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ABSTRACT

Predictive simulations of human motion are a precious resource for a deeper understanding

of the motor control policies encoded by the central nervous system. They also have profound

implications for the design and control of assistive and rehabilitation devices, for ergonomics, as well

as for surgical planning. However, the potential of state-of-the-art predictive approaches is not fully

realized yet, making it difficult to draw convincing conclusions about the actual optimality principles

underlying human walking. In the present study we propose a novel formulation of a bilevel, inverse

optimal control strategy based on a full-body three-dimensional neuromusculoskeletal model. In

the lower level, prediction of walking is formulated as a principled multi-objective optimal control

problem based on a weighted Chebyshev metric, whereas the contributions of candidate control

objectives are systematically and efficiently identified in the upper level. Our framework has proved

to be effective in determining the contributions of the selected objectives and in reproducing salient

features of human locomotion. Nonetheless, some deviations from the experimental kinematic

and kinetic trajectories have emerged, suggesting directions for future research. The proposed

framework can serve as an inverse optimal control platform for testing multiple optimality criteria,

with the ultimate goal of learning the control objectives that best explain observed human motion.1

∗Address all correspondence to this author
1A preliminary version of this paper was presented at the ASME IDETC/CIE 2022 Conference as Paper No. DETC2022-89536
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1 INTRODUCTION

Human walking is the result of a long and complex evolution in which locomotion-generator neural cir-

cuits and the musculoskeletal system progressively modified with respect to quadrupeds. Its apparent sim-

plicity, but real complexity, has always aroused considerable interest in the biomechanics community, with

Leonardo Da Vinci being one of the pioneers in making scientific observations about human locomotion [1].

Modern techniques of motion capture/analysis combined with neuromusculoskeletal (NMS) models are an

important instrument for developing a deeper understanding of the principles underlying human movement.

Such tools are typically used to investigate the internal workings of the NMS system, e.g. to estimate muscle

forces [2] and joint loads [3]. Recently, strategies based on NMS modeling and optimal control (planning)

have begun to show their potential as synthesis tools for model-based prediction of walking [4, 5, 6]. The

availability of validated, predictive simulations would promote important investigations: in particular, they

would advance the comprehension of the control policy adopted by the central nervous system when we

walk, shedding light on internal mechanisms that are not yet fully understood, such as muscle recruitment

criteria. Also, such predictive simulations would provide valuable information for planning surgeries and

rehabilitation treatments, for ergonomics, and for the design and control of assistive devices.

On the basis of experimental evidence, several studies suggest optimality in the way we walk, as well as

concurrence of multiple optimality criteria (e.g., energy expenditure, mechanical power, muscle activity, etc.)

[7, 8, 9, 10]. Assuming that such optimality really carries a mathematical connotation and optimality models

can be adopted (see also the interesting discussion in [11] about evolutionary adaptation), researchers

have been formulating model-based optimal control problems (OCPs) to predict human locomotion both

in healthy and pathological subjects. For example, optimal control techniques have recently been used to

predict a crutch walking pattern [12] and the crouch gait of children with cerebral palsy [13, 14], or to help

design prostheses and exoskeletons [15, 16, 17]. Outside the clinical context, predictive simulations can

aid athletes in optimizing their performance and reducing the risk of injury [18]. Although the potential of

these techniques is clear, it has not been fully realized yet.

State-of-the-art predictive simulations mainly differ in two respects: the level of complexity of the NMS

model, and the objective function(s) (Lagrange term) of the OCP. Obviously, physical fidelity (realism) of

the model is crucial to obtaining valid results, but sophisticated models are often computationally expensive

or even intractable. To mitigate computational cost, many researchers have employed NMS models with

relatively few degrees of freedom (DOFs) and simple muscles (e.g., [19, 20, 21, 22]). Also, the arms are not

modeled explicitly in most works: their inertial properties are simply lumped with those of the head and torso.
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Although the reasons why arms swing in opposition to the legs are still controversial [23], excluding them

from a model reduces its physical fidelity: indeed, it has been shown that arm swing helps minimize energy

consumption and optimize stability by reducing the vertical component of the ground reaction moment [24].

The formulation of a dynamic optimization problem of human walking by Anderson and Pandy in 2001 [25]

was most likely the first of its kind: their three-dimensional NMS model had 23 DOFs and 54 musculotendon

actuators (but the arms were lumped with the head and torso into a single rigid body), and the solution

required almost fourteen months of CPU time in those days. The modern, advanced OCP implementation

by Falisse et al. in 2019 [4] includes a model with 29 DOFs and 92 musculotendon actuators, arms with

8 ideal torque actuators, and a CPU time of about 20 minutes on a single-core laptop computer (2.9 GHz

processor).

