Alkyne-Alkenyl Coupling at a Diruthenium Complex

Giulio Bresciani,a Serena Boni,a Stefano Zacchini,b Guido Pampaloni,a Marco Bortoluzzi,c,* Fabio Marchetti a,*

a University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
b University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy.
c University of Venezia “Ca’ Foscari”, Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre (VE), Italy.

Corresponding Authors

*E-mail addresses: markos@unive.it; fabio.marchetti1974@unipi.it
Webpage: https://people.unipi.it/fabio_marchetti1974/

ORCID-ID:
Giulio Bresciani: 0000-0003-4239-8195
Stefano Zacchini: 0000-0003-0739-0518
Guido Pampaloni: 0000-0002-6375-4411
Marco Bortoluzzi: 0000-0002-4259-1027
Fabio Marchetti: 0000-0002-3683-8708

Abstract
Dimetallic complexes are suitable platforms for the assembly of small molecular units, and the reactivity of bridging alkenyl ligands has been widely investigated to model C-C bond forming processes. Here, we report the unusual coupling of an alkenyl ligand, bridging coordinated on a diruthenium scaffold, with a series of alkynes, revealing two possible outcomes. The diruthenium complex \([\text{Ru}_2\text{Cp}_2(\text{Cl})(\text{CO})(\mu-\text{CO})\{\mu-\eta^1:\eta^2-\text{C(Ph)=CH(Ph)\}})], \text{2}, \) was prepared in two steps from \([\text{Ru}_2\text{Cp}_2(\text{CO})_2(\mu-\text{CO})\{\mu-\eta^1:\eta^2-\text{C(Ph)=CH(Ph)\}})]\text{BF}_4, \text{1}\text{BF}_4, \) in 69% yield. Then, the reaction of \text{2} with \text{C}_2(\text{CO}_2\text{Me})_2, promoted by \text{AgCF}_3\text{SO}_3 in dichloromethane, afforded in 51% yield the complex \([\text{Ru}_2\text{Cp}_2(\text{CO})_2\{\mu-\eta^3:\eta^2-\text{C(Ph)CH(Ph)C(\text{CO}_2\text{Me})C(\text{CO}_2\text{Me})\}}]\text{CF}_3\text{SO}_3, \text{3}\text{CF}_3\text{SO}_3, \) containing a ruthenacyclopentene-based hydrocarbyl ligand. On the other hand, \text{2} reacted with other alkynes and \text{AgX} salts to give the butadienyl complexes \([\text{Ru}_2\text{Cp}_2(\text{CO})_2\{\mu-\eta^3:\eta^2-\text{C(R)CH(R')C(\text{Ph)C(Ph)\}}]\}\text{X} (R = R' = \text{H}, \text{4}\text{BF}_4; R = R' = \text{Me}, \text{5}\text{CF}_3\text{SO}_3; R = R' = \text{Ph}, \text{6}\text{CF}_3\text{SO}_3; R = \text{Ph}, R' = \text{H}, \text{7}\text{CF}_3\text{SO}_3), \) in 42-56% yields. All products were characterized by IR and NMR spectroscopy, and by single crystal X-ray diffraction in the cases of \text{2}, \text{3}\text{CF}_3\text{SO}_3 and \text{6}\text{BF}_4. DFT calculations highlighted the higher stability of \([\text{4-7}]^+\)-like structures with respect to the corresponding \([\text{3}]^+\)-like isomers. It is presumable that \([\text{3}]^+\)-like isomers initially form as kinetic intermediates, then undergoing H-migration which is disfavoured in the presence of carboxylato substituents on the alkyne. Such hypothesis was supported by the computational optimization of the transition states for H-migration in the cases of R = R’ = H and R = R’ = CO₂Me.

Keywords: organometallic synthesis; diruthenium complexes; \(\mu\)-alkenyl ligand; C-C bond formation; alkyne insertion.

Introduction

Dimetallic complexes, exploiting cooperative effects supplied by the two metal centres in close proximity, represent ideal scaffolds to study a multitude of reaction pathways otherwise hardly
available on related mononuclear complexes. For instance, as two working hands compared to one single hand, dimetallic systems offer major opportunities to build and stabilize uncommon hydrocarbyl ligands via multisite bridging coordination. Alkynes are useful and versatile reagents in this setting, and in particular the \{M₂C₇(CO)ₓ\} scaffold (M = Fe, Ru; Cp = η⁵-C₅H₅; x = 2, 3) is suitable to promote their coupling with a diversity of bridging coordinated carbon ligands, including carbonyl, isocyanide, thiocarbonyl, alkylidyne and alkylidene ligands, usually via alkyne insertion into the metal-µ-carbon bond, but alternative modes are also possible.

The two metal coordination spheres are coordinatively and electronically saturated, therefore prior removal of one 2-electron ligand (usually, a carbon monoxide ligand) is needed to guarantee the initial η²-coordination of the alkyne to one metal centre, that is a preliminary, fundamental step along the coupling process. The CO displacement is preferentially performed by substitution with the labile acetonitrile ligand using the trimethylamine-N-oxide (TMNO) strategy, which is often reliable on cationic complexes; when this strategy is not applicable, photolytic methods can be employed, although they might be featured by a low degree of selectivity.

Dimetallic complexes with a bridging alkenyl (vinyl) ligand, \{-C(R)=C(R')(R'')\}, have been widely investigated as simplified models for C-C coupling events, with a particular focus on the elucidation of the mechanism of the Fischer-Tropsch reaction (FT), wherein alkenyl units are involved in the growing of the linear hydrocarbon chain. To the best of our knowledge, the coupling reaction between simple alkenyl ligands and external alkynes has been unexplored heretofore. On the other hand, the coupling of alkynes with alkenyl molecules is of ultimate relevance in metal-mediated organic synthesis, and the alkyne insertion into metal-alkenyl bonds constitutes a key step of the important Dötz reaction.

We selected the diruthenium complex [Ru₂C₇(CO)₉(µ-CO){µ-η¹·η²-C(Ph)=CH(Ph)}]BF₄, as a convenient starting material to provide a chance for the µ-alkenyl-alkyne coupling; Knox and co-workers previously demonstrated that complexes homologous to [1]BF₄, bearing different alkenyl
substituents, display a versatile chemistry.40 Compound [1]BF\textsubscript{4} was prepared by HBF\textsubscript{4} protonation of the dimetallacyclopentenone precursor [Ru\textsubscript{2}C\textsubscript{2}(CO)(μ-CO){μ-η1:η2-C\textsubscript{2}Ph\textsubscript{2}C(O)}],41 for which we recently optimized the synthetic procedure from commercial [Ru\textsubscript{2}C\textsubscript{2}(CO)\textsubscript{4}], Scheme 1.42 The results of the present synthetic study highlight two possible outcomes for the alkenyl-alkyne coupling.

