since G is available from
an experimental test, Eq. (A.22) may be used to find γj , if it is not known:

Cj

exp((γj − G)∆εa
p) − exp(−γj∆εa

p)
=

Ck

1 − exp(G∆εa
p)
−

∑
i=1 i,j,k

Ci

exp((γj − G)∆εa
p) − exp(−γj∆εa

p)
(A.23)

As long as the right hand side of Eq. (A.23) is positive (which is reasonably true given γi � γj > G/2), there
always exists a unique solution for γj . Since a ratcheting test preferentially requires a fair number of cycles
before the specimen failure, it is quite common to have γi∆εa

p � 1 for all i. Since G < 2γi for all i, G∆εa
p � 1

too. In this case Eq. (A.22) can be approximated as follows:∑
i=1 i,k

Ci

2γi − G
=

Ck

G
(A.24)

Since for a slightly non-linear backstress component it usually holds that Cj/γj � Ci/γi, a sound assumption
might be:

Cj

2γj − G
�

Ci

2γi − G
for all i , j (A.25)

The hypothesis of Eq. (A.25) should be verified after the identification of parameters. Eventually, Eq. (A.24)
becomes:

G =
2γj

Cj/Ck + 1
(A.26)

Assuming that G is experimentally available, Eq. (A.26) allows an estimation of γj :

γj =
G
2

(
Cj

Ck
+ 1

)
(A.27)

Eqs. (A.15)-(A.27) are founded on the hypothesis that ∆εs
p,N = BωN for A , 0 and 0 < ω < 1. Although no

formal proof that ∆εs
p,N must have this form is available yet, numerical simulations suggest that it should actually

be the case. Since these results concern the rate of convergence to the stabilized value ∆εs
p,N = 0 and not the

stabilized value itself, they require the isotropic hardening to stabilize with a dynamic that is quicker than G,
otherwise the material behavior would be dominated by the isotropic part and not by Eq. (A.12). Moreover, as
most times G turns out to represent a particularly slow dynamic (especially when Ck � Cj), its identification
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requires a precise instrumentation and many ratcheting cycles, which can be difficult to obtain, due to specimen
failure. Due to this, the approach proposed in Section 2.5 should be preferred.

Appendix B. Electronic supplementary material

A MATLAB Graphical User Interface which implements this procedure has been uploaded to a GitHub
repository: https://github.com/grossIt/ChaPaFi
For the sake of reproducibility, the stabilized cycles and the ratcheting tests for aluminum and steel specimens
are available therein.

The same code and test data can also be found in the online version of the paper as electronic supplementary
material. The provided files are:

• ChaPaFi_v1_0.mlapp – application to be run with graphical interface.

• Alu_StabilizedCycle_1.mat – first stabilized cycle for the aluminum alloy 7075-T6.

• Alu_StabilizedCycle_2.mat – second stabilized cycle for the aluminum alloy 7075-T6.

• Steel_StabilizedCycle_1.mat – first stabilized cycle for the steel 42CrMo4+QT.

• Steel_StabilizedCycle_2.mat – second stabilized cycle for the steel 42CrMo4+QT.

• Steel_RatchetingCycle.mat – ratcheting data for the steel 42CrMo4+QT.
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