With regard to objective functions, which are in fact motor control objectives (the two terms will be

used interchangeably), several predictive simulations have been formulated as single-objective OCPs: as

corroborated by experimental evidence whereby humans walk at speeds which correspond to minimum

energy consumption [9, 26], many authors have suggested minimizing some form of energy to predict

walking and running [25, 27, 28, 29]. Nonetheless, other criteria revolving around muscle activations also

seem to play an important role in synthesizing features of bipedal locomotion. Among these, fatigue-like

and effort-like criteria have often been used as additional objective functions [19, 30]. Also optimization

of smoothness, expressed for example as the time-derivative of muscle activations or of joint torques, has

been found to drive predictive simulations towards better solutions [10, 31]. All these aspects suggest that

human locomotion could involve multiple optimality principles. However, inferring such control objectives

and their contributions is still an open problem: recently, it has been tackled by means of promising bilevel,

inverse OCP formulations [21, 22, 32, 33].

Despite the above-mentioned progress in this field, several improvements are needed, as evidenced

by the marked discrepancies between the trajectories of predicted and measured biomechanical variables.

In this paper we set out to deal with a major limitation that, to the best of our knowledge, has never been

exposed but concerns the totality of the works in this research domain, both in forward and inverse OCPs

of human movement: the way in which concurrent control objectives are handled. Multiple objectives are

typically aggregated into a single objective function through a simple linear combination of them (a weighted

sum) [34], but this approach has two important drawbacks, as will become apparent in the next sections.

First, potentially good solutions may be very easily missed. Second, the values of the weights of the ob-

jectives may be deceptive or even grossly misleading when it comes to the interpretation of their relative
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importance/contributions. Our method is aimed at overcoming said limitations while retaining the simplic-

ity and expressiveness of weights, and it is applied to the domain of bilevel inverse optimal control for

the identification of control objectives in predictive simulations of unimpaired human walking. The formu-

lation we propose leverages fundamental concepts from multi-objective optimization to explore the entire

Pareto-optimal front of pre-selected, candidate control objectives, and it attempts to do so while maximizing

computational efficiency.

2 METHODS

2.1 Prediction of walking as a model-based OCP

As discussed in the Introduction, many predictive simulations of human walking have been framed as

model-based forward OCPs that include multiple control objectives and can be compactly expressed as

min
(x(t),u(t))∈Ω

(
J
(
x(t),u(t);w

)
=

m∑
i=1

wiJi
(
x(t),u(t)

))
(1a)

Ω =
{(

x(t),u(t)
)
: ẋ = f

(
x,u

)
, h

(
x,u

)
≥ 0

}
(1b)

where, given a set of weights w = (w1, . . . , wm) to linearly combine the m pre-selected objective func-

tion(al)s J
(
x(t),u(t)

)
=

(
Ji
(
x(t),u(t)

)
, i = 1, . . . ,m

)
into the single objective J

(
x(t),u(t);w

)
, the goal

is to obtain the trajectories of states, x(t), and controls, u(t), that minimize J subject to the constraints

defining the feasible region Ω, i.e. the first-order dynamic constraints of the NMS model and other algebraic

path constraints h (initial and endpoint conditions can be included here, as well as bound constraints on

the optimization variables). The continuous problem (1) is typically discretized using multiple shooting or a

direct collocation method, and the resulting nonlinear optimization problem is solved [35].

The choice of the objective functions and their weights is obviously critical to the results of predictive

simulations. Typically, the m candidate objectives J are pre-selected, whereas their weights w are adjusted

so as to qualitatively obtain a human-like gait [4] or to reduce the deviations between the predicted trajecto-

ries of some states/controls and their experimental counterparts, as done in [36]. This process of manually

tuning the weights is mostly based on trial-and-error or on preset weighting schemes, thus it is usually slow

and certainly prone to sub-optimality. In order to improve weight selection and to make it a less subjective

procedure, approaches based on inverse optimal control have recently received attention.
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The predictive framework proposed in this study is based on the three-dimensional NMS model devel-

oped in [4] through OpenSim [37]. Its 29 DOFs include 3 rotations and 3 translations for the pelvis with

respect to the ground, 3 rotations at each hip, 1 rotation at each knee, 2 rotations at each ankle, 3 rotations

at the lumbar joint, 3 rotations at each shoulder and 1 rotation at each elbow. Forty-three Hill-type musculo-

tendon units [38] actuate each leg and 6 actuate the lumbar joint, whereas each arm is provided with 4 ideal

torque actuators. Foot-ground contact is modeled by 6 compliant Hunt-Crossley spheres (a penalty-based

contact model) per foot. The anthropometry of the model was scaled so as to match a specific subject

(healthy female, 35 years; mass: 62 kg; height: 1.70 m) whose experimental gait data were available [4].

