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Abstract. We aim at studying the Scattering problem (or Distancing)
in the context of Programmable Matter (PM). This is intended as some
kind of matter with the ability to change its physical properties (e.g.,
shape or color) in a programmable way. PM can be implemented by as-
sembling a system of self-organizing computational entities, called parti-
cles, that can be programmed via distributed algorithms. A rather weak
model proposed in the literature for PM is SILBOT, where particles op-
erate in the nodes of a triangular grid. A particle can be contracted,
occupying one node, or expanded, occupying one node and one adjacent
edge. The movement happens in two steps: a particle expands towards a
node and, if empty, it moves there in the contracted state. Particles are
all identical, executing the same algorithm based on their local neighbor-
hood. They have no direct means of communication and are disoriented.
We aim to let particles move so as to achieve Scattering, i.e., all parti-
cles are at least two hops far apart from each other. We show that the
problem is unsolvable within the pure asynchronous setting where the
activation of each particle is left to an adversarial scheduler. Then, we
consider the case where contracted particles react to the stimuli of neigh-
boring particles, i.e., a particle is activated as soon as it is neighboring
with another one. By this event-driven variant, we are able to provide a
resolution algorithm along with its correctness. Furthermore, we inves-
tigate (also by simulations) on configurations where some nodes of the
grid can be occupied by immovable elements (i.e., obstacles).

1 Introduction

The rise in the last decade of new capabilities to design smart systems, compute
and fabricate like never before, has sparked a renewed interest in the perfor-
mance of materials. In particular, we are now witnessing significant advances
in studies dedicated to “active matter”, i.e., 3D/4D printing, materials science,
synthetic biology, DNA nanotechnology and soft robotics, which have led to the
development of more and more technologies that rely on smart combinations of
materials know-how, software, hardware and to the growth of the new field called
Programmable Matter (PM). This refers to some kind of matter with the ability
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to change its physical properties (e.g., shape or color) in a programmable way.
PM can be implemented by assembling a system of self-organizing computational
entities, called particles, that can be programmed via distributed algorithms to
collectively achieve global tasks.

Several theoretical models for PM have been proposed, ranging from DNA
self-assembly systems, (e.g., [20, 22]) to metamorphic robots, (e.g., [23, 19]), to
nature-inspired synthetic insects and microorganisms (e.g., [13]), each model
assigning special capabilities and constraints to the particles and focusing on
specific applications. Among them, the Amoebot model [8–10, 12] is of particular
and immediate interest from the distributed computing viewpoint. Indeed, in
such a model (introduced in [10], and so called because it is inspired by the
behavior of the amoeba), PM is viewed as a swarm of decentralized autonomous
self-organizing particles (represented by finite automata) that form a connected
structure with the help of local bonds.

The capabilities associated with the particles have been further reduced in
a recent model called SILBOT [7]. In particular, in SILBOT, a triangular grid is
considered where particles move to accomplish specific tasks. The movement of
a particle is obtained in two steps: first a particle expands towards a neighboring
node along a joining edge, and successively it reaches the desired node, if empty.
Basically, each particle may assume two different states: contracted, i.e., a
particle occupies one node; expanded, i.e., a particle occupies one node and an
adjacent edge. We consider a classical problem in distributed computing that is
called Scattering (see, e.g. [3, 18]): starting from any configuration where particles
are all contracted, the aim is to lead the system to a configuration where each
particle is still contracted but admits no neighboring particles.

2 The Model and the Problem

In this paper, we address the Scattering problem within SILBOT, where par-
ticles act independently of each other, without explicit communication, in an
asynchronous way, based only on local knowledge. SILBOT is a recent variant of
the well-established geometric Amoebot model (see, e.g., [1, 9, 10, 14, 15]).

The Operating Environment. Particles operate on an infinite triangular grid
embedded in the plane, where each node has 6 incident edges. Each node can
contain at most one particle. There are N particles in the considered system and
there might be nodes occupied by obstacles, i.e., immovable objects recognizable
by the particles.

