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Abstract 48 

Cancer cells proliferate, differentiate, and migrate by repurposing physiological signalling 49 

mechanisms. In particular, altered calcium signaling is emerging as one of the most profound and 50 

widespread adaptations in cancer cells. Alterations in calcium signals drive the onset and 51 

development of several malignancies, including prostate cancer (PCa). In vitro, in vivo and 52 

bioinformatic studies of human PCa patient- and xenograft-derived gene expression data have 53 

identified significant changes in the expression and function of various components of the calcium 54 

signalling toolkit. Indeed, discrete alterations in calcium signaling have been implicated in hormone-55 

sensitive, castration-resistant, and aggressive variant forms of PCa. Hence, modulation of calcium-56 

dependent signalling is a plausible therapeutic strategy for both early and late stages of PCa. Based 57 

on this evidence, clinical trials have been undertaken to establish the feasibility of targeting calcium 58 

signalling. In this review, we summarize both the etiology of PCa and the evidence for altered 59 

calcium signalling as a critical component of the molecular re-programming of prostate cells. We 60 

highlight links between pre-clinical and clinical results relevant to PCa progression. A model is 61 

proposed in which specific calcium signalling alterations, commonly involving crosstalk between 62 

calcium and other cellular signaling pathways, underpin the temporal progression of prostatic 63 

malignancies.  64 
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Introduction 68 

Prostate cancer (PCa) is one of the most common malignancies and a leading cause of cancer-related 69 

death in men, with ~400,000 deaths per year worldwide in 20201. In the early stages, PCa cells grow 70 

within the prostate gland. Thereafter, spreading to surrounding tissues and distant metastatic sites 71 

during the advanced forms of the disease. Early intervention with chemotherapy and surgery can 72 

be effective, and the prognosis is generally favourable2. However, as the cancer starts disseminating, 73 

these approaches lose their applicability and effectiveness, and the prognosis significantly worsens3. 74 

Since malignant prostate cells heavily rely on androgen signalling for their growth and survival, 75 

androgen deprivation therapy (ADT) has become the treatment of choice for advanced PCa4. 76 

Although ADT is initially effective, castration-resistant PCa (CRPC) eventually emerges, usually 2-3 77 

years post-treatment4,5; CRPC is characterized by the activation of the intracellular androgen 78 

signalling pathway, despite androgen deprivation6.  79 

CRPC can further evolve towards more rapidly progressing anaplastic forms of PCa known as 80 

aggressive variant prostate cancer (AVPC), which show a marked metastatic behavior7. AVPC often 81 

expresses neuroendocrine markers, defining the PCa subtype known as neuroendocrine prostate 82 

cancer (NEPC)7. While CRPC still depends on the intracellular androgen receptor (AR) signalling axis, 83 

AVPC activates alternative pathways for survival and growth; thus none of the androgen-based 84 

therapies is effective for its treatment, making AVPC invariably fatal, with an average survival of less 85 

than one year8.  86 

In the last decades, studies have unveiled the role of calcium signalling in many cellular processes, 87 

including the cell cycle, migration, and apoptosis9. When dysregulated, these processes can confer 88 

a malignant phenotype, driving cancer onset and progression10.   Not surprisingly, calcium signalling 89 

mediators, such as the transient receptor potential (TRP) channels or the voltage-gated calcium 90 

channels (VGCC), are becoming an attractive therapeutic target for many malignancies, including 91 

lung, colon, breast, prostate cancer and other types of tumours11. In recent years, many clinical trials 92 

have been designed to evaluate the safety and activity of calcium signalling-targeting drugs11. 93 

Although none of these drugs is currently used in clinical practice to treat solid cancers, many are 94 

showing promising results and could become crucial elements for developing single-agent or 95 

combined therapies for PCa and other malignancies. Here, we present an overview of the role of 96 

calcium as a driver of PCa onset and progression, along with a discussion of the most current 97 

therapies targeting the calcium signalling machinery to treat this malignancy. 98 
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The clinical evolution of prostate cancer 99 

The malignant transformation of prostate cells results from a complex interaction between 100 

epigenetic and genetic alterations triggered by signalling and remodelling processes within the 101 

nascent tumour microenvironment (TME). These aberrations lead to the onset and development of 102 

prostate cancer, driving the early development, the metastatic spread, the acquisition of drug 103 

resistance and, eventually, the emergence of the aggressive neuroendocrine phenotype. Identifying 104 

the events involved in each step of prostate cancer progression and understanding their specific 105 

role is crucial to comprehend this malignancy. 106 

Genetic and epigenetic aberration in PCa 107 

Among the earliest events in PCa development is the dysregulation of pathways affecting DNA 108 

repair, cell cycle progression, and apoptosis; often mediated by epigenetic changes. For example, 109 

hypermethylation in the promoter of the GSTP1 gene can be observed during pre-malignant 110 

conditions, with a frequency of about 70%, which further increases to about 90% with the onset of 111 

PCa12. Similarly, tumour suppressor genes, such as NKX3.1 and PTEN, are often downregulated 112 

during pre-malignant conditions13–18. These epigenetic changes promote the onset of genetic 113 

aberrations, including the TMPRSS2-ERG (T2E) fusion/PTEN loss (found in about 50 and 40% of 114 

primary PCa, respectively)19–22 and SPOP/CHD1 mutations (5-15% of PCa)23, that results in the 115 

activation of the mitogenic PI3K/AKT and AR signalling axes, promoting cancer cells’ proliferation21,24 116 

(FIG. 1a). 117 

When the cancer starts disseminating, the activation of epithelial-mesenchymal transition (EMT), 118 

migration and invasion programs become prominent. In PCa, T2E fusion and the overexpression of 119 

the TRPchannels enhance the expression of several matrix metallopeptidases (MMPs) and other 120 

EMT markers that mediate the degradation of the extracellular matrix (ECM) and promote the 121 

evasion of PCa cell from its primary site25–28. An extensive genetic reprogramming also occurs, 122 

orchestrated by the H2K27 methyltransferase Enhancer of Zeste homologue 2 (EZH2), which seems 123 

critical in promoting PCa cell dedifferentiation, invasiveness, metastasis and in the acquisition of a 124 

castration-resistant phenotype29–31. PCa cells can acquire resistance to ADT by several escape 125 

mechanisms that allow the activation of the AR signalling axis through alternative routes: (i) AR gene 126 

amplification/mutation; (ii) AR ligand-binding domain deletions; (iii) overexpression of the AR co-127 

activators SRC1/TIF2; (iv) non-canonical activation of the AR signalling pathway through the 128 

glucocorticosteroid receptor32 (FIG. 1b). Since CRPC still relies on AR signalling pathway activation, 129 

studies are ongoing to develop new AR-targeting strategies that could improve patients’ 130 
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prognosis33–35. However, such AR-targeting strategies are ineffective against the AR-independent 131 

forms of PCa, such as NEPC (FIG. 1b)8.  132 

The activation of the EZH2/CREB/TSP1 axis36 and the expression of the long non-coding RNA 133 

(lncRNA) MIAT37 may drive the neuroendocrine trans-differentiation (NED) in NEPC by mediating 134 

the expression of neural tissue specification genes, such as n-MYC38,39 and t-type calcium channels 135 

(TTCC)40–42, and inhibiting the neural repressors REST and FOXA136. NEPC cells exploit AR-136 

independent mechanisms for their growth, which include the activation of RET, WNT, and STAT3 137 

pathways7 and the overexpression of cell cycle-related proteins Aurora Kinase A (AURKA), PEG10, 138 

the MYST/Esa1-associated factor 6 (MEAF6), and cyclin D43. Additionally, lncRNA LINC00261 and the 139 

transcription factor ONECUT2 enhance cell proliferation and cell cycle progression by activating the 140 