\[\text{Scheme 1. Two-step synthesis of diruthenium complex with a } \mu-\eta^1-\eta^2-(\text{bis-phenyl})\text{alkenyl ligand.} \]

\textbf{Results and discussion}

\textbf{Synthesis and characterization of complexes}

To promote the reaction of [1]BF\textsubscript{4} with alkynes, first a dichloromethane solution of this complex was treated with TMNO in the presence of acetonitrile, to afford the acetonitrile adduct [1-NCMe]BF\textsubscript{4} (Scheme 2); the formation of [1-NCMe]BF\textsubscript{4} was easily checked via solution IR spectroscopy (see Experimental for details). The subsequent reactions of freshly prepared [1-NCMe]BF\textsubscript{4} with a series of alkynes resulted in the formation of complicated mixtures of products. Therefore, [1-NCMe]BF\textsubscript{4} was converted into the chloride derivative 2, upon treatment with lithium chloride in THF (Scheme 2). In fact, the abstraction of a chloride ligand by means of a silver salt, in several cases, has proved to be a clean alternative to generate a coordination vacancy on group 8 metal centres, enabling the subsequent coordination of organic reactants.10,15
Scheme 2. Two-step carbonyl-chloride substitution on diruthenium μ-alkenyl complex.

The reaction leading to 2 was straightforward, and this product was isolated in 69% yield after chromatographic purification on alumina, and fully structurally characterized. The X-ray structure of 2 consists of a $[\text{trans-Ru}_2\text{C}_2\text{p}_2(\text{Cl})(\text{CO})(\mu-\text{CO})]$ core bonded to a $\mu:\eta^1:\eta^2$-(bis-phenyl)alkenyl ligand. (Figure 1). It must be remarked that the closely related alkenyl complex $[\text{Ru}_2\text{C}_2\text{p}_2(\text{Cl})(\text{CO})(\mu-\text{CO})\{\mu-\eta^1:\eta^2-\text{C}(\text{H})=\text{CH(\text{CO}_2\text{Et})}\}]$ shows a cis arrangement of the Cp ligands. Despite the different stereochemistry, the bonding parameters of 2 and $[\text{Ru}_2\text{C}_2\text{p}_2(\text{Cl})(\text{CO})(\mu-\text{CO})\{\mu-\eta^1:\eta^2-\text{C}(\text{H})=\text{CH(\text{CO}_2\text{Et})}\}]$ are similar. As usually observed for dinuclear $\mu-\eta^1:\eta^2$-alkenyl complexes, the Ru(1)-C(1) [2.0806(19) Å] and Ru(2)-C(1) [2.1700(18) Å] distances are comparable, and the C(1)-C(2) contact [1.413(3) Å] is elongated compared to a C=C double bond [1.34 Å] due to the coordination to Ru(2).
The IR spectrum of 2 (in CH$_2$Cl$_2$) exhibits two absorptions related to the terminal and bridging carbonyls, respectively (1977 and 1828 cm$^{-1}$). The NMR spectra (in CDCl$_3$) consist of one set of resonances, suggesting that 2 exists in solution in the same \textit{trans} configuration as observed in the solid state; since [1]BF$_4$ was previously ascertained to exist as a \textit{cis} isomer,12 the carbonyl-chloride substitution is accompanied by a \textit{cis} to \textit{trans} rearrangement of the \{Ru$_2$Cp$_2$\} core. In the 13C spectrum, the alkenyl carbons resonate at 155.1 (Ru-C) and 83.7 ppm (=CH); in particular, the downfield resonance exhibited by the ruthenium-bound carbon indicates some bridging alkylidene character,8,44,45 in alignment with the X-ray evidence that such carbon is nearly equidistant between the two ruthenium atoms.

The reactivity of 2 with a series of alkynes was investigated in dichloromethane solution using, in each case, an excess of the alkyne and silver triflate or silver tetrafluoroborate as chloride abstractor, Scheme 3.
Thus, the reaction of \(\text{2} \) with dimethyl acetylenedicarboxylate and silver trifluoromethanesulfonate resulted in the selective formation of \([3]\text{CF}_3\text{SO}_3\), which was isolated in 51% yield after work-up. The structure of \([3]\text{CF}_3\text{SO}_3\cdot\text{CH}_2\text{Cl}_2\) was ascertained by single crystal X-ray diffraction (Figure 2 and Table 1). The cation, \([3]^+\), is composed of the \{trans-\text{Ru}_2\text{Cp}_2(\text{CO})_2\} core to which is coordinated the unprecedented \{\mu-\eta^2:\eta_3^-\text{C(Ph)}-\text{CH(Ph)}-\text{C(CO}_2\text{Me})=\text{C(CO}_2\text{Me)}\} ligand. The latter is bonded to the Ru centres through four carbon atoms, i.e. a bridging alkylidene, a \(\eta^2\)-phenyl and a terminal \(\sigma\)-alkenyl fragment. Indeed, the Ru(1)-C(3) [2.083(5) Å] and Ru(2)-C(3) [2.153(5) Å] contacts are typical for a bridging alkylidene (carbene) ligand,\(^{46,47,48,49}\) and the Ru(1)-C(6) distance [2.077(5) Å] is in keeping with a single bond involving a sp\(^2\) carbon atom. The C(5)-C(6) contact [1.336(7) Å] is essentially a double bond, whereas C(3)-C(4) [1.538(6) Å] and C(4)-C(5) [1.509(7) Å] are almost pure single bonds. Overall, the Ru(1)-C(3)-C(4)-C(5)-C(6) ring may be described as a ruthenacyclopentene comprising a bridging alkylidene carbon, whose bonding parameters are comparable to those reported.
in the literature for the unique example of analogous ruthenacyle.50 The ruthenaclopentene ring is almost planar [mean deviation from the least square plane 0.037 Å] and both C(5) and C(6) are hybridized sp2 [sum angles 360.0(8)° and 359.8(6)°, respectively]. The Ru(2)-C(17) [2.272(5) Å] and Ru(2)-C(22) [2.446(5) Å] distances are in the range reported for Ru bonded to a η2-phenyl ligand.51,52,53 Coordination to Ru(2) via a single C-C edge results in a reduced delocalization within the phenyl ring, as indicated by the presence of alternated longer and shorter bonds, that is C(17)-C(18) [1.443(7) Å], C(18)-C(19) [1.361(7) Å], C(19)-C(20) [1.413(7) Å], C(20)-C(21) [1.354(7) Å], C(21)-C(22) [1.424(7) Å] and C(17)-C(22) [1.411(7) Å]. The Ru(1)-C(1) contact [1.880(5) Å] is significantly shorter than Ru(2)-C(2) [1.925(5) Å], pointing out a greater π-back donation from Ru(1) to the terminal CO ligand compared to Ru(2). This is in keeping with the localization of the positive charge on Ru(2), which would formally reach 19 valence electrons in the absence of the positive charge. It must be remarked that both Ru(1)···C(2) [3.129(6) Å] and Ru(2)···C(1) [2.872(6) Å] are essentially non-bonding, in full accordance with terminal coordination of the carbonyls.