Particles and Configurations. Each particle is an automaton with two states,
contracted or expanded (they do not have any other form of persistent
memory). In the former state, a particle occupies a single node of the grid while
in the latter, the particle occupies one single node and one of the adjacent edges.
Hence, a particle never occupies two or more nodes at once.

Each particle can sense its surroundings, i.e., if a particle occupies a node v,
then it can see the neighbors’ nodes of v (i.e., nodes at distance one). Specifically,



a particle can determine (i.e., sense) if a node is empty (i.e., not occupied by
a particle nor an obstacle) or occupied by a contracted or an expanded
particle, or occupied by an obstacle, for any node in its direct neighborhood.

Any positioning of contracted or expanded particles that includes all N
particles composing the system plus the obstacles is referred to as a configuration.

It is assumed that initially particles are all contracted.

Movement and States. Each particle can occupy only one node v at a time.
In order to move to a neighboring node u, the particle expands on the edge
between node v and node u. Thus, in the expanded state, the particle occupies
one node and one edge. Note that, node u may still be occupied by another
particle. If the other particle leaves node u in the future, the expanded particle
will contract into node u during its next activation.
A particle commits itself into moving to node u by expanding in that direction,
and at the next activation of the same particle, it is constrained to move to node
u, if u is empty. A particle cannot revoke its expansion once committed.

Asynchrony and Rounds. The SILBOT model introduces a fine-grained no-
tion of asynchrony with possible delays between observations and movements
performed by the particles.3 All operations performed by the particles are non-
atomic: that is, there can be delays between the actions of sensing the surround-
ing, computing the next decision, executing the decision (i.e., change of state,
movement, expansion, contraction).

There are no assumptions nor restrictions on the scheduling of these events;
thus any possible execution of an actual physical system can be captured by the
model, hence inducing many difficulties for proving the correctness of resolution
algorithms (see, e.g. [4, 6]).

A round is any time window within which all particles have been activated
and concluded their activation time at least once. When asynchrony is assumed,
it is also required the well-established fairness property by which each particle
is activated infinitely often in any execution of the particle system. Hence, the
duration of a round is finite but unknown and may vary from time to time.
Due to the asynchronous nature of the system, it may happen that a particle
decides (or is forced, in case of contraction) at time t to take an action, and that
this action will actually be executed at time t′ > t, when other particles may
have changed their state. The time required to accomplish an action is finite but
unknown.

Orientation and Randomness. Particles are disoriented, we do not make
any assumptions about the local coordinate system of a particle. It may even
change in each activation of the particle. Furthermore, we aim at studying the
case where particles take deterministic decisions. However, we will see in our
simulation how randomness may play a central role.

It is worth noting that there are cases that cannot be deterministically re-
solved and are left to the power of the scheduler. For instance, if two con-

3 Somewhat similar to the so-called Async model designed for theoretical models
dealing with mobile and oblivious robots (see, e.g., [4–6, 16, 17]).
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Fig. 1. a) two neighboring particles with the numbering of the unoccupied nodes neigh-
boring the rightmost particle; b) a basic configuration where at least the middle particle
must move in order to solve Scattering; c) a basic configuration similar to the one
in the middle; d) and e) two similar configurations where at least the middle particle
must move in order to solve Scattering.

tracted particles decide to expand on the same edge simultaneously, exactly
one of them (arbitrarily chosen by the scheduler) succeeds. If two particles are
expanded on two distinct edges incident to the same node w, exactly one of the
particles (again, chosen arbitrarily by the scheduler) contracts to node w, while
the other particle remains expanded.

The Scattering problem. We can now formally define the Scattering (or
Distancing) problem, introducing two possible variants concerning the behav-
ior of the particles with respect to obstacles.

Definition 1 (Scattering). Given an initial configuration, possibly with ob-
stacles, an algorithm solves the Simple Distancing problem if there exists a
time t after which all particles remain contracted at distance at least two
from any other particle. It solves the Strong Distancing problem if there ex-
ists a time t after which all particles remain contracted at distance at least
two from both any other particle and any obstacle.

