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Highlights 18 

- Reusing drainage water can save 20% water and fertilisers 19 

- Reusing drainage water can abate over 50% freshwater and marine eutrophication 20 

- Reuse strategies are viable (net present value over 20 years > € 400000) 21 

- Avoiding substrate landfilling increases the profitability of reuse technologies 22 

- Cascade cropping and closed-loop fertigation are eco-efficient reuse technologies 23 

 24 
 25 

Abstract 26 

The objective of this study is to provide decision makers and policy makers with adequate 27 

information to support the diffusion of reuse strategies in Mediterranean greenhouses. Sixteen 28 

alternative scenarios are compared through eco-efficiency analysis, combining four technologies to 29 

manage drainage water (open-loop fertigation vs. wastewater treatment plant vs. cascade cropping 30 

vs. closed-loop fertigation) with two substrate materials and two substrate management options at 31 

end-of-life. System differences are modelled through detailed primary data, collected and validated 32 

via a multi-step process. Results show that cascade cropping and closed-loop fertigation have, 33 

respectively, the highest and second-highest eco-efficiency, with respect to their ability to reduce 34 

freshwater eutrophication (up to -6,63 kg P) and marine eutrophication (up to -47.1 kg P eq), while 35 

generating profits for the farmer. Selecting a biodegradable substrate and reusing it on farm can 36 

increase greenhouse profitability by 20%. This article is a new contribution to the literature by (i) 37 

supporting the improvement and harmonisation of eco-efficiency analysis in the agricultural sector;38

(ii) providing a comprehensive comparative assessment that is missing from the published literature; 39 

(iii) giving special emphasis to data and the data collection process, to provide input to further 40 
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research; (iv) by generating lessons learnt of practical usefulness for reducing uncertainty in decision41

making and policy making; (v) by delivering policy recommendations to address key barriers to the 42 

diffusion of eco-efficient greenhouse cropping. The involvement of local and multidisciplinary 43 

stakeholders is required to improve the methodological approach and the acceptability of the proposed 44 

solution, especially in case of trade-offs among the different impact domains, and to identify and 45 

prioritise tailored interventions on the conditions and stakeholder needs.  46 

 47 

Keywords: Impact assessment; horticultural substrate; closed-loop fertigation; cascade 48 

cropping; wastewater treatment; future cash flows 49 

 50 

Nomenclature 51 

Scenarios-subscenarios 52 

BAU: business as usual 53 

WWTP: wastewater treatment plant 54 

CSC: cascade cropping 55 

CLS: closed-loop fertigation 56 

sw-o: stone wool, ordinary management of exhausted substrate (landfill) 57 

sw-r: stone wool, reuse of exhausted substrate (recycling) 58 

cp-o: coir pith, ordinary management of exhausted substrate (land spreading) 59 

cp-r: stone wool, reuse of exhausted substrate (composting) 60 

Life cycle assessment 61 

AC: Acidification 62 

CC: Climate change 63 

FET: Freshwater toxicity 64 

FE: Freshwater eutrophication 65 

HTC: Human toxicity cancer 66 

HTnC: Human toxicity non-cancer 67 

LU: Land use 68 

ME: Marine eutrophication 69 

MFR: Mineral, fossil and renewable resource depletion 70 

OD: Ozone depletion 71 

POF: Photochemical ozone formation  72 

TE: Terrestrial eutrophication73

WRD: Water resource depletion 74 
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Life cycle costing75

TCOP: Total costs of production 76 

NPV: Net present value 77 

PI: Profitability index 78 

 79 

1. Introduction 80 

1.1. Research motivation and objective 81 

Greenhouse horticulture faces the challenge of how to meet the growing demand for fresh 82 

vegetables, while reducing the impacts on the environment and human health and ensuring 83 

agricultural viability (Euromonitor International, 2018; Pretty and Bharucha, 2014; Thompson et al., 84 

2020). Addressing this challenge is crucial to the achievement of Sustainable Development Goals 85 

while meeting planetary boundaries (Rockström et al., 2009; Sutton et al., 2021; UN, 2015), and to 86 

enable sustainable healthy diets, including greater consumption of fresh vegetables (FAO and WHO, 87 

2019; Mason-D’Croz et al., 2019; Yin et al., 2020). In the European Union, addressing that challenge 88 

would contribute to achieving the zero pollution ambitions of the European Commission’s Green89 

Deal (European Commission, 2020a) and more specific objectives of the Farm to Fork Strategy 90 

(European Commission, 2020b) and the Circular Economy Action Plan (European Commission, 91 

2020c).  92 

In Europe, key greenhouse vegetables are produced year-round in unheated greenhouses in 93 

Mediterranean countries, using soilless systems (i.e. on cultivation substrates) (Incrocci et al., 2020; 94 

Massa et al., 2020). Compared to soil cropping, soilless cropping has a greater efficiency of fertiliser 95 

and water use (Savvas et al., 2013; Savvas and Gruda, 2018), given the better water retention 96 

properties of substrates compared to soil (Nikolaou et al., 2019; Putra and Yuliando, 2015). However, 97 

in Mediterranean countries soilless cropping generates serious environmental impacts, due the great 98 

diffusion of open-loop fertigation, where the excess nutrient solution after meeting crop needs 99 