We solve predictive OCPs (Eqn. (1)) drawing on the computational framework developed and made avail-

able by Falisse et al. [4] in a MATLAB-CasADi [39] environment, which we modified to meet the goals of

our investigation. The continuous OCP is discretized into 50 nodes per half gait cycle (gait symmetry and

periodicity are imposed as path constraints) according to a direct collocation scheme. The resulting nonlin-

ear optimization problem is solved by the interior-point solver IPOPT [40] exploiting the problem’s sparsity.

Derivatives required by the solver are calculated efficiently and accurately (to working precision) by CasADi

through algorithmic differentiation. For a thorough description of the NMS model and computational frame-

work, the reader is referred to [4] and its supplementary material, where all the states x (e.g., joint angles,

joint velocities, etc.) and controls u (e.g., joint accelerations, arm excitations, etc.) as well as the problem’s

constraints are fully detailed.

2.2 Identification of control objective weights as an inverse OCP

Inverse optimal control is aimed at learning the control objectives that best explain demonstrated optimal

behavior. With a pre-selected set of candidate objectives, this amounts to determining the weights w in

Eqn. (1) avoiding manual guess-and-tune procedures. In some studies, richer, non-parametric objective

function models based on Gaussian processes, neural networks, radial basis functions, etc. are employed,

especially in works belonging to the closely related field of machine learning (where inverse optimal control

is called inverse reinforcement learning): the intrinsic disadvantage of this approach is that interpretability

of the objectives is lost, and also well-engineered regularization terms are often required (cf. the recent

review [34]). In our case, it is quite difficult to know if we fundamentally need more or different objective

functions that better encode the control policy underlying human walking, but we certainly need to pursue

the “correct” combination of the ones we have selected. To this end, inverse OCPs formulated as bilevel

optimization problems have been proposed. Bilevel weight identification is based on forming an upper-level
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optimization around a lower-level OCP: at each upper-level iteration, the lower-level OCP (i.e., Eqn. (1)) is

solved with a specific set of weights and the results are rated relative to the experimental gait data, then

iterations proceed until suitable termination conditions are satisfied. In more mathematical terms, such

parameter estimation problem can be expressed as follows:

min
w

d
(
w; x̄(t), ū(t)

)
(2a)

s. t.
(
x̄(t), ū(t)

)
= argmin

(x(t),u(t))∈Ω

J
(
x(t),u(t);w

)
(2b)

where the upper-level objective function d in Eqn. (2a) is a measure of the deviations between the exper-

imentally available gait data and the corresponding states x̄(t) and controls ū(t) predicted in the nested

lower-level OCP (Eqn. (2b), an instance of the problem expressed by Eqn. (1)).

2.3 Selection of candidate control objectives

The control objectives Ji in Eqn. (1) are usually selected from a set of function models including energy

features (e.g., metabolic energy and total work), kinematic features (velocity, acceleration, jerk), dynamic

features (torque, torque variation), and other physiological criteria that are assumed to capture the nature

of the considered motor task [34].

The same five control objectives as those in [4] were adopted here to facilitate comparisons. They are

expressed as continuous-time integral costs and, after discretization, computed by numerical quadrature.

Explicit dependence on
(
x(t),u(t)

)
will be omitted hereafter for brevity.

1. Squared 2-norm of the vector a of all muscle activations (a ⊂ x):

J1 =
1

D

∫ tf

0

∥a∥22 dt,

where D is the total forward distance traveled by the pelvis and tf is the final time (both are parameters

of the OCP, to be determined).
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2. Squared 2-norm of the vector ea of the excitations of the arms’ ideal torque actuators (ea ⊂ u):

J2 =
1

D

∫ tf

0

∥ea∥22 dt

3. Squared 2-norm of the vector Ė of the metabolic energy rates of all muscles, computed according to

the model described in [41]:

J3 =
1

D

∫ tf

0

∥Ė∥22 dt

4. Squared 2-norm of the vector q̈lt of the joint accelerations of the lower limbs and trunk, as a measure

of motion smoothness (q̈lt ⊂ u):