Note that, the Strong Distancing variant of the problem can also be
considered as a scenario where obstacles are actually crashed (i.e., non-moving)
particles [11], recognizable from those working correctly.

3 Impossibility for Scattering within SILBOT

In this section, we show that within SILBOT, the Scattering problem cannot
be solved. Hence, some more restrictions or particles’ capabilities must be added.

Theorem 1. Scattering is unsolvable within SILBOT.

Proof. To prove the claim, it is sufficient to provide an example where the prob-
lem cannot be solved. First of all, it is worth noting that an isolated particle
should not move. In fact, if an algorithm allows that movement, then the time
t required in the Def. 1 would be never reached as any contracted parti-
cle can expand as soon as activated. Furthermore, any algorithm that solves
the Scattering must necessarily provide a move for the particles of a (sub-
)configuration made by just two neighboring particles like in Fig. 1.a, otherwise
the problem would never be solved. Then, for that (sub-)configuration we can



basically specify two algorithms in order to guarantee to solve Scattering. In
the first, say A′, we assume a particle that is neighboring just another one, if
activated, moves towards the opposite direction with respect to its neighbor. By
referring to Fig. 1.a, the rightmost particle would move towards the position
denoted by 3; in the second algorithm, say A′′, the same particle, if activated,
expands and then moves towards one of the two symmetric positions 2 or 4, the
adversary decides. The other possible expansions (towards positions 1 and 5 or
even towards the neighboring particle) would always leave the particle neighbor-
ing the other one, hence we do not consider such cases as they do not resolve the
Scattering. Let us consider Algorithm A′ and the configuration in Fig. 1.b:
the adversary can activate the particles in a (fair) way that brings the system
in an infinite loop. In fact, it can activate the particle in the middle, that moves
to the right, and the particle on the right, which doesn’t move as it is isolated.
Once the particle in the middle has moved (Fig. 1.c), the adversary can activate
the particle on the left, which does not admit a neighbor, i.e., doesn’t move, and
the particle in the middle that would move back to its original position, hence
creating the infinite loop.

When considering Algorithm A′′, similar arguments as above can be provided
by starting from the configuration shown in Fig. 1.d (or Fig. 1.f). ⊓⊔

The above theorem confirms that in order to solve the Scattering within
SILBOT, more restrictions to the environment or some more particles’ capabil-
ities are required. Enlarging the visibility range as in [7] doesn’t seem to be
effective.

An interesting case is to consider the asynchronous case with the assumption
that a contracted particle is activated if it is (or becomes) neighboring to
at least another particle. In practice, the adversary does not control anymore
the activation of contracted particles which becomes an event driven (ED)
process. The duration of an activation as well as the time required by a particle to
accomplish an expansion or a contraction remains in the decision of the adversary
as well as the activation of expanded particles. It turns out that this kind of
schedule, that we call ED-Async, is less general than the pure asynchronous
one, but it is clearly more general than the synchronous case where all particles
are always active. From a practical point of view, it is like the sensing abilities of
the particles about their surrounding react to the stimuli given by neighboring
particles by initiating the activation.

As we are going to show, this new assumption is enough to allow the resolu-
tion of the Scattering without obstacles. On the contrary, with obstacles, new
difficulties must be faced and the problem turns out to be much harder.

Theorem 2. Given a configuration with obstacles, Scattering is unsolvable
within SILBOT, even when the synchronous schedule is assumed.

Proof. To prove the claim, we provide an example where the problem cannot be
solved for both its variants, even considering the synchronous scheduler which
is a special case of both the asynchronous and the ED-Async ones.
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Fig. 2. Basic configurations with obstacles (black squares) used in the proof of Th. 2.

We first consider the Simple Distancing variant. In that context, it is
worth noting that a particle in a situation like the one shown in Fig. 2.a should
not move, as otherwise it would move forever back and forth, and the problem
cannot be solved. Similarly, two particles “entrapped” in a (sub-)configuration
like the one shown in Fig. 2.b should not move concurrently, as otherwise they
would move forever back and forth, and again the problem cannot be solved.