![Figure 2](image_url). View of the molecular structure of [3]+. Displacement ellipsoids are at the 30% probability level. H-atoms, except H(4) and H(18)-H(22), have been omitted for clarity.
Table 1. Selected bond lengths (Å) and angles (°) for [3]+

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(1)-Ru(2)</td>
<td>2.8041(6)</td>
<td>Ru(1)-C(1)</td>
<td>1.880(5)</td>
<td>Ru(2)-C(17)</td>
<td>2.272(5)</td>
</tr>
<tr>
<td>Ru(2)-C(2)</td>
<td>1.925(5)</td>
<td>Ru(1)-C(3)</td>
<td>2.083(5)</td>
<td>Ru(2)-C(17)</td>
<td>2.272(5)</td>
</tr>
<tr>
<td>Ru(2)-C(3)</td>
<td>2.153(5)</td>
<td>Ru(2)-C(17)</td>
<td>2.272(5)</td>
<td>Ru(1)-C(6)</td>
<td>2.077(5)</td>
</tr>
<tr>
<td>Ru(2)-C(22)</td>
<td>2.446(5)</td>
<td>Ru(1)-C(6)</td>
<td>2.077(5)</td>
<td>Ru(2)-C(17)</td>
<td>2.272(5)</td>
</tr>
<tr>
<td>Ru(1)-Cp_av</td>
<td>2.253(11)</td>
<td>Ru(2)-Cp_av</td>
<td>2.206(11)</td>
<td>Ru(1)-C(6)</td>
<td>2.077(5)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.538(6)</td>
<td>C(4)-C(5)</td>
<td>1.493(7)</td>
<td>C(6)-C(7)</td>
<td>1.493(7)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.336(7)</td>
<td>C(6)-C(7)</td>
<td>1.493(7)</td>
<td>C(4)-C(11)</td>
<td>1.522(6)</td>
</tr>
<tr>
<td>C(3)-C(17)</td>
<td>1.457(7)</td>
<td>C(17)-C(18)</td>
<td>1.443(7)</td>
<td>C(4)-C(11)</td>
<td>1.522(6)</td>
</tr>
<tr>
<td>C(5)-C(9)</td>
<td>1.482(7)</td>
<td>C(17)-C(18)</td>
<td>1.443(7)</td>
<td>C(18)-C(19)</td>
<td>1.413(7)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.361(7)</td>
<td>C(19)-C(20)</td>
<td>1.413(7)</td>
<td>C(20)-C(21)</td>
<td>1.424(7)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.354(7)</td>
<td>C(21)-C(22)</td>
<td>1.424(7)</td>
<td>C(17)-C(22)</td>
<td>1.411(7)</td>
</tr>
<tr>
<td>C(17)-C(22)</td>
<td>1.411(7)</td>
<td>C(9)-O(5)</td>
<td>1.208(6)</td>
<td>C(9)-O(6)</td>
<td>1.208(6)</td>
</tr>
<tr>
<td>C(9)-O(6)</td>
<td>1.337(7)</td>
<td>C(7)-O(3)</td>
<td>1.194(7)</td>
<td>C(7)-O(4)</td>
<td>1.194(7)</td>
</tr>
<tr>
<td>C(7)-O(4)</td>
<td>1.339(7)</td>
<td>C(17)-C(22)</td>
<td>1.411(7)</td>
<td>C(7)-O(4)</td>
<td>1.194(7)</td>
</tr>
<tr>
<td>C(2)-O(2)</td>
<td>1.127(6)</td>
<td>C(2)-O(2)</td>
<td>1.127(6)</td>
<td>C(2)-O(2)</td>
<td>1.127(6)</td>
</tr>
<tr>
<td>Ru(1)-C(1)-O(1)</td>
<td>174.1(5)</td>
<td>Ru(2)-C(2)-O(2)</td>
<td>173.7(5)</td>
<td>Ru(1)-C(1)-O(1)</td>
<td>174.1(5)</td>
</tr>
<tr>
<td>Ru(2)-C(3)-Ru(2)</td>
<td>82.87(17)</td>
<td>C(3)-C(4)-C(5)</td>
<td>108.0(4)</td>
<td>Ru(2)-C(3)-Ru(2)</td>
<td>82.87(17)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>117.3(4)</td>
<td>C(4)-C(5)-C(9)</td>
<td>116.4(4)</td>
<td>C(5)-C(6)-C(9)</td>
<td>116.4(4)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(9)</td>
<td>126.3(5)</td>
<td>C(5)-C(6)-C(9)</td>
<td>116.4(4)</td>
<td>C(5)-C(6)-C(7)</td>
<td>123.2(4)</td>
</tr>
<tr>
<td>C(5)-C(6)-Ru(1)</td>
<td>119.5(4)</td>
<td>C(7)-C(6)-Ru(1)</td>
<td>117.1(3)</td>
<td>C(5)-C(6)-Ru(1)</td>
<td>119.5(4)</td>
</tr>
<tr>
<td>C(3)-C(17)-C(22)</td>
<td>120.8(4)</td>
<td>C(3)-C(17)-C(22)</td>
<td>122.1(4)</td>
<td>C(3)-C(17)-C(22)</td>
<td>120.8(4)</td>
</tr>
<tr>
<td>C(18)-C(17)-C(22)</td>
<td>116.2(4)</td>
<td>C(18)-C(17)-C(22)</td>
<td>121.2(5)</td>
<td>C(18)-C(17)-C(22)</td>
<td>116.2(4)</td>
</tr>
<tr>
<td>C(18)-C(19)-C(20)</td>
<td>121.1(5)</td>
<td>C(19)-C(20)-C(21)</td>
<td>119.9(5)</td>
<td>C(18)-C(19)-C(20)</td>
<td>121.1(5)</td>
</tr>
<tr>
<td>C(20)-C(21)-C(22)</td>
<td>120.2(5)</td>
<td>C(21)-C(22)-C(17)</td>
<td>121.4(4)</td>
<td>C(20)-C(21)-C(22)</td>
<td>120.2(5)</td>
</tr>
<tr>
<td>Sum at C(7)</td>
<td>359.8(8)</td>
<td>Sum at C(9)</td>
<td>359.9(8)</td>
<td>Sum at C(7)</td>
<td>359.8(8)</td>
</tr>
</tbody>
</table>

In the IR spectrum of [3]CF₃SO₃ in dichloromethane solution, two absorptions were detected at 2026 and 2002 cm⁻¹, in accordance with the terminal coordination fashion adopted by the two carbonyl ligands in the solid state; moreover, a strong infrared band at 1712 cm⁻¹ accounts for the ester groups originally belonging to the alkyne. The NMR spectra (in acetone-d₆ solution) display one set of resonances. In the ¹H spectrum, the signals related to the phenyl moieties fall in the range 8.32-7.74 ppm, including the proton bound to the carbon involved in metal coordination; in a variety of dinuclear compounds comprising a μ-η¹:η³-phenyl-alkylidene, such proton has been reported to resonate in a wide range (7.3 - 1.1 ppm) of chemical shifts.⁵⁴,⁵⁵,⁵⁶,⁵⁷,⁵⁸,⁵⁹,⁶⁰
Salient 13C signals are those related to the terminal carbonyl ligands (216.2 and 203.0 ppm), the bridging alkylidene carbon (174.8 ppm) and the other members of the metallacyclopentene ring, which were found at 74.2 (CHPh), 105.0 and 126.2 ppm (C=C).