(drainage water) is discharged to the ground (Grewal et al., 2011; Thompson et al., 2020). Adopting 100 

strategies to reuse drainage water can save up to 40% irrigation water and up to 50% emissions from 101 

fertilisers, without significantly affecting crop productivity (Grewal et al., 2011; Komosa et al., 2011; 102 

Meric et al., 2011). Besides drainage water, reuse strategies should consider at least the management 103 

of the cultivation substrate, a key element of soilless cropping, (Barrett et al., 2016; EIP-AGRI, 104 

2019a) and the economic feasibility of the proposed interventions, given the cost-related barriers that 105 

have prevented environmental sustainability improvements in commercial Mediterranean 106 

greenhouses (EIP-AGRI, 2019b; Juntti and Downward, 2017). Reusable substrate should be107

promoted that offers a good compromise between technological and environmental performance, and 108 
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purchase and end-of-life costs for the farmer (Barrett et al., 2016; Gruda, 2019; QUANTIS, 2012;109

Savvas and Gruda, 2018). The proposed interventions should consider incremental technologies, i.e. 110 

that can be modulated based on context-specific factors, including the ease of access to loans for the 111 

farmer (Norman and Verganti, 2014; Pearce et al., 2018).  112 

Against that background, the overarching objective of this study is to show the potential of 113 

alternative reuse technologies, to improve the environmental and economic performance of soilless 114 

greenhouse cultivation in a Mediterranean context. More specifically, this objective is achieved by 115 

addressing two research questions (RQ) that, to the best of authors’ knowledge, are still unanswered:  116 

RQ1: “What are the environmental-economic trade-offs of incremental technologies to enable 117 

the reuse of drainage water and cultivation substrate in commercial Mediterranean greenhouses?” 118 

RQ2: “What are the best value-for-money technologies, readily available on the market, that 119 

can enable the diffusion of reuse strategies across Mediterranean greenhouses in a timely manner?”. 120 

 Addressing those research questions requires a life cycle approach, as different types and 121 

quantities of materials, with different useful lives, are needed for distinct technologies and their 122 

relative maintenance (Guinée et al., 2011; Heijungs et al., 2009; Rajagopal et al., 2017). Different 123 

methods exist to consider the production inputs and outputs throughout the life cycle of a product, 124 

e.g. life cycle assessment, life cycle costing, material flow analysis, environmentally-extended input 125 

output analysis or cost-benefit analysis (Finnveden and Moberg, 2005; Hoogmartens et al., 2014). 126 

Method selection depends on the aims and scope of the study (for example material flow analysis 127 

does not include an impact assessment, environmentally-extended input-output analysis is an 128 

economy-wide assessment that can be carried out at the country or higher level (Reimann et al., 129 

2010)), which includes identifying the way how to deal with environmental-economic trade-offs, as 130 

well (Hamilton et al., 2015; Huguet Ferran et al., 2018), e.g. via multicriteria decision analysis, data 131 

envelopment analysis or eco-efficiency analysis (Cook et al., 2014; Rüdenauer et al., 2005; Stewart, 132 

1996).  133 

The adopted research method is Eco-efficiency analysis (EE), based on the combination of Life 134 

Cycle Assessment (LCA) and Life Cycle Costing (LCC) at the farm level. LCA (ISO 14040:2006; 135 

14044: 2006) and LCC (a standard exists for the building sector, ISO 15686-5:2017) are widely 136 

applied, individually or in combination, for the evaluation of alternative vegetable production 137 

technologies (Cellura et al., 2012; Peña and Rovira-Val, 2020; Sanyé-Mengual et al., 2015; 138 

Tamburini et al., 2015; Testa et al., 2014a; Torrellas et al., 2012a). LCA and LCC are suitable for 139 

micro-level assessments and well accepted and known by stakeholders (Reimann et al., 2010).  140 

Data (2014-2018) refer to a typical farm central Italy (Tuscany), the production system and141

technology of which are reasonably representative of the Mediterranean context (Almeida et al., 2014; 142 
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Cellura et al., 2012; Testa et al., 2014b). Tomatoes are just one of the many crop species that are143

suitable for soilless production. Like similar research (Hollingsworth et al., 2020), this study uses 144 

tomatoes as a reference crop because it is the most commonly grown, and the highest-value added, 145 

greenhouse crop in Mediterranean Europe (De Cicco, 2019; European Commission, 2020d). 146 

Tomatoes are the most widely consumed horticultural products in the world (OECD, 2017) and are 147 

expected to be a central crop in changing diets (European Commission, 2020d).  148 