Considering instead Fig. 2.d, the particle in the middle should move in order
to solve Simple Distancing, whereas its neighboring particle as well as the
other one cannot move because of the above arguments. If the allowed move is
towards the right (position 3 according to Fig. 1), then a similar configuration
would be achieved, from which the same particle would move back to its original
position, i.e., an infinite loop occurs. Hence, the move should be towards one
of the other two possible directions (positions 2 and 4 according to Fig. 1).
However, starting from the configuration shown in Fig. 2.e, similar arguments
as above can be provided, showing that the system can enter in an infinite loop.

Concerning Strong Distancing, it is enough to consider the configuration
of Fig. 2.c. In fact, the particle must move in order to exit the tunnel but the
adversary can make it move back and forth since the particle is disoriented. ⊓⊔

As seen above, synchrony doesn’t help in the resolution of Scattering when
obstacles occur. The proof may suggest that a crucial point is about the orien-
tation of the particles. However, when obstacles are considered, we may think
about particles entrapped inside a sort of labyrinth constituted by the obstacles,
where there is just one exit. However, even considering particles endowed with
chirality, i.e., a common clockwise direction, still there might be unsolvable con-
figurations. It is sufficient to consider the case where a particle needs to traverse
a tunnel, i.e., as in Fig. 2.c, a corridor of one node width. In fact, in such oc-
currences, a particle cannot deduce whether it was coming from the left or from
the right, since the same node may assume the role of predecessor or successor
with respect to the direction of exploration of the labyrinth. This is particularly
crucial for the Strong Distancing variant, as even an ‘isolated’ particle inside
a tunnel should move in order to find a position far apart from the obstacles.

In Section 5, we conduct some simulations in order to understand how much
randomness may affect the solvability of Scattering with obstacles.

4 Scattering without obstacles

In this section, we define a very simple algorithm to solve the Scattering
problem when no obstacle is present. According to Th. 1, we need to add some



capabilities to the particles or restrict the environment in order to allow the
resolution of the problem. As anticipated in the previous section, we consider
the ED-Async schedule where a contracted particle is activated as soon as
it is (or becomes) neighboring to at least another particle. The duration of an
activation as well as the time required by a particle to accomplish an expansion
or a contraction remains in the scope of the adversary as well as the activation
of expanded particles.

– Algorithm A: Given a contracted particle p, let I be the maximal interval
of consecutive neighboring nodes of p where no other particles lie. If 2 < |I| <
6, then p expands towards the most central node in I – the rightmost one in
case of ties.

We remind that particles do not share any common orientation, hence the
term “rightmost” used in the algorithm can be interpreted differently by each
particle according to its own local coordinate system. Moreover, the algorithm
does not refer to expanded particles since an expanded particle can only reach
its destination as soon as it is activated and the node towards which it is ex-
panded gets empty, i.e., we have no control on it.

4.1 Aligned Particles

In this section, we consider the case where N particles are all aligned, not nec-
essarily all adjacent within an N -nodes segment. Let S be the smallest segment
containing all the particles. It is worth noting how this case is well-related to
the Ants on a Stick puzzle according to the specified algorithm, see [24]. In fact,
the interaction of the particles reminds the bounce event occurring among ants
moving in opposite directions. The main difference is that particles only move if
close to each other, i.e., they can reach the end of the stick (segment S) only if
stimulated/pushed by other particles. Actually, like for ants, the relative order
of the particles never changes as overtaking is not possible.

Lemma 1. After at most N − 1 expansions of the leftmost and the rightmost
particles of S, such particles never expand again.