The formation of $[3]^+$ presumably proceeds with initial η^2-coordination of the alkyne to the ruthenium, once the chloride ligand in 2 has been displaced by Ag$^+$, followed by C-C bond coupling between the alkyne and the distal alkenyl carbon.

Surprisingly, the reactions of 2 with other alkynes, in the presence of a silver salt, did not lead to products analogous to $[3]^+$. As a matter of fact, ethyne, 2-butyne, diphenylacetylene and phenylacetylene were involved in an apparent insertion into the ruthenium-alkenyl bond to afford the diruthenium μ-butadienyl cations $[4-7]^+$. In order to collect X-ray quality crystals, the synthesis of $[6]^+$ was repeated using AgBF$_4$ as silver salt (see Supporting Information for details), then the structure of $[6]BF_4^+$ was determined by single crystal X-ray diffraction (Figure 3 and Table 2). The cation $[6]^+$ consists of the $\{cis$-Ru$_2$Cp$_2$(CO)(μ-CO)$\}$ core bonded to the $\{\mu$-$\eta^1\text{:}$-η^4-C(Ph)=C(Ph)-C(Ph)=CH(Ph)$\}$ butadienyl ligand. In agreement with this, the C(3)-C(4) [1.427(4) Å] and C(5)-C(6) [1.421(4) Å] bonds are shorter than C(4)-C(5) [1.457(4) Å]. The present example represents the first case of structurally characterized diruthenium bis-cyclopentadienyl complex with a butadienyl ligand coordinated through the μ-η^1:η^4-fashion. Knox and co-workers reported analogous μ-η^2:η^3-butadienyl compounds, obtained by the coupling of bridging methylene ligand with propargyl alcohols and subsequent H$_2$O elimination.61
Figure 3. View of the molecular structure of [6]+. Displacement ellipsoids are at the 30% probability level. H-atoms, except H(6), have been omitted for clarity.

Table 2. Selected bond lengths (Å) and angles (°) for [6]+

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Length/Angle</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(1)-Ru(2)</td>
<td>2.7698(3)</td>
<td>Ru(1)-C(1)</td>
</tr>
<tr>
<td>Ru(1)-C(2)</td>
<td>1.969(3)</td>
<td>Ru(1)-C(2)</td>
</tr>
<tr>
<td>Ru(1)-C(3)</td>
<td>2.102(3)</td>
<td>Ru(1)-C(3)</td>
</tr>
<tr>
<td>Ru(2)-C(4)</td>
<td>2.261(3)</td>
<td>Ru(1)-Cpav</td>
</tr>
<tr>
<td>Ru(2)-C(5)</td>
<td>2.268(3)</td>
<td>Ru(2)-C(5)</td>
</tr>
<tr>
<td>Ru(1)-Cpav</td>
<td>2.262(7)</td>
<td>Ru(2)-C(6)</td>
</tr>
<tr>
<td>C(1)-O(1)</td>
<td>1.136(4)</td>
<td>C(1)-O(1)</td>
</tr>
<tr>
<td>C(2)-O(2)</td>
<td>1.159(4)</td>
<td>C(3)-C(4)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.457(4)</td>
<td>C(5)-C(6)</td>
</tr>
<tr>
<td>C(6)-C(19)</td>
<td>1.490(4)</td>
<td>C(6)-C(19)</td>
</tr>
<tr>
<td>Ru(1)-C(1)-O(1)</td>
<td>172.7(3)</td>
<td>Ru(1)-C(2)-Ru(2)</td>
</tr>
<tr>
<td>Ru(1)-C(3)-Ru(2)</td>
<td>80.97(10)</td>
<td>Ru(1)-C(3)-C(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>125.5(3)</td>
<td>C(4)-C(5)-C(6)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(25)</td>
<td>125.2(3)</td>
<td></td>
</tr>
</tbody>
</table>

The IR and NMR data obtained for the [4-7]+ salts agree with the X-ray data collected for [6]+. The IR spectra, in dichloromethane, clearly evidence the presence of one terminal (2006-2008 cm⁻¹) and one bridging carbonyl (1859-1884 cm⁻¹) ligands. The NMR spectra show two sets of resonances,
otherwise assigned to cis and trans isomers (with reference to the mutual orientation of the Cp ligands). This attribution relies on DFT calculations, pointing out the comparable stability of cis- and trans-structures (vide infra), and is based on a comparison with the NMR data available for other \{\text{Ru}_2\text{Cp}_2(\text{CO})_2\} cationic derivatives containing strictly related bridging hydrocarbyl ligands.41,42,61 For instance, in [4]BF\textsubscript{4} the Cp ligands give rise to four 1H resonances at 6.22 and 5.48 ppm (cis) and 5.68 and 5.59 ppm (trans). The cis isomer is the prevalent one in solution for [4]+ and [6]+, while the trans isomer prevails in [5]+ and is the only one recognized for [7]+. The bridging carbon, belonging to the butadienyl ligand and bound to both ruthenium centres, resonates in the range 165.2 – 192.6 ppm, reflecting its alkylidene nature. Accordingly, in the 1H NMR spectrum of [4]BF\textsubscript{4}, the \{\textmu-CH\} has been recognized in the typical downfield region (11.61 and 10.86 ppm for the cis and trans isomers, respectively).12,62 The signals of the other carbon nuclei, going along the C\textsubscript{4} chain, fall in the intervals 99.1 – 111.9 ppm, 106.9 – 121.0 ppm and 74.4 – 87.8 ppm, respectively.

The reaction leading to [7]CF\textsubscript{3}SO\textsubscript{3} involves an unsymmetrical (terminal) alkyne, and takes place in a regiospecific manner, placing the alkyne substituent far from the alkenyl moiety; the 1H NMR spectrum of the alternative isomer would display a downfield resonance (compare with [4]BF\textsubscript{4}, see above) which has not been detected. The synthesis of [7]CF\textsubscript{3}SO\textsubscript{3} is accompanied by the formation of an unidentified, inseparable by-product (ca. 15% of the total), displaying Cp signals at 4.85 and 4.61 ppm.