CBX2 and TGF-β axis36,44. Both LINC00261 and ONECUT2 interact with SMAD3 promoting its 141 

expression and recruitment onto FOXA2 promoter. The resulting overexpression of FOXA2 increases 142 

the metastatic potential of NEPC by enhancing cell migration and invasion36,37. Lastly, although the 143 

exact mechanisms remain elusive, the concomitant loss of TP53, RB1 and PTEN seems determinant 144 

in NED23,36,45. Interestingly, a recent study highlighted a link between TP53 loss and the 145 

overexpression of the TRPM4 channel, which, as we will discuss further on, participates in PCa 146 

progression by enhancing the proliferation rate and the migratory ability of PCa cells46.  147 

The role of microenvironment in PCa 148 

Crosstalk between tumour cells and their microenvironment was shown to be a crucial aspect in the 149 

development of PCa47. Chronic inflammation caused by microbial infections, physical trauma, or 150 

lifestyle, creates a microenvironment rich in reactive oxygen species and cytokines 48. In response 151 

to these stimuli, PCa cells promote the recruitment of myeloid-derived suppressor cells/tumour-152 

associated macrophages (MDSC/TAM) that release additional cytokines, chemokines and reactive 153 

oxygen species in a positive feedback loop49,50. These molecules activate AR signalling through the 154 

JAK/STAT pathway, leading to enhanced PCa proliferation and survival, favouring DNA breaks and 155 

genomic translocation of AR-related genes such as T2E48,49,51. 156 

Moreover, inflammation is amplified by severe hypoxia within the tumour tissues, which are 157 

characterized by a very low level of oxygen (0.3–1.2%) with respect to the physiological level in 158 

normal tissue cells (3.4–3.9%)52–54. Hypoxia plays a crucial role in tumorigenic processes, leading to 159 

a plethora of adaptative events and treatment resistance acquisition principally mediated by 160 

hypoxia-inducible factor 1 (HIF-1)-related pathways55–60. Inflammation and hypoxia promote the 161 
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morphological transition of peritumoral stromal fibroblasts into cancer-associated fibroblasts (CAF), 162 

forming the so-called reactive stroma (RS)61,62. 163 

 CAFs and RS participate in ECM remodelling by affecting the expression of EMT markers and 164 

releasing a broad range of cytokines, and angiogenetic factors60,63. These latter factors promote 165 

angiogenesis through the VEGF/VEGFR axis, providing the vascularization needed for tumour 166 

growth and dissemination63.  167 

Moreover, under hypoxic stimuli and androgen deprivation, CAFs that express myofibroblast 168 

markers are activated by HIF-1 combined with autocrine TGF-β signalling64,65. Myofibroblasts are 169 

the major source of CXCL13, the chemokine involved in the recruitment of the B lymphocytes in 170 

intra-tumoral regions, amplifying the inflammation and promoting CRPC progression in murine 171 

models66. Furthermore, hypoxia shapes the tumour microenvironment by means of exosomes 172 

secreted by cancer cells. These vesicles are laden with growth factors, cytokines, proteinases and 173 

lipids that contribute to stemness, invasiveness and EMT in naïve PCa cells67–71. 174 

Modification of the future metastatic sites’ microenvironment begins when cancer cells are still 175 

confined within the prostate gland in a remodelling process promoted by soluble factors, such as 176 

cytokines, and vesicles released into the bloodstream by the cancer cells63 This remodeling process 177 

promotes the formation of premetastatic niche, which favors the homing of cancer cells to their 178 

metastatic sites. Thus, cytokines are essential for homing PCa to metastatic sites as they create the 179 

premetastatic niche, favouring the endothelial attachment of circulating cancer cells and promoting 180 

the remodeling of the microenvironment. Additionally, evidence suggests that an acid 181 

microenvironment stimulates the secretion of MMP9 and VEGF from PC3 cells, resulting in 182 

increased invasiveness and promoting bone metastasis72. Moreover, an acid TME seems to impair 183 

the anticancer effect of ascorbic acid in the PCa cell lines DU145 and PC373. Microenvironment 184 

signalling is also critical for the NED of PCa74,75. Indeed, cancer cells induce axonogenesis through 185 

the secretion of neurotrophins and axon guidance molecules such as S4F, mimicking the processes 186 

observable during embryonic development. Additionally, granulocyte colony stimulating factor 187 

seems to potentiate PCa growth and metastasis by promoting autonomic innervation. Notably, the 188 

expression of neurotrophins and the chemokines CCL2 and CXCL12 by PCa cells could induce the 189 

differentiation of neural progenitors within the tumour microenvironment76,77. In PCa and other 190 

malignancies, the CCL2-CCR2 axis plays a critical role in perineural invasion (PNI), in which cancer 191 

cells invade distant sites along nerves77.  Targeting the molecular players of PNI, such as CCL2 and 192 

CCR2, may inhibit the communication between cancer cells and nerve microenvironment, reducing 193 
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the metastatic potential of PCa77. Understanding the crosstalk among the tumor cells and all the 194 

contributing elements of the microenvironment will help to identify new therapeutic strategies 195 

targeting these interactions78. 196 

Introduction to calcium signaling 197 

Calcium is a universal messenger employed by all cell types to regulate their activities in response 198 

to numerous extrinsic and intrinsic stimuli79. The diversity of calcium signals that underlies the 199 

physiology of different cell types derives from a broad toolkit of calcium channels, transporters, and 200 

effectors. The repertoire of calcium signalling toolkit components expressed by a particular cell type 201 

suits that cell’s physiology80. For example, a non-excitable epithelial cell that functions with 202 

relatively slow calcium signals would express a different selection of calcium channels and 203 

transporters compared to a striated muscle cell that requires rapid calcium signals to function79. 204 

Whilst specific cell types express calcium signalling toolkit components that suit their physiological 205 

roles, it is important to note that calcium signalling is highly plastic. Cells alter the expression of 206 

calcium signalling toolkit components in response to environmental and intrinsic cues. It is this 207 

plasticity that underpins the ability of cellular calcium signalling to deviate from physiological 208 

functions to driving various pathological outcomes81, including cancer82. A complexity in 209 

understanding how altered calcium signals impact on the development of cancer is that both 210 

decreases and increases in calcium signalling, as well as de novo expression/repression of calcium 211 

toolkit components, have been implicated in oncogenesis83.  A substantial body of evidence shows 212 

that cancer cells dampen calcium signalling, for example, to avoid cell death84–86, but at the same 213 

time cancer cells can be addicted to calcium signalling to support their metabolism and survival87,88.  214 

It has been known for some time that calcium signals with different kinetics and spatial effects can 215 

occur simultaneously within the same cell89,90.  For example, there can be temporally and spatially 216 

discrete calcium signals that affect cytosolic versus nuclear processes91.  Understanding how calcium 217 

affects PCa development therefore requires a careful dissection of changes in the location, kinetics, 218 

and downstream outcomes of calcium signals during the development of a malignancy92. 219 

Physiology of calcium signalling 220 

The basal cytosolic calcium concentration in unstimulated cells is maintained at ~100 nM 221 

(approximately 15,000-fold less than the calcium concentration in the extracellular milieu). 222 

Stimulation of cells, which can arise in numerous ways, increases the cytosolic calcium 223 

concentration and thus activates specific effector pathways to generate a cellular response80. 224 
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Cellular calcium signals encode information in their frequency, kinetics, amplitude and/or spatial 225 

extent. The characteristics of cytosolic calcium signals depend on the cell type and the nature and 226 

intensity of stimulation. Physiological stimuli, such as hormones and growth factors, give rise to 227 

controlled, reversible cytosolic calcium signals that are generally less than 1 µM79. Pathological 228 

stimuli can lead to aberrant calcium signals that may spiral out of control by overwhelming 229 

homeostatic mechanisms and even provoke cell death93,94. Cellular calcium signalling does not only 230 

involve the cytosol. Several organelles, including mitochondria and the endoplasmic reticulum (ER), 231 

serve as sources of calcium in the generation of signals95. Moreover, organelles can sequester 232 

calcium following a cytosolic calcium increase and thereby alter their function79. 233 