Proof. Let us assume p is the leftmost particle in S. First note that, if p expands,
according to our algorithm, it can only expand leftward. Also, according to the
assumed scheduler, when p is contracted, it expands leftward as soon as its
(rightward) neighboring node along S is occupied. After p expands and then
becomes contracted, eventually, its neighboring node (i.e., the one previously
occupied by p itself) becomes empty, unless the particle p′, the one that forced
the expansion of p, returns to be neighboring to p because of another expansion
forced by another particle, the third one on S, counting from the left bound.
Thus, before p can expand again, i.e., enlarging S again, p′ must reach the
neighboring node of p by means of an expansion generated by the particle to the
right of p′.



By iterating the above argument, since each new expansion of p involves one
new particle, we can conclude that p can expand at most N − 1 times. A similar
argument can be applied to the rightmost particle. ⊓⊔

The above lemma can be exploited inductively on the number of particles for
proving the next result.

Theorem 3. When N particles are all aligned, Algorithm A solves the Scat-
tering problem.

Proof. We prove the claim by induction on the number of particles. For N ≤ 2
particles the claim trivially holds. Assume the claim for N − 1 particles.

By Lemma 1, Algorithm A allows the outermost particles p and p′ to expand
a finite number of times, upper bounded by N−1. Consider the time after which
p and p′ cannot expand anymore, i.e., according to the assumed scheduler, no
particles become neighbors of p and p′ anymore. We can restrict our attention to
the remaining N − 2 particles obtained by excluding p and p′. By the inductive
hypothesis, Algorithm A, applied on such N − 2 particles, resolves the Scat-
tering. Moreover, by hypothesis, their final positioning cannot induce further
expansions for p and p′, i.e., p and p′ admit no neighboring particles. Hence, the
Scattering is solved for all the N particles. ⊓⊔

4.2 General configurations

We consider now the general case where the initial configuration is constituted by
any placement of N contracted particles over any N nodes of the triangular
grid. By similar arguments than those applied in the previous section, we prove
that Algorithm A solves the Scattering problem also in the general setting.

Instead of the segment S specified in the previous section, given the initial
configuration, we consider the smallest regular hexagon Hi centered on a node
of the grid and containing all the particles. Let c be the center of Hi; the index i
represents the distance in terms of hops between c and the perimeter of Hi (refer
also to the example depicted in Fig. 3.a). Note that Hi is not necessarily unique;
however, we just need to fix one for our analysis purposes. Hence, particles are
not required to be aware about Hi nor c.

As a first observation, a particle on the perimeter of Hi cannot expand to-
wards the inner part of Hi according to Algorithm A. This can be easily verified
by means of a case analysis. As for notation, by Hi+1 we denote the regular
hexagon centered in c with one level more with respect to Hi; similarly, by Hi−1

we denote the regular hexagon centered in c with one level less with respect to
Hi.

Lemma 2. Let Hj be the smallest hexagon centered in c, with j ≥ i, that con-
tains all particles. Particles on Hj, within finite time, either move to Hj+1 or
they are all isolated (admitting no neighboring particles), eventually.
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Fig. 3. a) a configuration with H4 as the smallest enclosing hexagon; b) two possi-
ble solutions for Simple Distancing obtainable from the configurations of Fig.s 2.d
and 2.e. Green circles represent particles without neighboring other particles.

Proof. Apart from isolated particles, the only case in which a particle p on
Hj cannot move according to Algorithm A is when it admits two neighboring
particles p′ and p′′ residing on Hj (possibly with other neighboring particles on
Hj−1) and p does not occupy a corner of Hj . However, such a situation cannot
occur for all the non-isolated particles on Hj since p′ and p′′ must be in the
same situation of p, creating a chain of particles on Hj . In order to conclude the
proof, it is sufficient to observe that if a corner of Hj is occupied, it admits at
least three consecutive neighboring nodes empty, i.e., according to Algorithm A,
the particle on the corner either is isolated or it will move, eventually. ⊓⊔

By the above lemma and similarly to Lemma 1, we prove the next result.

Lemma 3. A particle on Hi can increase its distance from c at most N − 1
times.