DFT calculations

With the aim of elucidating the different outcomes of the coupling between the alkenyl ligand in 2 and alkynes, we carried out a DFT investigation focusing the attention on the potential isomers of [3]+, [4]+ and [6]+. Ruthenacycle structures such as that described for [3]CF\textsubscript{3}SO\textsubscript{3}, indicated with [3a]+, [4a]+ and [6a]+, were considered together with the corresponding butadienyl derivatives analogous to [6]BF\textsubscript{4} and indicated with [3b]+, [4b]+ and [6b]+. Cis and trans isomers were evaluated for all the structures. The superimposition of experimental (X-ray) and computed structures (PBE\textsubscript{h}-3c method)
for $[3^\text{trans}]^+$ and $[6^\text{cis}]^+$, respectively, is overall acceptable, with RMSD respectively of 0.222 and 0.294 Å. The RMSD values are 0.269 Å for $[3^\text{trans}]^+$ and 0.269 Å for $[6^\text{cis}]^+$ including the C-PCM solvation model (CH$_2$Cl$_2$ as continuous medium).

The relative Gibbs free energy values are summarized in Table 3 and plotted in Figure S13 together with the DFT-optimized structures. Thus, $[3^\text{trans}]^+$ is more stable than $[3^\text{cis}]^+$ by 4.5 kcal mol$^{-1}$ (C-PCM calculations; 7.3 kcal mol$^{-1}$ in gas phase), according to the X-ray findings and the observation of a single set of signals in the NMR spectra (see above). The cations $[4^\text{b}]^+$ and $[6^\text{b}]^+$ are more stable in the cis configuration rather than the trans one, with Gibbs energy differences comprised between 1.0 and 3.1 kcal mol$^{-1}$. This result is in keeping with the X-ray structure of $[6]{BF}_4^-$ and justifies the existence in solution of mixtures of cis and trans isomers for $[4-7]^+$. An additional stereoisomer might be conceived for $[6^\text{cis}]^+$, with inverted orientations of Ph and H bound to C(6) carbon atom; it was computationally investigated (Figure S14) but resulted thermodynamically unfavourable by 11.3 kcal mol$^{-1}$ (C-PCM calculations; 10.3 kcal mol$^{-1}$ in gas phase).

<table>
<thead>
<tr>
<th></th>
<th>C-PCM</th>
<th>GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[3^\text{cis}]^+$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$[3^\text{trans}]^+$</td>
<td>-4.5</td>
<td>-7.3</td>
</tr>
<tr>
<td>$[3^\text{b}^\text{cis}]^+$</td>
<td>-23.8</td>
<td>-29.8</td>
</tr>
<tr>
<td>$[3^\text{b}^\text{trans}]^+$</td>
<td>-25.0</td>
<td>-32.3</td>
</tr>
<tr>
<td>$[4^\text{cis}]^+$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$[4^\text{trans}]^+$</td>
<td>-6.0</td>
<td>-7.4</td>
</tr>
<tr>
<td>$[4^\text{b}^\text{cis}]^+$</td>
<td>-38.2</td>
<td>-38.4</td>
</tr>
<tr>
<td>$[4^\text{b}^\text{trans}]^+$</td>
<td>-35.1</td>
<td>-35.7</td>
</tr>
<tr>
<td>$[6^\text{cis}]^+$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$[6^\text{trans}]^+$</td>
<td>-5.4</td>
<td>-7.5</td>
</tr>
<tr>
<td>$[6^\text{b}^\text{cis}]^+$</td>
<td>-27.2</td>
<td>-31.3</td>
</tr>
<tr>
<td>$[6^\text{b}^\text{trans}]^+$</td>
<td>-25.8</td>
<td>-30.3</td>
</tr>
</tbody>
</table>

In every cases, DFT calculations point out the higher stability of the butadienyl structures $[3^\text{b}]^+$, $[4^\text{b}]^+$ and $[6^\text{b}]^+$ with respect to the corresponding ruthenacycle isomers, with Gibbs energy differences in the 20 to 30 kcal mol$^{-1}$ range. Computational outcomes therefore suggest that the alkyne insertion
process leading to μ-η^1-η^4-butadienyl complexes is strongly favoured from a thermodynamic point of view, and that the unique formation of [3]$^+$ from 2 and dimethyl acetylenedicarboxylate should be ascribed to kinetic reasons related to the peculiar properties of the alkyne CO$_2$Me substituents.

We hypothesize that, following preliminary η^2-coordination to the metal centre, the alkyne generally couples with the distal carbon of the alkenyl ligand, thus forming a ruthenacycle of type [3]$^+$. The stable butadienyl products, [4-7]$^+$, would be subsequently generated via hydrogen 1,2-migration, as sketched in Scheme 4. The overall result is the observed pseudo-insertion reaction of alkynes into the Ru-alkenyl σ-bond shown in Scheme 3 (synthesis of [4-7]$^+$).

Scheme 4. Proposed formation of diruthenium butadienyl complexes (right) from H-migration in intermediate ruthenacycles (left).

The transition state associated with such presumably fundamental step was calculated at the DFT EDF2 level for the cations in trans configuration bearing $R = R' = CO_2$Me ([3$^{\text{TS trans}}$]$^+$) and $R = R' = H$ ([4$^{\text{TS trans}}$]$^+$). In both cases, one imaginary frequency related to the proton shift was found, i885 cm$^{-1}$ for [3$^{\text{TS trans}}$]$^+$ and i836 cm$^{-1}$ for [4$^{\text{TS trans}}$]$^+$. The coherence of the localized transition states with the 1,2-proton shift was further confirmed by means of IRC calculations starting from [4$^{\text{TS trans}}$]$^+$. As depicted in Figure 4, the relative Gibbs energy of [3$^{\text{TS trans}}$]$^+$ with respect to the [3$^{\text{a trans}}$]$^+$ ground state geometry is 33.6 kcal mol$^{-1}$, meaningfully higher than the energy difference between [4$^{\text{TS trans}}$]$^+$ and [4$^{\text{a trans}}$]$^+$, that is 27.4 kcal mol$^{-1}$. It seems reasonable that the experimentally obtained product [3]$^+$CF$_3$SO$_3$ is a kinetic one ([3$^{\text{a trans}}$]$^+$), which is isolated thanks to the quite high energy barrier involved in its isomerization to the butadienyl derivative ([3$^{\text{b trans}}$]$^+$, see Figure S13). Hence, we
assume that [4-7]CF$_3$SO$_3$ are produced via the intermediate formation of kinetic species (not observed) analogous to [3]CF$_3$SO$_3$. We attempted to promote the conversion of [3]CF$_3$SO$_3$ into its geometric isomer(s) analogous to [4-7]$^+$ by heating a THF solution at reflux, but this thermal treatment activated decomposition pathways leading to mixtures of unidentified products. The divergent behaviour of dimethyl acetylenedicarboxylate, with respect to a series of different alkynes, was previously observed in the reactivity towards the heterodinuclear complex [Fe(CO)$_3$(μ-dppm)(μ-CO)Pt(PPh$_3$)].64