ER and mitochondria are intimately linked and participate in the generation and sensing of calcium 234 

signals96. Due to their proximity within cells, cytosolic calcium signals that are caused by the 235 

activation of channels within the ER membrane are sequestered by adjacent mitochondria97 (FIG. 236 

2). The sequestration of calcium by mitochondria stimulates respiration and biosynthetic processes, 237 

but it can also promote cell death98. Many cancer cells possess mechanisms that reduce the 238 

frequency and amplitude of cytosolic calcium signals and attenuate mitochondrial calcium 239 

sequestration, thus acquiring a survival advantage by decreasing their susceptibility to cell 240 

death84,85.  241 

The calcium signalling toolkit 242 

Whilst all cell types have the same basal calcium concentration, the mechanisms by which calcium 243 

homeostasis and calcium signalling are mediated can be strikingly different79.   244 

Non-electrically excitable cells, akin to non-malignant prostate tissues, typically activate 245 

physiological calcium signalling via G protein-coupled receptors or tyrosine kinase receptors81. The 246 

activation of these receptors stimulates phospholipase C-mediated hydrolysis of 247 

phosphatidylinositol 4,5-bisphosphate (PIP2), yielding diacylglycerol (DAG) and inositol 1,4,5-248 

trisphosphate (IP3). Following its production, IP3 diffuses away from the cell membrane and binds 249 

to inositol 1,4,5-trisphosphate receptors (IP3R); calcium channels that are primarily located on the 250 

ER99. Calcium signals within non-excitable cells are typically observed as a series of oscillatory 251 

elevations in the cytosolic calcium level that are rapidly arise from the basal calcium level and reach 252 

peak concentration of ~1 micromolar. Such calcium oscillations are sensed by calcium-binding 253 

proteins such as calmodulin (CAM), which then activate downstream signalling or effector 254 

processes100–103.  255 
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While the calcium signalling toolkit is too broad in scope to describe here fully, some of its principal 256 

components are briefly mentioned below and schematized in FIG. 2. The key sources of calcium 257 

used in the generation of signals involve the influx of calcium from the extracellular space and the 258 

release of calcium from organelles79. The channels that mediate calcium influx include transient 259 

receptor potential (TRP) channels, VGCCs, and ORAI100. The TRP superfamily consists of seven 260 

subfamilies (TRPC, TRPV, TRPM, TRPA, TRPP and TRPML)104.  261 

TRPs can be activated through multiple mechanisms, including metabolites such as DAG, ADP-262 

ribose, NAD, growth factors, depletion of ER calcium, mechanical stretching, noxious and 263 

environmental stimuli104. Consistent with their sensitivity to a wide range of stimuli, TRPs are 264 

involved in many physiological processes, mainly related to sensory physiology and sensing 265 

environmental changes105. The growing interest in the TRP superfamily of ion channels and their 266 

involvement in cancer biology is shedding new light on the importance of these genes in PCa106. 267 

There are ten members of the VGCC superfamily, organized into three subfamilies (Cav1, Cav2, and 268 

Cav3). Each VGCC is activated by membrane depolarization but can also be modulated by cellular 269 

metabolites and accessory proteins such as CAM107. VGCCs initiate contraction in muscle cells, and 270 

participate in synaptic transmission, hormone secretion, regulation of enzyme activity, and gene 271 

expression in a wide range of cell types107.  272 

Intracellular calcium stores have critical roles in cellular calcium signalling but possess a finite 273 

capacity for releasing calcium and activating cellular processes. Ultimately, the calcium needed for 274 

sustained signalling and replenishment of intracellular stores derives from the extracellular 275 

milieu108,109. In non-excitable cells, and some excitable cells, a process known as store-operated 276 

calcium entry (SOCE) coordinates the influx of calcium with the release of calcium from the ER. Two 277 

widely-expressed proteins mediate SOCE: ORAI (three isoforms; Orai1, 2 and 3) and stromal 278 

interaction molecule (STIM; two homologues; STIM1 and 2)108. ORAI is a calcium channel expressed 279 

on the cell membrane, whilst STIM is a transmembrane protein located on the ER. Reduction of the 280 

calcium concentration within the lumen of the ER causes the redistribution and oligomerisation of 281 

STIM1 to the ER membrane in close apposition with the plasma membrane. 282 

These events cause STIM to change conformation and physically interact with ORAI, activating 283 

calcium influx across the cell membrane into the cytosol. The activation of IP3Rs and RyRs on the ER 284 

leads to the depletion of ER calcium. SOCE is, therefore, a mechanism for replenishing calcium stores 285 

following the activation of intracellular calcium stores. In addition, the influx of calcium mediated 286 
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by SOCE has been shown to activate cellular processes distinct from those sensitive to calcium 287 

release110.  288 

The various calcium fluxes into the cytosol are counteracted by ATPase pumps and exchangers that 289 

transport calcium across the cell membrane or sequester it into organelles. Three primary 290 

pumps/exchangers mediate these processes: plasma membrane Ca2+-ATPases (PMCAs 1-4), 291 

sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs 1-3), and Na+/Ca2+ exchangers (NCXs 1-3)81. 292 

SERCAs and PMCAs transport calcium up its concentration gradient from the cytosol into the ER and 293 

the extracellular space, respectively, and are fueled by ATP hydrolysis. NCXs transport calcium from 294 

the cytosol across the plasma membrane, fueled by the concomitant movement of Na+ ions down 295 

their concentration gradient. The activity of these pumps/exchangers is essential for several 296 

reasons: it maintains the basal calcium concentration, allows the replenishment of intracellular 297 

stores, and prevents the cytotoxic effects of sustained cytosolic calcium elevations81.  298 

Calcium signalling in cancer-related pathways 299 

Cancer hallmark pathways are cellular processes that, when dysregulated, can drive carcinogenesis. 300 

These processes include cycle progression, cellular migration, and apoptosis111. In the last decades, 301 

many studies highlighted the role of calcium signalling in each of the cancer hallmark pathways.  302 

The cell cycle initiates upon external stimuli that trigger the transition from a resting state (G0) to a 303 

proliferative state (early G1 phase). These stimuli activate c-AMP responsive element-binding 304 

protein (CREB), the nuclear factor of activated T-cell (NFAT), and AP1 transcription factors involving 305 

FOS and JUN family members, eventually triggering cell cycle progression112. It is known that, by 306 

binding with CAM and calcineurin, and activating CAMKs, Ca2+ can promote the transcription of 307 

CREB and the nuclear translocation of NFAT112–114. Additionally, calcium influx can promote the 308 

activity of the cyclin/CDK complexes through calcium/CAM-activated kinases, indicating the 309 

importance of calcium in cell cycle activation and progression114,115.  310 

Cellular migration requires a combination of cyclic events that include the formation of lamellipodia, 311 

their adhesion with the ECM (focal adhesion), cellular contraction mediated by actin and myosin 312 

and, lastly, the disassembly of focal adhesion complexes (FAC)116. Calcium participates in all these 313 

steps by affecting the cytoskeleton dynamics via interaction with actin regulators such as protein 314 

kinase C (PKC), calcium/CAM-dependent kinases, and myosin116. Moreover, the calcium/CAM-315 

dependent kinase CAMKII regulates focal adhesion kinase (FAK) activity, which is crucial for the 316 

disassembly of the FAC116,117. Increased cellular migration can result in the acquisition of a 317 

metastatic phenotype when coupled with the EMT54. As we will discuss further on, dysregulated 318 
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calcium signalling can induce EMT by promoting the expression of the MMPs, N-cadherin and other 319 

markers important for mediating the proteolytic degradation of the ECM and cellular adhesion54.  320 