J4 =
1

D

∫ tf

0

∥q̈lt∥22 dt

5. Squared 2-norm of the vector Tp of the passive joint torques, representing the actions of ligaments and

other passive structures (this term was also used in [25] to penalize joint overextension):

J5 =
1

D

∫ tf

0

∥Tp∥22 dt

2.4 Aggregation of the candidate control objectives

The control objectives Ji in the lower-level OCP are typically aggregated into a scalar-valued objec-

tive function J by linearly combining them through weights wi, as explicitly shown in Eqn. (1a). Such a

combination is the major common limitation we have observed in published works on forward and inverse

OCP formulations for the prediction of human movement. To fully grasp the causes of said limitation, some

concepts from multi-objective optimization need to be introduced.

The concurrent objectives Ji can be conflicting in general, and this is typically not known a priori.

The individual minima of conflicting objectives are independent from each other (i.e., if one objective is
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feasible region Ω

u

x

min J2

Pareto front

a Pareto-optimal solution a Pareto-optimal

objective vector

min J1

J(id)

J(nad)

feasible objective region  

J1(x,u)

J2(x,u)

J(x,u)

Fig. 1. Graphical representation of a two-variable two-objective convex MOP

minimized, the others are not). Whenever this happens, we are faced with a multi-objective optimization

problem (MOP), which can be compactly expressed (for the OCP at hand) as:

min
(x,u)∈Ω

J(x,u) (3)

Please recall that the continuous-time functions x(t) and u(t) are discretized into the sequences (xk)
N
k=0

and (uk)
N
k=0 (here, N = 50 in a half gait cycle), which are the effective optimization variables. Simultaneous

minimization of the m objectives generally has infinitely many solutions, called Pareto-optimal (or compro-

mise) solutions, whose corresponding objective vectors form the Pareto-optimal (PO) front. For each of

these solutions, a further reduction in one of the objectives (satisfying the problem’s constraints) necessar-

ily entails an increase in at least another objective. A pictorial representation of an example two-variable

two-objective MOP is provided in Fig. 1: the points of the feasible region Ω (left) are mapped by J to the

feasible objective region (right), where the red curve is the PO front. The individual minima of J1 and J2 are

distinct, thus the two objectives are conflicting.

When objectives and constraints are convex functions, one has a convex MOP, characterized by a

convex PO front (as in Fig. 1). However, just one nonconvex objective or constraint function will suffice to

obtain a nonconvex MOP, hence a potentially nonconvex PO front. Most control objectives and constraint

functions in the OCP of human walking are typically nonlinear, which may easily result in a nonconvex front.

In real world problems, the PO front is unknown and needs to be explored.

MOPs can be solved through scalarization, which converts the vector-valued objective function into

a scalar objective function. The best-known scalarization technique is the ubiquitous weighting method,
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1

0 1

~

J2(x,u)

~

J1(x,u)

~

J
A
*

~

J
B
*

Fig. 2. PO front of a two-objective nonconvex MOP

which is exactly what is done in Eqn. (1a) or (2b): the control objectives are linearly combined through the

weights w and, by minimizing the single objective J with a specific set of weights, one obtains a PO solution

and its corresponding PO objective vector (point of the PO front). Please note that solving the bilevel opti-

mization problem (2) amounts to identifying the special set of weights, hence the PO objective vector, that

results in the minimum deviation between predicted and experimental gait data. Multiple control objectives

in published works on the prediction of human movement have always been aggregated according to the

weighting method [34]. However, despite its ease of implementation and apparent simplicity of interpreta-

tion, this method has a number of important limitations, especially in nonconvex MOPs: (i) it cannot obtain

solutions in nonconvex regions of the PO front, (ii) weights may be difficult to interpret or entirely misleading,

and (iii) evenly distributed weights may not yield evenly distributed PO objective vectors.

Let us delve a little deeper into these aspects with the help of Fig. 2 after highlighting the importance

of normalization of the objectives. The first step in properly handling the objectives is indeed to normalize

them over the PO front: normalization yields objectives of the same magnitude and range, which allows to

compare them in a mathematically meaningful way. To this end, the ideal objective vector J(id) and the nadir

objective vector J(nad) should be estimated (see also Fig. 1). These two vectors represent, respectively, the

lower and the upper bounds of the PO front. While J(id) is the result of minimizing the objectives individually,

J(nad) represents their maximum values over the PO front, and it can be approximated using a pay-off table

if more than two objectives are present [42]. Each objective Ji should thus be replaced by its normalized