Figure 4. DFT-optimized structures of the cations [3$^{\text{trans}}$]$^+$, [4$^{\text{trans}}$]$^+$, [3$^{\text{TS} \text{trans}}$]$^+$ and [4$^{\text{TS} \text{trans}}$]$^+$, and Gibbs energy barriers associated to the H-migration affording butadienyl ligands (kcal mol$^{-1}$, EDF2 calculations). Ru, green; O, red; C, white. Only the migrating hydrogen atom (white) is shown for clarity.
Conclusions

Dimetallic scaffolds offer much opportunity for the assembly of molecular units, exploiting the cooperative effects provided by two adjacent metal centres, and the coupling of bridging alkenyl ligands with a variety of small organic fragments was widely investigated in the past to gain insight into the mechanism of related solid-state reactions. In this setting, despite the relevance of the alkenyl-alkyne coupling in organic synthesis, the latter process was unexplored on di- or polymetallic frameworks. Here, we report a rare coupling event between a series of alkynes and an alkenyl ligand bridging coordinated on the \(\{\text{Ru}_2\text{Cp}_2(\text{CO})_2\} \) scaffold, involving the distal alkenyl carbon and confirming the versatility of such diruthenium framework to explore new modes of C-C bond formation. Two types of novel hydrocarbyl ligands stabilized by multisite coordination are selectively isolated, depending on the alkyne substituents. DFT calculations pointed out a plausible correlation between the two structures based on the 1,2-migration of a hydrogen atom, while alkyne insertion into Ru-C bond, otherwise frequently observed on similar systems, appears unlikely.
Experimental

Materials and methods. Reactants and solvents were purchased from Alfa Aesar, Merck, Strem or TCI Chemicals, and were of the highest purity available. Complex [I]BF₄ was prepared according to the literature. Reactions were conducted under dinitrogen atmosphere using standard Schlenk techniques. Products were stored in air once isolated. Dichloromethane and tetrahydrofuran were dried with the solvent purification system mBraun MB SPS5, while acetonitrile was distilled from CaH₂. IR spectra of solutions were recorded using a CaF₂ liquid transmission cell (2300-1500 cm⁻¹) on a Perkin Elmer Spectrum 100 FT-IR spectrometer. IR spectra were processed with Spectragryph software.¹⁻¹ H and ¹³C spectra were recorded at 298 K on a Jeol JNM-ECZ400S instrument equipped with a Royal Broadband probe. Chemical shifts (expressed in parts per million) are referenced to the residual solvent peaks. NMR spectra were assigned with the assistance of ¹H⁻¹³C (g⁻²-HSQC and g⁻²-HMBC) correlation experiments. NMR signals due to secondary isomeric forms (where it is possible to assign them) are italicized. Elemental analyses were performed on a Vario MICRO cube instrument (Elementar).

Synthesis of [Ru₂Cp₂Cl(CO)(μ-CO)[μ-η¹:η²-C(Ph)=CH(Ph)]}, 2 (Figure 5).

Figure 5. Structure of 2.

Complex [I]BF₄ (150 mg, 0.220 mmol) was dissolved in CH₂Cl₂ (30 mL) and this solution was treated with a solution of Me₃NO (1.0 eq.) in MeCN (0.10 M). The mixture was stirred for 15 minutes, and the formation of [I-NCMe]BF₄ was checked by IR spectroscopy [IR (CH₂Cl₂): ῦ/cm⁻¹ = 1999vs (CO), 1848s (μ-CO)]. Volatiles were removed under vacuum to give an orange residue, which was
dissolved in THF (30 mL), then lithium chloride (105 mg, 2.48 mmol) was added to this solution. The resulting mixture was stirred for 3 hours at room temperature, then the volatiles were removed under reduced pressure. The residue was charged on an alumina column as Et₂O/CH₂Cl₂ (5:1 v/v) solution. Elution with CH₂Cl₂ allowed to separate impurities, then the fraction corresponding to the title compound was eluted using neat THF. The solvent was removed under reduced pressure and the residue was suspended in hexane (50 mL) for 2 h. A red powder was recovered by filtration and dried under vacuum. Yield 92 mg (69%). Anal. calcd. for C₂₆H₂₁ClO₂Ru₂: C, 51.66; H, 3.50. Found: C, 51.50; H, 3.54. IR (CH₂Cl₂): δ/cm⁻¹ = 1977vs (CO), 1828s (µ-CO). ¹H NMR (CDCl₃): δ/ppm = 7.29, 7.18, 7.09, 6.99 (m, 10 H, Ph); 5.34, 4.82 (s, 10 H, Cp); 5.14 (s, 1 H, =CH). ¹³C{¹H} NMR (CDCl₃): δ/ppm = 229.0, 198.7 (CO); 176.6 (ipso-Ph); 155.1 (Ru-C); 144.6 (ipso-Ph); 128.7, 128.4, 128.4, 127.8, 126.5, 125.9 (Ph); 92.5, 91.0 (Cp); 83.7 (=CH). Crystals of 2 suitable for X-ray analysis were collected by slow diffusion of pentane into a dichloromethane solution of the complex at −30°C.

Synthesis and characterization of complexes [3-7]⁺.

General procedure. A solution of [Ru₂Cp₂Cl(CO)₂{µ-η¹:η²-C(Ph)CH(Ph)}] (2, ca. 0.06 mmol) in CH₂Cl₂ (25 mL) was treated with silver salt (1.1 eq.) and with the selected alkyne (> 5 eq.). The reaction mixture was stirred at room temperature in the dark, and the consumption of 2 was checked by IR spectroscopy. Then, the mixture was filtered over a celite pad and volatiles were evaporated from the filtrated solution under reduced pressure. The obtained residue was washed with Et₂O (3 x 20 mL) and finally dried under vacuum.

\[
[Ru₂Cp₂(CO)₂{µ-η³:η²-C(Ph)CH(Ph)C(CO₂Me)C(CO₂Me)}]CF₃SO₃, [3]CF₃SO₃ \text{ (Figure 6).}
\]

Figure 6. Structure of [3]⁺.
From 2 (30 mg, 0.050 mmol), AgCF$_3$SO$_3$ (13 mg, 0.051 mmol) and dimethyl acetylenedicarboxylate (0.050 mL, 0.42 mmol). Reaction time: 1h. Brown solid. Yield 22 mg (51%). Anal. calcd. for C$_{32}$H$_{27}$F$_3$O$_3$Ru$_2$: C, 46.05; H, 3.16; S, 3.72. Found: C, 45.92; H, 3.23; S, 3.66. IR (CH$_2$Cl$_2$): \(\tilde{\nu}/\text{cm}^{-1} = 2026\text{vs} \) (CO), 2002m (CO), 1712s (CO$_2$Me). 1H NMR (acetone-d$_6$): δ/ppm = 8.32, 7.74, 7.55-7.49, 7.31, 7.21, 7.07-7.03 (m, 10 H, Ph); 6.26 (s, 1 H, C$_{\beta}$H); 5.77, 5.36 (s, 10 H, Cp); 3.80, 3.58 (s, 6 H, Me). 13C-1H NMR (acetone-d$_6$): δ/ppm = 216.2, 203.0 (CO); 174.8 (C$_{\alpha}$); 163.5, 161.4 (OCO); 145.5, 142.8 (ipso-Ph); 134.2, 133.4, 130.8, 129.4, 129.4, 128.0 (Ph); 126.2 (C$_{\delta}$); 105.0 (C$_{\gamma}$); 93.8, 93.7 (Cp); 74.2 (C$_{\beta}$); 51.7, 51.6 (Me). Crystals of [3]CF$_3$SO$_3$ suitable for X-ray analysis were collected by slow diffusion of diethyl ether into a dichloromethane solution of the complex at room temperature.