Apoptosis is a type of programmed cell death that involves the release of cytochrome c (cyt c) from 321 

the mitochondrial intermembrane space to trigger the formation of the caspase-activation platform 322 

(apoptosome)118. In addition to the Bax/Bak-dependent cyt c release, calcium and oxidative stress 323 

can also promote cyt c loss from mitochondria through a process known as mitochondrial 324 

permeability transition (MPT)119,120. While the identity of the protein responsible for MPT is still 325 

debated, it is widely accepted that substantial mitochondrial calcium sequestration, mainly resulting 326 

from sustained IP3R-mediated cytosolic calcium signalling, promotes MPT114. Intriguingly, several 327 

oncogenes/tumour suppressors have been linked with the regulation of calcium uptake by 328 

mitochondria and prevention of MPT85,119,121. For example, the oncogene AKT and the antiapoptotic 329 

proteins of the BCL2 family can inhibit the activity of IP3Rs, decreasing cytosolic calcium signals and 330 

exerting an antiapoptotic function85,121,122. Additionally, by phosphorylating the regulatory subunit 331 

(MICU1) of the mitochondrial calcium uniporter (MCU), AKT impairs its function leading to an 332 

increase in the basal mitochondrial Ca2+ concentration and promoting cancer progression123.  333 

Conversely, tumour suppressors such as PTEN and TP53 promote mitochondrial overload by 334 

facilitating the activity of IP3Rs and SERCA, respectively, thereby triggering apoptosis114,124,125.  335 

IP3Rs bind to many accessory proteins that can thereby modulate cellular calcium signalling and are 336 

also implicated in cancer84. Although there is an overlap in the expression of some components of 337 

the calcium signalling toolkit in different tissues, each cell type expresses a unique calcium signalling 338 

proteome, which is plastic and can be remodeled, depending on environmental cues81. It is worth 339 

noting that the same calcium signalling mediator (i.e., channel, transporter, effector etc) expressed 340 

in a different cellular context may acquire an alternative function126. Thus, characterizing the 341 

expression pattern and the biological function of each calcium signalling mediator in different types 342 

of cancer, and at different stages of cancer progression, can provide crucial information to 343 

understand cancer pathogenesis and to identify new therapeutic strategies. 344 

Epigenetic regulation of calcium signalling 345 

The epigenetic regulation of gene expression results from interconnected and coordinated elements 346 

acting at transcriptional and post-transcriptional levels, including DNA methylation, histone 347 

modifications, lncRNA, and microRNA (miRNA) regulation127. Epigenomes are dysregulated in many 348 

malignancies128, with the cancer landscape generally characterised by a global DNA 349 

hypomethylation and specific hypermethylation in CpG-rich regions129. In solid cancers, calcium 350 
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signalling-related genes show altered methylation levels, with hypermethylation reported for 351 

CACNA1A, CACNA1B, CACNA1H and ORAI2130,131, associated with diminished gene expression and, 352 

in some cases, a worse prognosis131. Few studies have evaluated the epigenetic reprogramming of 353 

calcium signalling-related genes in PCa15. A hypomethylation of CACNA1D gene was reported in T2E-354 

positive PCa compared with T2E-negative ones; as expected reduced DNA methylation correlated 355 

with higher CACNA1D mRNA levels132,133. 356 

Conversely, the promoter region of S100P gene (a calcium binding protein that mediates 357 

cytoskeletal dynamics, protein phosphorylation and transcriptional control) was often 358 

hypermethylated in PCa, with reduced mRNA expression134,135. Additionally, the epigenetic 359 

regulation of other calcium-related genes, including EGFR, ITPKA, BST1 and PTGER1, seems to be 360 

involved in the development of docetaxel-refractory metastatic CRPC136. In a panel of cancer cells, 361 

including the PCa cell lines PC3, LNCaP and 22Rv1, miR-25 seems to exert a post-transcriptional 362 

regulation of the mitochondrial uniporter MCU, which mediates the mitochondrial calcium uptake.   363 

When upregulated, miR-25 inhibits MCU resulting in an imbalance of the mitochondrial calcium 364 

homeostasis, and leading to increased apoptotic resistance137. 365 

Moreover, the chromatin remodelling factor EZH2 can lead to the epigenetic silencing of calcium-366 

related and tumour suppressor genes involved in PCa progression138–141. In CRPC, EZH2 up-367 

regulation inactivates the AR-repressed tumour suppressor gene CCN3, promoting the acquisition 368 

of the androgen-independent phenotype142. Moreover, the overexpression of EZH2 in prostate stem 369 

cells, NEPC cells, and NEPC mouse models suggested its involvement also in the NED143. Although 370 

the mechanisms by which these processes are affected and the link to calcium signalling are not 371 

fully elucidated144. 372 

In undifferentiated human mesenchymal stem cells (hMSCs), EZH2 transcriptionally represses the 373 

PIP5K1C gene to maintain intracellular calcium at a low level while neuronal differentiation is 374 

induced. When differentiation processes start, a transient increase in intracellular calcium levels is 375 

detected. Among the various mechanisms involved145,146, the dissociation of EZH2 from the PIP5K1C 376 

promoter triggers the increase of PIP2 formation and the activation of IP3-mediated calcium 377 

signalling that support hMSCs neuronal differentiation144.  378 

EZH2 could affect cell fitness through the downregulation of miR-708, which modulates the 379 

phosphorylation of AKT/FOXO1 through the post-transcriptional inhibition of sestrin 3 (SESN3)143, 380 

triggering cell proliferation, survival and NED. MiR-708 also modulates the expression of the ER 381 

protein neuronatin, an inhibitor of the SERCA pump. Through this mechanism, miR-708 reduces the 382 
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activation of ERK and FAK, suppressing cell migration and metastases147 and induces apoptosis 383 

through the ER-stress pathway148.  384 

EZH2 also regulates cell fate by modulating mitochondrial calcium uptake. In head and neck cancer, 385 

the inhibition of EZH2 mediated by DZNep (3-deazaneplanocin A) triggers mitochondrial-mediated 386 

apoptosis by affecting the activity of calcium uniporter regulator MICU1149. Notably, DZNeP has 387 

been employed successfully in pre-clinical models of PCa. The authors reported inhibition of 388 

Polycomb repressive complex 2 (PRC2; composed of EED, EZH2, SUZ12) in prostate cells treated with 389 

a nontoxic dose of DZNeP but not in non-tumour cells. The treatment caused G0/G1 arrest in the 390 

LNCaP and apoptosis in the DU145 cells. In addition, SNAIL and TGFBR2 were inhibited by DZNeP 391 

treatment in DU145, affecting cell invasion processes. Thus, this epigenetic drug reduces stemness 392 

markers and affects EMT through increased expression of E-cadherin (CDH1), which is usually 393 

downregulated by EZH2/SNAIL cooperation150. These evidence highlight a critical role for epigenetic 394 

modifications in PCa progression and of particular interest is the intricate network through which 395 

EZH2 orchestrates calcium signalling, which has just started to be unveiled, especially in PCa. 396 

Calcium signalling in PCa progression 397 

PCa progression is marked by alterations in cellular calcium influx, efflux, and storage92 (FIG. 3). At 398 

each stage of PCa, different alterations of calcium-dependent signalling play a key role. 399 

Calcium signalling in PCa proliferation and survival 400 

Changes in the expression of calcium toolkit genes can be determinant in early cancer development, 401 

diminishing cell death and apoptosis and enhancing cell proliferation114,115,124. For example, in PCa 402 

cells, the expression of ORAI1/STIM1 is required for pro-apoptotic stimuli to cause cell death151. 403 