“Ji-tilde” version:

J̃i(x,u) =
Ji(x,u)− J (id)

i

J (nad)
i − J (id)

i

, (4)
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thus problem (1) can be now recast as

min
(x,u)∈Ω

(
J̃(x,u;w) =

m∑
i=1

wiJ̃i(x,u)
)
,

m∑
i=1

wi = 1 (5)

As shown in Fig. 2, any PO objective vector has its components between 0 and 1 after (perfect) nor-

malization (also, J̃(id) = 0 and J̃(nad) = 1). Figure 2 shows the weighting method in action on a nonconvex

MOP with equal weights w = (0.5, 0.5): the nonconvex part of the red PO curve is the portion delimited by

the PO objective vectors J̃∗
A and J̃∗

B (points of tangency between the dashed line and the PO front); the

contour lines of the scalar objective function J̃ (in Eqn. (5)) are also shown, with its values increasing as one

moves away from the origin. By minimizing J̃ subject to the constraints Ω (that is, solving the OCP (5)), one

obtains a PO objective vector that can be easily identified: it is the point of tangency between said contour

lines and the PO front, almost coincident with point J̃∗
B (but not shown in Fig. 2), and quite distant from the

logical intuition/interpretation that equal weights should produce a PO objective vector somewhere in the

middle of the PO front, ideally halfway between the individual minima of J̃1 and J̃2. By changing the weights

one generally obtains a different PO objective vector, but no choice of w can yield any of the PO points in

the nonconvex region between J̃∗
A and J̃∗

B , thus missing many PO solutions. Furthermore, if the selected

weights are such that the corresponding function J̃ has contours inclined as the dashed line through J̃∗
A

and J̃∗
B , then J̃ would have two minima (at J̃∗

A and J̃∗
B), and the actual solution would mostly depend on the

initial guess: this sort of “jump” can be a source of numerical instability.

How can we overcome these limitations intrinsic to the weighting method? Several multi-objective

optimization methods have been developed that improve on the weighting method and can theoretically

obtain any PO objective vector of both convex and nonconvex PO fronts (see, e.g., [42]), but our goal is

to retain the simplicity and expressiveness of weights to combine our control objectives. To this end, we

aggregate the objectives by adopting a special weighted metric, namely the weighted Chebyshev norm,

thus replacing problem (5) with2

min
(x,u)∈Ω

(
J̃C(x,u;w) = max

i=1,...,m
wiJ̃i(x,u)

)
,

m∑
i=1

wi = 1 (6)

2The relationship between the weighted Chebyshev metric and Pareto optimality was first investigated by Bowman in 1976 [43]
10
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1

0 1

~

J2(x,u)

~

J1(x,u)

1

0 1

~

J2(x,u)

~

J1(x,u)

~

J (0.5,0.5)
*

~

J (0.6,0.4)
*

~

J (0.5,0.5)
*

~

J (0.6,0.4)
*

Fig. 3. Weighting method (left) vs. weighted Chebyshev method (right) with weights (0.5, 0.5) and (0.6, 0.4) on a nonconvex MOP

The performances of the weighting method and the weighted Chebyshev method on a nonconvex MOP

are contrasted in Fig. 3 using two different sets of weights, (0.5, 0.5) and (0.6, 0.4). Two important aspects

deserve attention. First, thanks to the shape of the contour lines of its scalarizing function J̃C (featuring

“kinks”), the Chebyshev method can obtain any PO objective vector in the nonconvex region of the PO front.

Second, the position of such PO objective vectors on the PO front reflect the relative importance implied

by their weights (Fig. 3): J̃∗
(0.5,0.5) is approximately in the middle of the Pareto front with the Chebyshev

method, while it is close to the individual minimum of J̃2 with the weighting method; with the Chebyshev

method, J̃∗
(0.6,0.4) moderately improves on J̃1 at the expense of J̃2, as expected and “meant”, whereas

J̃∗
(0.6,0.4) obtained by the weighting method is very close to the individual minimum of J̃1.