\[
[Ru_2Cp_2(CO)_2{\mu-\eta^1: \eta^4-CHCHC(Ph)CH(Ph)}]BF_4, \quad [4]BF_4 \quad \text{(Figure 7)}.
\]

Figure 7. Structure of [4]$. \Box$

From 2 (30 mg, 0.050 mmol), AgBF$_4$ (11 mg, 0.060 mmol) and acetylene (not quantified large excess) bubbled into the solution. Reaction time: 4 h. Yellow solid. Yield 17 mg (49%). Anal. calcd. for C$_{28}$H$_{23}$BF$_4$O$_2$Ru$_2$: C, 49.27; H, 3.40. Found: C, 49.15; H, 3.36. IR (CH$_2$Cl$_2$): \(\tilde{\nu}/\text{cm}^{-1} = 2007\text{vs} \) (CO),
1859s (µ-CO). ¹H NMR (acetone-d₆): δ/ppm = 11.61, 10.86 (d, ³J_HH = 8.1 Hz, 1 H, C⁵H); 7.60, 7.49-7.43, 7.25-7.19, 7.02, 6.95 (m, 10 H, Ph); 7.38, 6.80 (d, ³J_HH = 7.8 Hz, 1 H, C⁷H); 6.22, 5.68, 5.59, 5.48 (s, 10 H, Cp); 2.13, 1.37 (s, 1 H, C⁸H). ¹³C{¹H} NMR (acetone-d₆): δ/ppm = 226.0, 223.5 (µ-CO); 199.1, 194.0 (CO); 166.9, 165.2 (C⁶); 158.6, 138.6 (ipso-Ph); 131.8, 130.9, 130.6, 130.2, 129.8, 129.6, 129.1, 128.5, 127.8, 127.2 (Ph); 109.9 (C⁷); 99.6, 99.1 (C⁸); 96.8, 95.2, 90.8, 90.6 (Cp); 86.0, 80.9 (C⁹). Isomer ratio (cis/trans) = 3.3.

[‡Ru₂C₆H₅(CO)(η¹-C(Me)C(Me)C(Ph)CH(Ph))]F₃SO₃, [5]F₃SO₃ (Figure 8).

Figure 8. Structure of [5]+.

From 2 (33 mg, 0.055 mmol), AgCF₃SO₃ (15 mg, 0.060 mmol) and 2-butyne (0.10 mL, 1.3 mmol). Reaction time: 12 h. Brown solid. Yield 24 mg (56%). Anal. calcd. for C₃₁H₂₇F₃O₅Ru₂S: C, 48.19; H, 3.52; S, 4.15. Found: C, 48.05; H, 3.61; S, 4.12. IR (CH₂Cl₂): ῦ/cm⁻¹ = 2008vs (CO), 1884s (µ-CO). ¹H NMR (acetone-d₆): δ/ppm = 7.55, 7.46, 7.42, 7.19, 7.14-7.05, 6.88 (m, 10 H, Ph); 6.22, 5.84, 5.61, 5.41 (s, 10 H, Cp); 3.67, 3.66, 2.44, 2.35 (s, 6 H, Me); 2.76, 2.60 (s, 1 H, C⁸H). ¹³C{¹H} NMR (acetone-d₆): δ/ppm = 219.1 (µ-CO); 195.5 (CO); 180.9 (C⁶); 140.4, 138.9 (ipso-Ph); 133.7, 132.9, 130.9, 129.8, 129.4, 129.1, 128.8, 127.7 (Ph); 119.4 (C⁷); 111.9 (C⁸); 93.8, 91.6 (Cp); 74.4 (C⁹); 47.2, 23.5 (Me). Isomer ratio (trans/cis) = 5.

[Ru₂C₆H₅(CO)(η¹-C(Ph)C(Ph)CH(Ph))]F₃SO₃, [6]F₃SO₃ (Figure 9).
We failed to collect X-ray quality crystals of [6]CF$_3$SO$_3$; thus, we performed the synthesis of [6]BF$_4$ from 2 and AgBF$_4$, similarly to what described for [6]CF$_3$SO$_3$ (33% yield). The spectroscopic characterization of [6]BF$_4$ is reported in the Supporting Information. Then, crystals of [6]BF$_4$ suitable for X-ray analysis were collected by slow diffusion of diethyl ether into a dichloromethane solution of the complex at room temperature.

[Ru$_2$Cp$_2$(CO)$_2${µ-η1;η4-C(Ph)C(H)C(Ph)CH(Ph)}]CF$_3$SO$_3$, [7]CF$_3$SO$_3$. (Figure 10).

Figure 9. Structure of [6]$^+$.

Figure 10. Structure of [7]$^+$.

From 2 (35 mg, 0.058 mmol), AgCF$_3$SO$_3$ (15 mg, 0.060 mmol) and diphenylacetylene (178 mg, 0.999 mmol). Reaction time: 12 h. Orange solid. Yield 18 mg (42%). Anal. calcd. for C$_{41}$H$_{31}$F$_3$O$_8$Ru$_2$: C, 54.91; H, 3.49; S, 3.57. Found: C, 55.03; H, 3.42; S, 3.62. IR (CH$_2$Cl$_2$): δ/cm$^{-1} = 2006$vs (CO), 1867s (µ-CO). 1H NMR (acetone-d$_6$): δ/ppm = 7.37, 7.17, 6.98-6.92, 6.89-6.77, 6.69 (m, 20 H, Ph); 6.00, 5.81, 5.76, 5.65 (s, 10 H, Cp); 3.45, 1.68 (s, 1 H, CβH). 13C$_1$(1H) NMR (acetone-d$_6$): δ/ppm = 220.9 (µ-CO); 199.6 (CO); 188.4 (C5); 157.8, 138.4, 138.3, 138.1 (ipso-Ph); 134.7-125.4 (Ph); 121.0 (Cα); 107.7 (C3); 97.8, 96.0, 91.7, 91.5 (Cp); 87.8 (Cβ). Isomer ratio (cis/trans) = 5.
From 2 (35 mg, 0.058 mmol), AgCF$_3$SO$_3$ (16 mg, 0.064 mmol) and phenylacetylene (0.1 mL, 0.911 mmol). Reaction time: 12h. Brown solid. Yield 20 mg (42%). Anal. calcd. for C$_{35}$H$_{27}$F$_3$O$_5$Ru$_2$: C, 51.22; H, 3.32; S, 3.90. Found: C, 51.12; H, 3.35; S, 3.80. IR (CH$_2$Cl$_2$): δ/cm$^{-1}$ = 2006vs (CO), 1860s (µ-CO). 1H NMR (acetone-d$_6$): δ/ppm = 7.48-7.43, 7.37, 7.34-7.29, 7.10-7.07 (m, 15 H, Ph); 6.80 (s, 1 H, C$^\gamma$H); 5.76, 5.74 (s, 10 H, Cp); 1.66 (s, 1 H, C$^\beta$H). 13C(1H) NMR (acetone-d$_6$): δ/ppm = 223.0 (µ-CO); 199.0 (CO); 192.6 (C5); 158.9, 138.6, 137.7 (ipso-Ph); 132.0-125.7 (Ph); 106.9 (Cα); 103.3 (C$^\gamma$); 97.1, 95.0, 92.3, 92.1 (Cp); 83.8 (Cβ).