SOCE mediated by ORAI1/STIM1 was observed to be the principal source of calcium influx that was 404 

involved in triggering apoptosis. By affecting the SOCE activity, downregulation of ORAI1 protects 405 

the cells from diverse apoptosis-inducing pathways, and is associated with apoptosis resistance in 406 

androgen-independent PCa cells152,153. 407 

Slightly conflicting evidence emerged when evaluating the role of ORAI3154,155. Dubois et al. reported 408 

overexpression of ORAI3 in PCa tissues from 15 patients compared with normal-matched tissues. 409 

The expression of ORAI3 progressively decreased when comparing LNCaP, DU145, and PC3. When 410 

silencing ORAI1, ORAI2, ORAI3, or STIM1, the authors observed that only STIM1 and ORAI1 affected 411 

SOCE in LNCaP, DU145, and PC3 cells, suggesting that ORAI2 and ORAI3 did not participate in SOCE. 412 
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Moreover, the silencing of any ORAI family member, but not STIM1, resulted in increased NFAT-413 

mediated proliferation in LNCaP, suggesting a SOCE-independent effect. 414 

The overexpression of ORAI3 in PC3 cells, but not in LNCaP, resulted in a significant reduction of 415 

thapsigargin-induced SOCE and a consequent apoptotic resistance. Similar results were obtained in 416 

xenograft models, where the overexpression of ORAI3 led to increased tumour size due to the 417 

enhanced proliferation rate and apoptotic resistance154. 418 

Interestingly, ORAI3 overexpression promotes the formation of ORAI1-ORAI3 hetero-multimeric 419 

calcium-selective channels that are activated by arachidonic acid, and mediate calcium influx 420 

independently of SOCE. The ORAI1/ORAI3 ratio can affect the formation of ORAI1 homo-multimers, 421 

which are essential in supporting susceptibility to calcium-dependent apoptosis. Based on these 422 

results, the authors concluded that ORAI1-ORAI3 channel predominance confers apoptosis 423 

resistance by inhibiting SOCE, and enhances proliferation in PCa cells via an NFAT-dependent 424 

pathway 154,156.  425 

On the other hand, Holzmann et al. reported lower levels of ORAI3 in PCa than in normal tissues155. 426 

According to the authors, the ORAI1/ORAI3 ratio progressively increased when comparing primary 427 

cultures of human prostate epithelial cells (hPEC), LNCaP, DU145, and PC3. 428 

Concerning the involvement of ORAI3 in SOCE, the authors observed that siRNA-mediated silencing 429 

of ORAI3 caused a significant increase of thapsigargin- and IP3-induced SOCE in LNCaP but did not 430 

affect DHT-induced SOCE in hPEC155. Despite some differences in the results, which may depend on 431 

the patient heterogeneity and different experimental conditions, both groups showed that, under 432 

certain circumstances, an imbalance in the ORAI1/ORAI3 ratio could inhibit the activation of SOCE, 433 

resulting in an ontogenetic shift.  However, additional studies are needed to better characterize the 434 

expression profile and the clinical relevance of ORAI3 in PCa patients. 435 

Other calcium signalling mediators also participate in cellular proliferation and tumour growth in 436 

PCa. For instance, a study on LNCaP cells revealed that the enhanced cell growth promoted by EGF 437 

(epidermal growth factor) correlates with SERCA2b expression, leading to increased organellar 438 

calcium storage without any variation in cytosolic concentration. The authors propose that the 439 

increase of SERCA2b protein expression regulates ER luminal calcium concentration thereby 440 

promoting cell proliferation157. 441 

Modulation of TRP superfamily expression is linked to PCa development and can enhance cellular 442 

proliferation through different mechanisms106. In PCa, TRPM7-dependent increase in cytosolic 443 

calcium concentration leads to the activation of calcium/CAM-dependent kinases, which, in turn, 444 
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mediates the activation of ERK158,159. Phosphorylated ERK modulates the expression and activity of 445 

cyclin D1, Cdk4/6 and other cell cycle-related proteins, leading to increased proliferation160,161. 446 

Similar mechanisms may drive the cell cycle progression promoted by TRPC6. In DU-145 and PC-3 447 

cells, stimulation with Hepatocyte Growth Factor (HGF) resulted in a TRPC6-mediated calcium entry 448 

and enhanced proliferation. The inhibition of TRPC6 abolished the HGF-induced proliferation and 449 

caused a G2/M cell cycle arrest. Moreover, the overexpression of TRPC6 resulted in an HGF-450 

independent cellular proliferation. These data suggest that TRPC6 could enhance the proliferation 451 

rate by affecting the G2/M transition162. Interestingly, a study of oesophageal cancer cell lines 452 

revealed that the blockade of TRPC6 inhibited both the calcium entry and the activation of the Cdk2. 453 

The authors hypothesized that TRPC6 could promote the G2/M progression through the activation 454 

of Cdk2, possibly mediated by CaM or the calcium/CaM dependent phosphatase calcineurin, known 455 

for their role in the cell cycle progression83. 456 

Similarly, the expression of TRPM4, increases in PCa compared with matched non-cancerous tissues, 457 

and is associated with PCa progression163,164. TRPM4 promotes the inactivating phosphorylation of 458 

glycogen synthase kinase, GSK-3β; a kinase involved in the proteolytic degradation of several 459 

targets165. This TRPM4-mediated inactivation of GSK-3β stabilizes the transcription factor β-catenin, 460 

promoting the expression of c-Myc and cyclin D1, thereby enhancing cellular proliferation166,167.  461 

As summarized in FIG. 2 and Table 1, other TRPs, including TRPM2168, TRPM8169,170, and TRPV6171 462 

are dysregulated in early-stage PCa and contribute to cancer growth and progression, albeit through 463 

mechanisms that are not yet fully elucidated.  464 
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Table 1: TRP superfamily components involved in regulation of calcium signalling during PCa progression 465 

 466 

Calcium signalling in metastatic castration-resistant PCa 467 

Metastatic spreading is a multistep process leading to the dissemination of primary cancer cells to 468 

distant organs186. Emerging evidence shows that calcium-dependent processes are essential in 469 

metastatic steps, including cell deformation, invasion, migration and adhesion80. In PCa cellular 470 

models, STIM1 promotes the EMT and cellular migration and invasion through the activation of 471 

PI3K/AKT, resulting in the acquisition of a metastatic phenotype187. The overexpression of TRPM4 472 

in PCa has been linked to increased migration in DU145 and PC3 cells163. This result has been 473 

confirmed in a TRPM4 knockout cell line DU145 that, compared with wild-type DU145 cells, 474 

exhibited reduced migratory ability and reduced adhesion rate188. 475 

Channel Regulation PCa Stage Ion flux Mechanisms of action Phenotypic effect Ref. 