Problem (6) is nonsmooth because it includes the max function, which may cause numerical dif-

ficulties when the partial derivatives required to solve the optimization problem are calculated: all ob-

jective and constraint functions should be differentiable, especially for the algorithmic differentiation rou-

tines implemented in CasADi. With this in mind, we replaced the max function with its scale-invariant,

p-norm approximation (other differentiable reformulations are possible). Recall that, for any vector v ∈ Rn,

∥v∥p = max(|v1| , . . . , |vn|) as p → ∞. We selected p = 100 to obtain a good approximation, thus function

J̃C becomes:

J̃sC(x,u;w) =
∥∥(w1J̃1(x,u), . . . , wmJ̃m(x,u)

)∥∥
100

(7)

where subscript sC stands for “smoothed Chebyshev”, and absolute values have been removed because

our five objectives (J̃1, . . . , J̃5) are nonnegative. Graphically, the contour lines of J̃sC are very close to those
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/
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Fig. 4. Flowchart of the proposed bilevel optimization framework.

of J̃C , but the sharp corners in the latter are replaced by smooth fillets.

2.5 Proposed inverse optimal control formulation

In light of the various aspects discussed thus far, we propose to identify the control objective weights in

human locomotion by formulating the following bilevel, inverse OCP (cf. Eqn. (2)), which is also schemati-

cally illustrated by the flowchart in Fig. 4:

min
w∈[0,1]

d(w; x̄, ū) (8a)

s. t. (x̄, ū) = argmin
(x,u)∈Ω

J̃sC(x,u;w) (8b)

m∑
i=1

wi = 1 (8c)

where the deviation d is obtained by aggregating three scalar indices (da, dg, dt)
3 that respectively quantify

the deviations of predicted joint angles, ground reaction forces, and joint torques from their experimental

3The three indices were aggregated using the weighted Chebyshev norm (with equal weights) after their normalization
12
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0 discretization of

1 gait cycle

q
i

k 2 N (          )

q
i

^ (ub)

q
i

^ (lb)

experimental 

mean of q
i
 ± 2SD

q
i,k

q
i,k

^ (ub)

q
i,k

^ (lb)

Fig. 5. Quantities used to calculate the deviation index da. qi is the i-th predicted joint angle, q̂(ub)
i is the set of its experimental

upper values (mean+2SD), and q̂(lb)
i the set of its experimental lower values (mean−2SD).

counterparts (available for the subject previously described). Figure 5 helps understand how each deviation

index was calculated. The basic idea is that each predicted variable should stay inside its experimental

range (mean ± 2SD of 12 trials). As an example, the deviation index da was calculated as:

da =
1

na

na∑
i=1

2N∑
k=0

dai,k
, (9)

with:

dai,k
=



qi,k − q̂(ub)
i,k

q̂(ub)
i,k − q̂(lb)

i,k

, if qi,k > q̂(ub)
i,k

q̂(lb)
i,k − qi,k

q̂(ub)
i,k − q̂(lb)

i,k

, if qi,k < q̂(lb)
i,k

0, otherwise

, (10)

where: na is the number of joint angles, N is the number of mesh intervals in a half gait cycle, qi,k is the i-th

predicted joint angle at the k-th mesh point, while q̂(ub)
i,k and q̂(lb)

i,k are the corresponding experimental upper

and lower values (mean ± 2SD), respectively.

It is worth recalling that while the lower-level multi-objective OCP expressed by Eqn. (8b) is solved to

synthesize a gait (the one associated with given weights w), the upper-level optimization in Eqn. (8a) iden-

tifies the optimal weights w∗ by properly exploring the PO front defined by the control objectives. Weights

w∗ represent the contribution (if any) of each selected control objective to the hidden optimal control pol-
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icy encoded in the nervous system for locomotion. From a computational standpoint, it is interesting to

realize that the search space of the upper-level optimization problem is profitably restricted by the bound

constraints w ∈ [0,1] and by the equality constraint in Eqn. (8c) (the latter reduces the effective number of

unknown weights to (m− 1)), to the benefit of computational efficiency.

The upper-level optimization problem (8) was solved by the patternsearch algorithm from MATLAB’s

Global Optimization Toolbox [44], a derivative-free direct-search method with a global scope: we selected

this deterministic algorithm because our optimization problem may easily be affected by some level of non-

smoothness, as is often the case with numerical noise deriving from the underlying discretization (which

may cause approximation of derivatives by finite differences to be quite unreliable, see also [45]). Also, we

preferred a deterministic method over evolutionary/genetic algorithms, stochastic in nature and computa-

tionally intensive. The generating set search GSSPositiveBasis2N was selected as mesh poll option, as

it is particularly efficient when only linear constraints are present. To minimize the risk of getting trapped

at a local minimum, the option UseCompletePoll was set to true. To maximize computational efficiency,

the solution process was parallelized: we used the option UseParallel to call the upper-level objective

function (Eqn. (8a)) and constraints (Eqns. (8b) and (8c)) in parallel using eight cores.