X-ray crystallography

Crystal data and collection details for 2, [3]CF$_3$SO$_3$·CH$_2$Cl$_2$ and [6]BF$_4$ are reported in Table 4. Data were recorded on a Bruker APEX II diffractometer equipped with a PHOTON2 detector using Mo–Kα radiation. The structures were solved by direct methods and refined by full-matrix least-squares based on all data using F2.68 Hydrogen atoms were fixed at calculated positions and refined using a riding model.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${26}$H${21}$ClO$_2$Ru$_2$</td>
<td>C${32}$H${29}$C$_2$F$_3$O$_9$Ru$_2$S</td>
<td>C${40}$H${31}$BF$_4$O$_2$Ru$_2$</td>
</tr>
<tr>
<td>FW</td>
<td>603.02</td>
<td>943.67</td>
<td>832.60</td>
</tr>
<tr>
<td>T, K</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>λ, Å</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1/n$</td>
<td>$P\bar{T}$</td>
<td>$C2/c$</td>
</tr>
<tr>
<td>a, Å</td>
<td>9.4345(4)</td>
<td>8.3190(7)</td>
<td>27.3698(8)</td>
</tr>
<tr>
<td>b, Å</td>
<td>14.0906(5)</td>
<td>13.7514(12)</td>
<td>18.0419(5)</td>
</tr>
<tr>
<td>c, Å</td>
<td>16.9952(6)</td>
<td>15.7743(13)</td>
<td>16.5162(5)</td>
</tr>
<tr>
<td>α, °</td>
<td>90</td>
<td>86.749(3)</td>
<td>90</td>
</tr>
<tr>
<td>β, °</td>
<td>104.7350(10)</td>
<td>77.108(3)</td>
<td>124.7910(10)</td>
</tr>
<tr>
<td>Cell Volume, Å3</td>
<td>2185.00(14)</td>
<td>1739.0(3)</td>
<td>6697.8(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>D_c, g·cm$^{-3}$</td>
<td>1.823</td>
<td>1.802</td>
<td>1.651</td>
</tr>
<tr>
<td>μ, mm$^{-1}$</td>
<td>1.526</td>
<td>1.153</td>
<td>0.960</td>
</tr>
</tbody>
</table>
DFT calculations

Geometry optimizations were performed using the PBEh-3c method, which is a reparametrized version of PBE0 \(^{69}\) (with 42 % HF exchange) that uses a split-valence double-zeta basis set (def2-mSVP) with relativistic ECPs for Ru \(^{70,71,72}\) and adds three corrections that consider dispersion, basis set superposition and other basis set incompleteness effects.\(^{73,74,75}\) The C-PCM implicit solvation model was added to PBEh-3c calculations, considering dichloromethane as continuous medium.\(^{76,77}\)

Further ground- and transition-state geometry optimizations for selected complexes were carried out by using the hybrid-GGA EDF2 functional\(^{78}\) in combination with the 6-31G(d,p)/LANL2DZ basis set.\(^{79,80}\) The localization of the transition states was confirmed by investigating the unique imaginary frequency in the simulated IR spectra and by IRC calculations.\(^{63}\) All the IR simulations were carried out using the harmonic approximation, from which zero-point vibrational energies and thermal corrections (T = 298.15 K) were obtained. The software used for PBEh-3c calculations was ORCA version 5.0.3,\(^{81}\) while EDF2 calculations were performed with Spartan'16 (Wavefunction Inc.), build 2.0.3.\(^{82,83}\)

Acknowledgements

We thank the University of Pisa for financial support (Fondi di Ateneo 2021).

Supporting Information Available
NMR spectra of products; spectroscopic data of [6b]CF₃SO₃⁻; DFT geometries. CCDC reference numbers 2184393 (2), 2184394 ([3]CF₃SO₃) and 2184395 ([6]BF₄⁻) contain the supplementary crystallographic data for the X-ray studies reported in this work. These data are available free of charge at http://www.ccdc.cam.ac.uk/structures.

The authors declare no competing financial interests.

References

17 Wigginton, J. R.; Chokshi, A.; Graham, T. W.; McDonald, R.; Ferguson, M. J.; Cowie, M. Alkyne/Methylene Coupling Reactions at Adjacent Rh/Os Centers: Stepwise Transformations from C$_1$-through C$_4$-Bridged Species, Organometallics 2005, 24, 6398 – 6410.

42 Bresciani, G.; Zacchini, S.; Pampaloni, G.; Marchetti, F. Carbon-Carbon Bond Coupling of Vinyl Molecules with an Allenyl Ligand at a Diruthenium Complex, Organometallics 2022, 41, 1006−1014.
52 J. P. H. Charmant, G. Davies, P. J. King, J. R. Wigginton, E. Sappa, Reactivity of a Triruthenium Acetylide Complex toward Alkynes and the Silica-Mediated Dehydration of Cluster-Bound Alkynols: X-ray Crystal Structures of the Novel Butadienyl Species [Ru₃(CO)₅(μ-η²:η¹-Bu′-C₂H₅CH₃)(η²:p-C₆H₅)] and the Unusual Complex [Ru₃(CO)₅(μ-η²:η¹-C₆H₅)(μ-η²:η¹-C₂H₅CH₃)] and [Ru₃(CO)₅(μ-η²:η¹-C₆H₅)(μ-η²:η¹-C₂H₅CH₃)], Organometallics, 2000, 19, 2330-2340.

V. G. Albano, L. Busetto, F. Marchetti, M. Monari, S. Zacchini, V. Zanotti, Diiron µ-Vinyliminium Complexes from Acetylene Insertion into a Metal - Aminocarbonye Bond, Organometallics 2003, 22, 1326-1331.