Proof. A particle p onHi, in order to move fromHi toHi+1, must be neighboring
by at least another particle p′ residing either on Hi−1 or Hi. Successively, once
particle p becomes contracted again, it can move from Hi+1 to Hi+2 if:

– either it becomes neighboring to a particle on Hi, initially located on a node
different from the one previously occupied by p′ (hence occupied by a third
particle p′′);

– or it becomes neighboring to a particle that has also reached Hi+1, pushed
itself by at least another particle on Hi (since Hi+1 has no particles on itself
at the beginning).

As done for the case of aligned particles of Lemma 1, by iterating this argu-
ment, the claim holds. ⊓⊔

Furthermore, by exploiting Lemma 3, we prove the next result inductively
on the number of particles.

Theorem 4. Algorithm A is correct and terminates.



Proof. We prove the claim by induction on the number of particles. For N ≤ 2
particles the claim is easy to see. Assume the claim for N −1 particles, we prove
it for N .

By Lemma 3, Algorithm A allows the outermost particles to move away
from Hi a finite number of times, upper bounded by N − 1. At this time, all
particles on the outermost regular hexagon centered in c, say Hj , cannot move
any more; hence, by Lemma 2, all particles on Hj are isolated. Consider the time
after which particles on Hj do not expand anymore, nor new particles reach this
hexagon. Let us consider now the instance given by all the particles that are
inside Hj and not on it. By inductive hypothesis, since these particles are less
than N , Algorithm A resolves the Scattering. Moreover, by hypothesis, the
final positioning of the involved particles cannot induce further expansions for
the particles on Hj , i.e., particles on such a hexagon are all isolated. Hence, the
Scattering is solved for all the N particles. ⊓⊔

5 Approaching Scattering with obstacles

In Section 3, we have proven the Scattering problem is unsolvable within
SILBOT when obstacles are present in the configuration, even in the synchronous
setting. Here we aim to approach the problem in the asynchronous setting (not
even the ED-Async) but relaxing the power of the adversary. We consider the
case where the fairness of the scheduler is randomized, and not addressed to de-
tect the worst case scenario. In practice, although in general the configurations
shown in Fig.s 2.d and 2.e remain unsolvable, if the scheduler does not play
the adversarial role but “fairly” allows the particles to reach symmetric desti-
nations when ties occur, then the situations can be managed differently. Note
that, this kind of scheduler is not equivalent to let particles approach random
walks. Algorithms are still deterministic but “sometimes” the output, combined
with the scheduler, mimics a random choice. In fact, when there are equivalent
neighbors for a robot where to move, it selects the destination according to its
own local coordinate system that can change from one activation to another.
In other words, the “rightmost” node chosen by a particle when applying our
deterministic algorithms may change from one activation to another because the
local coordinate system changes. To this respect, we have developed a computer
simulation framework for approaching both the Simple Distancing and the
Strong Distancing variants, see [2, 21].

First of all, it is worth noting that when obstacles are considered, an algo-
rithm similar to that provided in Section 4 cannot succeed. It is sufficient to
consider the configuration of Fig. 2.d where the middle particle may move back
and forth forever. Hence we need to define a new algorithm.

5.1 The Simple Distancing problem

Given a particle p, we remind the reader that I is defined as the maximal interval
of consecutive neighboring nodes of p where no other particles lie. Note that,
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Fig. 4. a) a very constrained configuration; b) the corresponding solution obtained in
a run of the algorithm for Simple Distancing; c) the corresponding solution obtained
in a run of the algorithm for Strong Distancing.

in the computation of I, obstacles are treated as empty nodes. Our algorithm
works as follows. In general, we fix a direction towards which the particle should
expand. Ties are resolved by the local perception of a particle, giving priority to
the rightmost direction. We remind that particles do not agree on any direction,
and moreover a particle may have a different knowledge/perception with respect
to different activations. Once chosen a direction, if an obstacle is present towards
that direction, then a neighboring direction is tested until detecting an empty
node, if any. Otherwise the particle does not expand. The directions provided
by the algorithm are the following:

– If |I| = 1, then p tries to expand towards the only node in I;
– If |I| = 2, then p tries to expand towards the rightmost node in I;
– If |I| = 3 or |I| = 5, then p tries to expand towards the rightmost node

among the two neighbors of the central node in I;
– If |I| = 4, then p tries to expand towards the rightmost node among the two

central ones in I.