Selecting suitable stopping criteria for direct-search methods is not trivial (especially for evolutionary

algorithms). In this case, however, a valid termination criterion can be easily established thanks to the

described formulation of the upper-level problem. When patternsearch polls mesh points in the neigh-

borhood of a solution, it gradually shrinks the mesh until its linear dimension (MeshSize) is less than a

prescribed value (MeshTolerance). In the problem at hand, the mesh is naturally well scaled (w ∈ [0,1]),

thus it is straightforward to set MeshTolerance to a reasonable minimum significant variation in each

weight wi: we set it to 0.5%. This is also very helpful in containing the total number of function evaluations

and iterations.

It is worth recalling that the lower-level OCP expressed by Eqn. (8b) is iteratively solved using the

MATLAB implementation of the CasADi/IPOPT solver.

2.6 Simulation scenarios

The effectiveness of our framework was assessed by solving the following two bilevel optimization

problems:

• bilevel weighting, where the lower level was formulated with the weighting method as per Eqn. (5)
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• bilevel weighted Chebyshev (bilevel Chebyshev hereafter), where the lower level was formulated with

the weighted Chebyshev metric as per Eqn. (8b).

To further minimize the risk of getting trapped by local minima, the weights were initialized with six

different initial guesses spanning the entire search space of the upper level, and the best result (minimum

deviation d) was selected.

The obtained results were compared with those from [4] (manual weighting), all cost functionals being

equal. A tracking simulation was also performed to assess the ability of the NMS model to reproduce

the experimental gait data. To this end, we solved an OCP where deviations of predicted joint angles,

ground reaction forces, and joint torques from their experimental counterparts (from a reference trial) were

minimized. Additional details can also be found in the supplementary material of [4].

3 RESULTS AND DISCUSSION

A single bilevel optimization problem was solved in four to nine hours (depending on the selected initial

guess for weights) on an eight-core laptop (2.4 GHz processor, 32 GB RAM). On average, about 90 function

evaluations (that is, 90 lower-level OCP solutions) were required.

Table 1 shows the identified optimal weights (listed in the same order as J1, . . . , J5) and the deviation

index d for all the simulation scenarios. Predicted trajectories are plotted in Fig. 6 and Fig. 7 against

experimental data (mean ± 2SD) over a full gait cycle. Since symmetry conditions between right and left

body sides were imposed in the OCP, trajectories are shown only for the right side, plus the pelvis and trunk.

In Fig. 7, muscle activations and electromyographic (EMG) signals are normalized with respect to the peak

activations predicted by the bilevel Chebyshev.

A first result to highlight is the fact that the tracking simulation yielded trajectories that strictly follow the

experimental data, meaning that the adopted NMS model is suitable for the purpose of our research.

Second, as evident from Table 1 and Fig. 6, both bilevel scenarios significantly improved on the manual

weighting method, with the bilevel Chebyshev outperforming the bilevel weighting. Although the deviation

index from the bilevel Chebyshev is half that from the bilevel weighting, their predicted trajectories are quite

OPTIMAL WEIGHTS d

manual weighting [4] (2, 1000, 0.5, 50, 1)× 103 6.070

bilevel weighting (0.452, 0.011, 0.416, 0.088, 0.033) 0.335

bilevel Chebyshev (0.237, 0.244, 0.354, 0.057, 0.108) 0.163

Table 1. Optimal weights and deviation index
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Fig. 6. Predicted (A) joint angles and (B) joint torques and ground reaction forces vs. experimental data

close to each other (Figs. 6 and 7). This is probably due to a limited extent of the PO front defined by

the selected objectives. Furthermore, salient features of human locomotion are captured by both bilevel

scenarios. Also predicted muscle activations (not included in the deviation index) (Fig. 7) are quite similar
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Fig. 7. Predicted muscle activations vs. experimental EMG signals

to their EMG signals.

Third, the optimal weights identified with the manual weighting and the bilevel weighting are not really

interpretable for the reasons already discussed in the Methods section. Conversely, those obtained with the

bilevel Chebyshev assume a more precise mathematical significance: penalizing metabolic energy rates

(w3 ≃ 35%), muscle activations (w1 ≃ 24%), and arm excitations (w2 ≃ 24%) seems to play a major role

in obtaining a human-like walking pattern than joint accelarations (w4 ≃ 6%) and passive joint torques

(w5 ≃ 11%).