TPRM2 ↑ HG PCa ↑Ca2+[i] 

TPRM2 expression negatively 
influences with expression of 
apoptosis and autophagy- 
related genes and promotes 
cellular proliferation 

Autophagy and 
proapoptotic stimuli 
inhibition and increased 
proliferation 

(168,172,173)  

TRPM4 ↑ HG PCa ↑Ca2+[i] 

TRPM4 mediates the 
activation of β-catenin (via 
GSK-3β inhibitions) and AKT 
phosphorylation 

Cell cycle related genes 
activation  

(166,174) TRPM4 mediates the 
inhibition of GSK-3β 
stabilizing Snail1 and 
enhancing the expression of 
EMT markers 

Acquisition of 
metastatic phenotype 

TRPM7 ↑ LG PCa ↑Ca2+/Mg2[i] 

TRPM7 promotes the 
activation of the MAPK/ERK 
pathway enhancing the 
expression of cell cycle genes 

Enhanced proliferation 
rate 

(159,175–177)  

Activation of EMT-related 
transcription factors via 
PI3K/Akt pathway 

Acquisition of 
metastatic phenotype 

TRPM8 

↑ LG PCa ↑Ca2+[i] 

In hypoxic conditions, 
TRPM8-induced calcium entry 
results in the inactivating de-
phosphorylation of RACK1 
and HIF-1α activation 

Expression of growth-
related genes 

(178–182) 

↓ HG PCa ↓Ca2+[i] 
TRPM8 degradation leads to 
the activation of FAK 

Suggest tumour-
suppressive role in 
advanced PCa 

TRPV2 ↑ HG PCa ↑Ca2+[i] 
TRPV2 enhances the 
expression of EMT markers 

Enhanced cellular 
migration and adhesion 

(183,184) 

TRPV6 ↑ 
LG PCa 
HG PCa 

↑Ca2+[i] 

TRPV6 stimulates NFAT-
dependent genes 
transcriptions 

Cell proliferation/ 
apoptosis resistance 

(171,185) 

Activation of EMT markers 
Acquisition of 
metastatic phenotype 

TRPC6 ↑ LG PCa ↑Ca2+[i] 
TRPC6 affects the G2/M 
transition 

Enhanced proliferation 
rate 

(83,162) 

 ↓: Downregulation; ↑: Upregulation; HG: high grade; LG: low grade; [i]: intracellular concentration 



17 
 

As discussed above, TRPM4 promotes the inhibitory phosphorylation of GSK-3β through the 476 

modulation of intracellular calcium levels165. GSK-3β mediates the proteolytic degradation of Snail1, 477 

a transcription factor critical for the expression of EMT markers165. Thus, the TRPM4-mediated 478 

inhibition of GSK-3β stabilizes Snail1, thereby inducing the expression of EMT markers N-cadherin, 479 

vimentin, and MMP9174. 480 

Other TRP channels are also involved in the metastatic transformation of PCa. Among these, TRMP7, 481 

which is upregulated in metastatic PCa tissues175, and promotes the EMT by stimulating the 482 

expression of MMPs in PC3 and DU145175, possibly through the activation of PI3K/AKT as shown in 483 

other cell types189–191. Intriguingly, the TRPM7-induced EMT in PCa could depend on the TRPM7-484 

mediated Mg2+ influx rather than on calcium dynamics176, as also suggested by studies showing a 485 

link between TRPM7, Mg2+ homeostasis, and the PI3K/AKT pathway192,193.  486 

Of particular interest is the role of TRPM8, which seems to exert a protective effect in advanced, 487 

androgen-insensitive forms of PCa. TRPM8 expression changes during the various stages of PCa 488 

progression, with a high expression characterizing the initial, androgen-sensitive stages, followed 489 

by a marked downregulation in the more advance and aggressive forms of PCa194,195. In androgen-490 

sensitive LNCaP cells, TRPM8 seems to promote cellular proliferation and survival169,196,197. 491 

However, in androgen-insensitive DU145 and PC3 cells, TRPM8 exerts an anti-proliferative and pro-492 

apoptotic effect179,180,198. Moreover, a study by Grolez et al. using a prostate orthotopic xenograft 493 

mouse model highlighted that the overexpression of TRPM8 inhibited tumour growth and 494 

metastases181. In this study, the authors reported that the observed growth inhibition was mediated 495 

by a cell cycle arrest in the G0/G1 phase, accompanied by a downregulation of Cdk4/6. Additionally, 496 

TRPM8 reduced the Cdc42 and Rac1 activity and inhibited the phosphorylation of ERK and FAK, 497 

which are essential for cell adhesion and migration181. Overall, most lines of evidence indicate a 498 

protective role for TRPM8 in androgen-insensitive PCa stages179–181,198. TRPV2 and TRPV6 are other 499 

TRPs channels upregulated in advanced PCa that promote the acquisition of a metastatic behaviour 500 

by enhancing the expression of EMT markers through mechanisms that still need to be 501 

elucidated183–185. 502 

Taken together, these research works suggest that alterations in the expression or activity of 503 

calcium-signalling mediators drive the acquisition of a metastatic phenotype by inducing the 504 

expression of various EMT-related proteins such as MMPs, N-cadherin, and cathepsin B.  505 

Interestingly, AKT could stabilize the EMT-inducing transcription factors (SNAIL, TWIST and ZEB), 506 

either by their direct phosphorylation or by promoting the degradation of GSK-3β165. At the same 507 
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time, the activity of STIM, TRPM4, and TRPM7 has been linked with the activation of the PI3K/AKT 508 

pathway and increased migratory ability166,175,187,192,193. Thus, we could speculate that some calcium 509 

signalling mediators may participate in the metastatic process by inducing the activation of AKT, 510 

which, in turn, stabilizes the EMT-related transcription factors leading to the increased expression 511 

of the EMT-markers.  512 

TTCCs in neuroendocrine PCa trans-differentiation 513 

The acquisition of androgen-independent phenotypes and the appearance of differentiated 514 

neuroendocrine cells are critical steps in the progression of PCa8. Dysregulation of AR signalling in 515 

PCa cells evokes an overexpression of TTCCs and increased cytosolic calcium, resulting in significant 516 

morphological and biochemical changes42,199. In LNCaP cells, the differentiation of neurite-like 517 

processes and the expression of tubulin IIIβ and neurotensin neuroendocrine markers were 518 

detected after treatment with bicalutamide or hormone-depleted media42. The resulting increased 519 

expression of TTCCs correlates with the morphological differentiation observed in cells undergoing 520 

NED and the reversion of NED phenotypes after the blockade of functional channels. Comparable 521 

results have been obtained after stimulation of LNCaP cells with sodium butyrate (NaBu). NaBu-522 

induced NED has been associated with increased mRNA and protein expression of Cav3.2 and 523 

TRPM8200,201. Additionally, the current density of Cav3.2 was significantly increased during the NED 524 

in LNCaP cells, where Cav3.2 mediates the calcium-dependent secretion of mitogenic factors 525 

upregulated during neuroendocrine-like differentiation40,41,202. This evidence indicates the 526 

involvement of Cav3.2 in NED during PCa progression. 527 

Calcium signalling and the PCa microenvironment 528 

Cancer stroma is a complex environment that includes noncellular extracellular matrix (ECM), 529 

fibroblasts, epithelial, endothelial, and immune cells203. The stroma provides nutrients, oxygen, and 530 

signalling molecules supporting tumour growth204. Generally, the growing tumour triggers an 531 

unphysiological pressure against the surrounding stroma leading to pathological cellular responses 532 

mediated by mechanosensitive ion channels205. In different cellular cancer models, including PC3 533 

cells, the pressure‐sensitive calcium channel Cav3.3 promotes cellular proliferation in response to 534 

the growing extracellular pressures, involving the PKC‐β/IKK/IkB/NF-кB pathway206 (FIG. 4). Hypoxia 535 

is another common characteristic of PCa and is associated with aggressiveness and resistance to 536 

treatments207. Organotypic PCa culture revealed expression of EMT-related transcription factors 537 