Fig. 3.b shows the obtained solutions when starting from the configurations
of Fig.s 2.d and 2.e. We have run our simulator on various instances where the
resolution of the Simple Distancing is rather constrained due to the presence
of obstacles. Keeping in mind the commitment of expanded particles, one may
expect deadlock situations when the density of the particles is high whereas
the moving space is reduced, as in Fig.s 4.a and 5.a. Our runs repeated sev-
eral times always obtained a successful behavior. Fig.s 4.b and 5.b show two
possible solutions obtained from the configurations shown in Fig.s 4.a and 5.a,
respectively, even though the solution for Fig. 5.a may require a large number
of rounds (we experienced about 2200 rounds on average) to converge. In fact,
there exists exactly one solution according to the number of particles and the
shape of unoccupied nodes.

5.2 The Strong Distancing problem

In this scenario, the goal of the particles is to be distanced also from the obstacles
(possibly crashed particles), see Def. 1.
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Fig. 5. a) a very constrained configuration; b) the corresponding solution obtained in
a run of the algorithm for Simple Distancing; c) a solution obtained for Strong
Distancing with the maximum number of particles allowing to solve the problem
within the area confined by the obstacles.

The basic algorithm we tested in this case is similar to the one proposed in the
previous section, with the additional move required for a particle p when |I| = 6
with at least an obstacle neighboring p, i.e., p is not isolated from obstacles:

– if |I| = 6 and p is neighboring to at least an obstacle, then p tries to expand
towards the rightmost neighboring node.

We remind that if an obstacle is present in the direction chosen by the al-
gorithm, then a neighboring direction is tested until detecting an empty node,
if any, otherwise the particle doesn’t expand. Clearly, in order to solve Strong
Distancing, there cannot exist, in the initial configuration, a particle sur-
rounded by 6 obstacles or a situation like in Fig. 2.a where an area enclosed
by obstacles does not allow the distancing of the particles.

The proposed algorithm is clearly still able to successfully solve the specific
configurations shown in Fig.s 2.d and 2.e. Also, it succeeds in configurations
similar to that shown in Fig. 5, assuming there is enough space inside the area
delimited by the obstacles to place all the particles distanced both from each
other and from the obstacles. In the specific case, only two particles could be
placed inside the area delimited by the obstacles, see, e.g., the obtained solu-
tion in Fig. 5.c. However, the algorithm may find quite some difficulties with
the configuration of Fig. 4.a even though we always experienced successful runs
requiring about 2500 rounds on average. A corresponding solution is shown in
Fig. 4.c. The ability of the particles to all exit the labyrinth formed by the
obstacles mainly depends on the direction that is close to be randomly chosen
to make the particles expand, especially when their only neighbors are obsta-
cles (i.e., |I| = 6). Here, some randomization arguments might be required to
understand the behaviour of the particles.

When considering, instead, configurations where the placement of the objects
does not constrain much the movement of the particles, the algorithm results
to be quite effective. We executed over 1000 runs of the simulator as follows: at
each run, about 60 particles and 40 obstacles were randomly placed in an initial
area of diameter of 18 edges. The particles were able to complete the task with
an average number of about 240 rounds.



6 Conclusion

We have considered the Scattering problem with programmable matter within
the very weak SILBOT model. We have shown resolution algorithms and simu-
lations for the different variants of the problem. Several questions are still open,
and leave space for further investigations: for instance, to prove whether our
algorithms for Scattering with obstacles are correct, maybe by introducing
some probability arguments. It would be interesting to detect the minimal set of
assumptions and/or constraints on the obstacle placement under which Scat-
tering with obstacles can be solved, in both its variants. Finally, it is worth
investigating the general case of faulty particles, where it is not possible to dis-
tinguish between crashed and correctly working particles.
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