Nonetheless, some discrepancies between the variables predicted by the bilevel scenarios and their

experimental counterparts should be emphasized. The peak in knee flexion at loading response is not

fully captured, although bilevel simulations provided better results than the manual weighting. Also pelvic

obliquity, and consequently hip adduction/abduction, are not well represented. As a consequence, reduced

net torques are observable at the same joints. Ankle plantarflexion is rather limited at the push-off phase.

The vertical component of the ground reaction forces increases more rapidly than the experimental one. The

activation of the rectus femoris at loading response is not captured by any of the predictive scenarios, neither

are the terminal-swing peaks in the vasti, biceps femoris and semimembranosus. Such findings suggest that

the shock-absorption mechanisms at the hip and knee joints adopted by humans during locomotion are not

well represented by the selected objective functionals. At the knee, quadriceps normally activate during the

loading response to decelerate the rate of knee flexion induced by the heel rocker initiated by floor contact:

thus, part of the knee joint load is transferred to the thigh muscles [46], and, as a consequence, the joint

load is reduced (the impact with the floor is mitigated). At the hip, the abductor muscles normally restrain

the rate of contralateral pelvic drop caused by the rapid loading of the stance limb (and rapid unloading of
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the contralateral limb). Again, the impact associated with limb loading is “absorbed” by the muscular action

and thus the total load experienced by the stance hip joint is reduced. The failure in capturing such shock-

absorption mechanisms could explain why (i) the rectus femoris does not activate at loading response, and

(ii) the vertical ground reaction force grows rapidly with respect to the experimental one. These observations

suggest that a cost functional accounting for the knee and hip joint loads should be included.

It is important to highlight the limitations of the present study. Since predicted results strongly depend

on the physical fidelity of the model on which simulations are based, the NMS model could be improved in

terms of both DOFs and musculotendon actuators. By way of example, the knee joint could be integrated

with rotations on the transverse and frontal planes, while a metatarsophalangeal joint could be added at

the foot. In fact, the reduced ankle plantarflexion during push-off could also be explained by the absence of

the metatarsophalangeal joint (as also pointed out in [47]). To further improve the model, novel techniques

based, for instance, on shear wave propagation could be employed for the estimation of mechanical prop-

erties and loading of musculotendon units [48]. Another limitation of this study is that experimental motion

capture data from a single, healthy subject were used. Even though multiple trials from the same subject

were considered, a larger cohort of subjects with different anthropometric measures should be included

to verify whether the same considerations still apply. The presence of local minima, typical of nonlinear

optimization problems due to their nonconvexity, could also affect the validity of our findings. As opposed

to global minima, local minima are the locally optimal solutions that most derivative-based optimization al-

gorithms are designed to obtain. In the bilevel optimization framework presented here, the problem of local

minima could affect both levels. At the lower level, it was addressed by initializing each OCP with the best

available data-informed initial guess (obtained from multiple walking trials of the same subjects). However,

suboptimal local minima may still be obtained. Global optimization algorithms could be employed instead

of IPOPT, but massive parallelization would be required. The same concepts are valid for the upper level,

where we tried to mitigate this problem by using settings for the patternsearch algorithm designed to

make it more global in scope, and by initializing the problem with six different initial guesses. It should

also be emphasized that reflex-driven control strategies, such as those by Geyer et al. [49], were not in-

cluded in our work, but feedback integration could play a key role in situations where sensory noise and

external disturbances are present. Finally, this study has been conducted using a deterministic approach,

while probabilistic strategies could be devised to handle uncertainties connected with, for example, the

parameters of the NMS model and/or noisy experimental data.
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4 CONCLUSIONS

An inverse optimal control strategy to identify optimality criteria in human locomotion has been proposed

in the form of a bilevel optimization framework. In the lower level, prediction of walking is formulated and

solved as a multi-objective OCP based on a weighted Chebyshev metric, whereas the contributions of

the selected cost functionals are systematically and efficiently identified in the upper level. The potential

of our framework to predict features of human walking has been investigated, and all results have been

compared to experimental data. Regarding the ability to reproduce the experimentally observed kinematic

and kinetic trajectories, noteworthy improvements have been obtained with respect to recently published

results. In addition, the special formulation of the proposed method has allowed valuable computational

savings. However, some deviations from experimental data are still clearly observable, which may be

caused by limitations in both the NMS model and the candidate motor control objectives. In particular, the

typical shock-absorption mechanisms involving the hip and knee joints are not adequately captured, hence

future research might benefit from including additional control objectives, such as penalizing hip and knee

joint loads. The proposed framework is general enough to allow investigation of other motor tasks, as well

as impaired movement, with the ultimate goal of learning the control objectives that best explain observed

human motion.
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