Snail, Zeb1 and SK3, which are triggered by hypoxia and enhanced SOCE-mediated calcium influx, 538 

increasing PCa cell migration and aggressiveness208,209. Moreover, SOCE activity increase as a result 539 
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of the CaV1.3 overexpression that occurs during ADT210. Previously work found CaV1.3a1 isoform 540 

overexpressed at both mRNA and protein levels, especially among CRPC, and mediates Ca2+ influx 541 

under androgen stimulation211. Moreover, under hypoxic conditions, cells knockdown for CAV3.1 542 

and treated with ADT showed a lower HIF-1α expression in ADT-sensitive cells but increased in CRPC, 543 

with a significant reduction of cell survival. These works suggest that CaV1.3 promotes the 544 

upregulation of SOCE and modulates HIF signalling contributing to treatment resistance and CRPC 545 

progression199,211 (FIG. 4). 546 

Additionally, TRPM8 overexpression promotes cell growth under hypoxic conditions in LNCaP cells 547 

and LNCaP-derived xenograft models178. The hypoxic cellular growth is mediated by HIF-1, tightly 548 

regulated by the ubiquitin-mediated degradation of its α subunit (HIF-1α). Mechanistically, TRPM8-549 

induced calcium entry results in the inactivating de-phosphorylation of RACK1. Since RACK1 550 

mediates the proteolytic degradation of HIF-1α, its inactivation promotes the stabilization of this 551 

latter, allowing the expression of the growth-related downstream genes178 (FIG. 4). A similar 552 

mechanism was reported by Yang et al. for TRPM7 in DU145 and PC3 cells, in which knocking down 553 

the expression of TRPM7 resulted in increased RACK1-mediated inhibition of HIF-1α and a 554 

consequent reduction of cell growth under hypoxic conditions177. Moreover, evidence suggest the 555 

involvement of reactive oxygen species (ROS) in enhancing intracellular Ca2+ in PCa cells212,213. H2O2 556 

exacerbates its function through TRPM2 channel causing an actin cytoskeleton remodeling, which 557 

results in enhanced cell migration212. Despite TRPM2 mediates the influx of both, Ca2+ and Zn2+, Zn2+ 558 

concentration has the predominant role in regulating the ROS-related response in cancer cells212. 559 

Moreover, an increased ORAI1/ORAI3 ratio makes prostate cancer cells especially prone to H2O2-560 

induced SOCE inactivation, and sensible to ROS-induced cell death213. 561 

Calcium signalling also participates in bone homing during the metastatic process92. The high 562 

calcium concentration in the bone microenvironment activates the calcium-sensing receptor (CaSR), 563 

which is frequently overexpressed in PCa cells derived from skeletal metastasis (e.g., PC-3 cells)214. 564 

Activation of the CaSR evokes cytosolic calcium signals and increases cellular proliferation and 565 

attachment to the bone ECM215. While the exact mechanisms through which CaSR exerts its effects 566 

on metastasis are still debated, its activation correlates with the stabilization of proteins involved in 567 

the cell cycle progression. Additionally, calcium-mediated activation of AKT has been observed 568 

during the PCa bone homing, although the putative link with the CaSR needs to be elucidated214.  569 
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In conclusion, the microenvironment provides cancer-promoting signals that are translated through 570 

calcium-mediated pathways, setting up the cascade of events that lead to the onset of a more 571 

severe cancer phenotype. 572 

Clinical significance of calcium signalling disruption in PCa 573 

With calcium signalling participating in most of the cancer hallmark processes, it is not surprising 574 

that much research has focused on targeting components of the calcium signalling toolkit for 575 

potential novel therapies. However, no calcium signalling-targeting drug is currently used to treat 576 

solid tumours9, partially due to the universality of cellular calcium signalling and the consequent 577 

challenge of targeting molecules expressed by cancer cells without affecting critical physiological 578 

processes elsewhere.  579 

Mipsagargin derives from the SERCA inhibitor thapsigargin conjugated with a prostate-specific 580 

membrane antigen (PSMA)-recognized peptide carrier, which limits its toxicity to PSMA-expressing 581 

cells and their microenvironment with limited adverse effects216. By inhibiting the SERCA pump, 582 

mipsagargin causes prolonged depletion of ER calcium storage, persistent activation of SOCE and 583 

chronic increased cytosolic calcium concentration, leading to the induction of MPT and 584 

apoptosis217,218. Numerous studies have identified that thapsigargin treatment leads to acute cell 585 

death. However, increased expression of Bcl-2 promotes the survival of cancer cells by ameliorating 586 

the toxic effects of chronic calcium signalling219. In human prostatic adenocarcinoma DU145 cells, 587 

increased Bcl-2 expression significantly increased chemoresistance to thapsigargin220.  588 

In phase I and II clinical trials involving patients with advanced solid tumours, mipsagargin was well 589 

tolerated, with limited severe adverse effects (SAE)221,222. Moreover, even if no objective responses 590 

were observed, mipsagargin prolonged disease stabilization in hepatocellular carcinoma 591 

patients221,222. These observations were encouraging, and several trials are ongoing to assess the 592 

antitumor potential of mipsagargin223–225, with the PSMA-mediated activation suggesting the 593 

potential of this drug also for the treatment of PCa.  594 

The observation that blocking TTCCs reduces cell proliferation by inducing a G1/S cell cycle arrest 595 

suggests that TTCC blockers could sensitize cancer cells to classical chemotherapeutic drugs226,227. A 596 

sequential therapy based on the TTCC blocker mibefradil and the chemotherapeutic drug 597 

temozolomide (TMZ) has been proposed to treat glioblastoma multiforme228. In phase I clinical trial 598 

enrolling 27 high-grade gliomas (HGGs) patients, this combination was well tolerated, with only 599 

three Grade 3 Adverse Events (AE) reported228. Interestingly, a significant reduction in standardized 600 

uptake value (SUV) signal was reported in 2 out of 10 patients who underwent PET imaging, 601 
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suggesting the potential anticancer activity of this combination228. However, this first trial had some 602 

limitations. Firstly, the reasons behind the reduction in SUV peak and its clinical significance 603 

remained elusive. Additionally, since the trial included TMZ, establishing the actual contribution of 604 

mibefradil in the observed response was not feasible. Nonetheless, these results pave the way for 605 

further studies investigating the role of mibefradil as an anticancer agent in cancer expressing 606 

TTCCs, including NEPC. 607 

TRPV2 and TRPV6 represent other targets with potential clinical implications for PCa27. The search 608 

for specific TRPV6 inhibitors culminated with the development of SOR-C13, a soricidin-based high-609 

affinity antagonist of TRPV6229. SOR-C13 recently underwent a phase I clinical trial involving 23 610 

patients affected by solid tumours of epithelial origin230. During this trial, 16 patients experienced 611 

AE possibly related to SOR-C13 administration. No SAE was observed, confirming that SOR-C13 was 612 

well tolerated. Additionally, a promising anticancer activity was observed, with disease stabilization 613 

reported in 12 out of 22 patients. Interestingly, a tumour diameter reduction (up to 27%) was 614 

reported in two patients affected by pancreatic ductal adenocarcinoma230. A phase Ib trial is 615 

currently ongoing on a second cohort of patients to determine the maximum tolerated dose and 616 

further evaluate the anticancer potential of SOR-C13231.  617 

With respect to TRPV2, tranilast is the most widely studied inhibitor. Tranilast induces cell cycle 618 

arrest and apoptosis, and reduces the release of TGF-β1 from bone-derived stromal cells, suggesting 619 

that it could suppress metastatic phenotypes232. In the first-in-human pilot study in 21 advanced 620 

CRPC patients, the administration of tranilast was safe and well-tolerated, with AEs occurring only 621 

in two patients233. Interestingly, cancer progression was inhibited in five CRPC patients with bone 622 

metastases. Moreover, tranilast improved the overall survival of CRPC patients when compared to 623 

the standard docetaxel-based regimen, with a reported overall survival of 74.5% and 61.5% at 12 624 

and 24 months, respectively. However, different experimental settings complicated an accurate 625 

comparison between the two treatment regimens, and additional data are warranted to establish 626 

the clinical efficacy of tranilast. In this respect, a phase I/II trial on patients affected by oesophageal 627 

cancer is ongoing to evaluate the safety and activity of tranilast in a combination therapy regimen234.  628 

SOCE is another mechanism of Ca2+ entry involved in PCa development. Targeting SOCE by inhibiting 629 

STIM1 or ORAI1 could reduce cancer cell proliferation and metastatic potential. 630 

Carboxyamidotriazole (CAI) is an inhibitor of calcium entry active on SOCE, VGCE, and RMCE235–237 631 

that significantly inhibits cell proliferation and invasiveness in LNCaP, DU145, and PC3 cells238. In a 632 

Phase I clinical trial, CAI was administered to 49 patients with refractory solid tumours. Among the 633 
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evaluable patients, 49% showed disease stabilization239. Two other trials on patients with refractory 634 

solid tumours, evaluating the clinical benefits of combining CAI with the cytotoxic agent paclitaxel 635 

(PAX), reported encouraging results240,241. In these trials, the combination of CAI and PAX did not 636 

result in cumulative/additive toxicity, and grade 3 toxicity was rare, suggesting the tolerability of 637 

this regimen240. When evaluated in 27 patients with relapsed refractory solid tumours, this regimen 638 

led to a response rate of 5/11 (45%) in relapsed epithelial ovarian cancer and 1/4 (25%) squamous 639 

cell cervical carcinoma patients, suggesting the potential benefits of this regimen, especially in 640 

treating patients with gynaecological malignancies241. However, in the only trial enrolling patients 641 

with androgen-independent PCa and soft tissue metastases, CAI did not show any clinical activity, 642 

with all the 14 evaluable patients showing progressive disease after two months242. Other SOCE 643 

inhibitors exist, some of which have shown promising results in pre-clinical models, but trials are 644 

needed to evaluate the actual clinical benefit of these molecules for the treatment of PCa and other 645 

malignancies243. 646 

Concerning the chromatin remodelers, different drugs are available for targeting EZH2244. 647 

Tazemetostat, an inhibitor of the EZH2 methyltransferase activity, is the most studied: its safety and 648 

efficacy were evaluated in 126 patients affected by haematological malignancies and 105 patients 649 

affected by solid cancers in four different phase I/II clinical trials245–247. These trials showed that 650 

tazemetostat was well tolerated, with patients experiencing mainly low-grade AE. SAEs were 651 

reported only by two patients with epithelioid sarcoma246. Moreover, tazemetostat induced an 652 

objective response rate between 38% and 69% in haematological patients245,247,248 and 5% and 15% 653 

in patients affected by advanced solid cancers245,246. Phase I and I/II clinical trials are currently 654 

ongoing to evaluate the safety and activity of tazemetostat in a combination therapy regimen for 655 

metastatic CRPC249,250.  656 

Other inhibitors of EZH2 methyltransferase activity exist, including CPI-1205251–253, GSK126254,255, 657 

PF-06821497256 and the dual inhibitor of EZH1 and EZH2 DS-3201b257–261, as summarized in Table 2. 658 

Notably, since EZH2 can activate AR262, clinical trials are ongoing to assess whether combining EZH2 659 

and AR inhibitors can improve their anticancer effect250,253. The next few years will be crucial to 660 

determine the clinical relevance of calcium signalling-targeting strategies for treating PCa. However, 661 

these results suggest that targeting dysregulated or remodelled calcium signalling machinery may 662 

lead to the development of novel and effective agents for cancer treatment. 663 
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Table 2: calcium-signalling targeting drugs under development for cancer therapeutic purposes. 664 

Conclusions 665 

Altered calcium signalling plays a pivotal role in a plethora of cellular events promoting PCa 666 

development, drug resistance and metastatic dissemination. Evaluations using different PCa models 667 

and patient databases (Box 1) have contributed to identifying the calcium signalling-related genes, 668 

pathways, and downstream effectors involved in these oncogenic processes. Research on patient-669 

derived xenograft models has corroborated these observations and highlighted the clinical 670 

significance of calcium signalling alterations, allowing the identification of novel putative 671 

therapeutic targets. These emerging lines of evidence suggest a preliminary map of the complex 672 

interactions between calcium signaling and clinical prostate cancer progression (FIG. 5). Whilst a 673 

complete understanding of this phenomenon is still lacking, it is evident that some calcium-relevant 674 

genes (e.g. EZH2) promote oncogenic progression at all stages of malignant transformation. Other 675 

genes (e.g. ORAIs) play a stage-specific role and may work as oncogenes or tumour suppressors, 676 

depending on cancer cell context and on the interaction between the tumour and its 677 

microenvironment. Due to the crucial role of calcium in most physiological processes, targeting 678 

cellular calcium signalling machinery is proving a difficult task. Indeed, to avoid unacceptable 679 

adverse effects, ideal therapeutic targets should be expressed only by cancer cells, or their 680 

Drug Target Type Mechanisms 
Key  

References 
Clinical  
Trials 

Trials  
Phases 

Trials  
Conditions 

Mipsigargin 
SERCA-
pump 

PSMA-
activated 

inhibitor of the 
SERCA pump 

Triggers apoptosis 
through the 

inhibition of the 
SERCA pump 

(263–265) (216,221–225) I/II 

Reccurrent/progressive 
glioblastoma; 

clear renal cell carcinoma; 
prostate cancer 

Mibefradil 
T-type 
VGCC 

Inhibitor of 
VGCCs 

Promotes a G1/S 
cell cycle arrest 
by blocking the 
TTCC-mediated 

Ca2+ current  

(266) (228) I 
Recurrent glioblastoma 

multiforme; 
reccurrent glioma 

SOR-C13 TRPV6 
Sorcidin-based 

inhibitor of 
TRPV6 

Inhibits the 
calcium uptake 

via TRPV6, 
reducing cell 
proliferation  

(229)  (230,231) I 

Advanced TRPV6-
expressing cancers; 

advanced refractory solid 
cancers 

Tranilast TRPV2 
Inhibitor of 
TRPV2 and 

other targets 

Suppresses the 
metastatic 

phenotype by 
inhibiting the 

TGF- β1 release 
from bone-

derived stromal 
cells 

(232) (233) I 
Metastatic castration 

resistant prostate cancer; 
esophageal cancer 

Tazemetostat 
CPI-1205  
 GSK126 

PF-06821497 
DS-3201b 

EZH2 EZH2 inhibitors 
Inhibit the EZH2 

methyltransferase 
activity 

(244) 
(246–253,256–

261) I/II 
Wide range of solid and 
haematological cancers, 

including prostate cancer 
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expression should be associated with an entirely discrete gain/loss of function. In this context, data 681 

on the expression/function of the calcium signalling mediators in PCa patients is needed and would 682 

represent a precious resource for developing specific drugs with limited side effects. Nevertheless, 683 

many drugs that target calcium signalling have been developed, some of which have undergone 684 

phase I/II clinical trials showing a good safety profile. Currently, most of these drugs have been 685 

evaluated in a limited number of heterogeneous patients affected by different malignancies, and 686 

only a few studies exist specifically enrolling PCa patients. Currently, none of these studies has led 687 

to the identification of a drug with significant clinical activity. Undeniably, calcium signalling 688 

machinery represents a fascinating target for cancer therapy. However, the pharmacological 689 

opportunities offered by calcium signalling and its clinical benefits need further elucidation. In the 690 

future, intensive investigations in this field are likely to produce specific drugs that could act as a 691 

single agent or in combination with current therapies for the treatment of PCa and other 692 

malignancies. 693 
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Key points 1280 
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 Calcium is a ubiquitous ion playing crucial roles in many cellular pathways. 1281 

 Aberrations in calcium signalling can result in pathogenic phenotypes, including cancer. 1282 

 The onset and progression of prostate cancer are characterized by a deregulation of several 1283 

calcium signalling mediators. 1284 

 Targeting calcium signalling mediators is a promising strategy for developing novel drugs for 1285 

treating prostate cancer and other malignancies. 1286 