 149 

1.2. Contribution to the relevant literature 150 

Eco-efficiency analysis (ISO 14045:2012) (Schmidheiny, 1992; WBCSD, 2005) generates 151 

evidence about the best value-for-money interventions to improve the sustainability of production 152 

systems (Caiado et al., 2017; Miah et al., 2017). Such evidence can be used to target policy support 153 

and guide decision making (Zhang et al., 2019; Zhen et al., 2020), by linking environmental impact 154 

indicators calculated via LCA with economic impact indicators (Huppes and Ishikawa, 2005a, 2005b; 155 

Rüdenauer et al., 2005; Saling et al., 2002). The EE standard does not identify a specific method for 156 

the economic impact assessment; however, researchers agree on the use of LCC, subject to internal 157 

consistency among methodological choices for LCA and LCC (e.g. system boundaries and functional 158 

units) (Kirchherr et al., 2017; Koskela and Vehmas, 2012; Saling, 2016; Todorovic et al., 2016).  159 

There are a series of EE variants, mainly differing for: (i) the use of absolute vs. relative values 160 

for the environmental and economic impact indicators; (ii) the use of a single score LCA (after 161 

normalisation and weighting) vs. individual results per impact category; (iii) the use of current vs. 162 

discounted economic values; (iv) the way how a relationship is created between the outputs LCC and 163 

LCA, i.e. by calculating a ratio, by adding them or by plotting them on a two-way graph (Huppes and 164 

Ishikawa, 2005b, 2005a; Koskela and Vehmas, 2012; UNEP/SETAC, 2008; Zhang et al., 2019).  165 

In greenhouse horticulture, EE stands on the shoulders of the large LCA literature, which is 166 

especially developed for tomatoes (Torres Pineda et al., 2020). Over the last 20 years, LCA studies 167 

have assessed different production systems to identify the opportunities for sustainable greenhouse 168 

vegetable production (Perrin et al., 2014), such as infrastructures suitable to different climates 169 

(Torrellas et al., 2012b), renewable energy (Maaoui et al., 2021), systems to improve energy 170 

efficiency (Antón et al., 2012; Dorais et al., 2014) and to close the fertigation loop (Antón et al., 2005; 171 

Page et al., 2012), cascade cropping (Muñoz et al., 2017), different lighting systems (Zhang et al., 172 

2017), to cite a few. LCAs are available to support substrate selection as well (Dorr et al., 2017; Vinci 173 

and Rapa, 2019). LCC studies are available for different greenhouse crops and production methods 174 

(Banaeian et al., 2011; Mohamad et al., 2018; Mohammadi and Omid, 2010; Testa et al., 2014a) and175

are often combined with LCAs (Peña and Rovira-Val, 2020), especially for the assessment of 176 
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innovative production systems (Sanyé-Mengual et al., 2017). The combination of LCA and LCC into177

EE has got growing attention by agricultural research (Suzigan et al., 2020), with examples from 178 

different sectors, e.g. dairy products (Forleo et al., 2018a; Skrydstrup et al., 2020), cereals (Babu et 179 

al., 2020; Chancharoonpong et al., 2021; Kumar et al., 2021; Saber et al., 2021; Todorović et al.,180 

2018), energy crops (Forleo et al., 2018b; Kochaphum et al., 2015), orchard fruit (Kim et al., 2020; 181 

Mouron et al., 2006; Müller et al., 2015), as well as horticultural crops (Mohammadzadeh et al., 2018; 182 

Sanyé-Mengual et al., 2018). In greenhouse horticulture, EE have focused on conventional vs. organic 183 

production methods (Zhen et al., 2020), crop selection in rooftop production systems (Rufí-Salís et 184 

al., 2020a), different lighting systems (Pennisi et al., 2019).  185 

This article is a new contribution to agricultural EE by supporting method development and by 186 

showing new empirical findings. First, the article supports the need for method harmonization by 187 

presenting an approach to EE that uses discounted economic values based on LCC and plots relative 188 

changes in all LCA outputs and the economic indicator on a graph. Second, the article adds evidence 189 

to the published literature by (i) reporting a structured data collection process, which results in a 190 

detailed data source for further research; and (ii) delivering a comprehensive assessment of the 191 

potential environmental-economic impacts of reuse technologies for drainage water and the substrate 192 

that can be promptly adopted by farmers. Additionally, the article will contribute to the debate on 193 

ecological transitions of agri-food systems, by providing evidence about the eco-efficiency of 194 

incremental innovation in commercial greenhouses. 195 

 196 
2. Research methods 197 

The goal of this study is to compare the cradle-to-gate eco-efficiency (LCA + LCC) of three 198 

alternative and incremental reuse technologies for greenhouse tomato production in soilless culture 199 

against the ordinary production system. The assessment is based on real-world data collected in 200 

central Italy that are representative for the sector in Mediterranean Europe, and targets researchers 201 

and decision-makers in agribusiness and agricultural policy, who need to identify, assess, and 202 

prioritise sustainability interventions, as well as to develop long-term strategies. The functional unit 203 

is the occupation of 1 ha of greenhouse area for producing soilless tomatoes for 1 year. An area-based 204 

functional unit is selected against a mass-based one for two reasons, i.e. the focus of the study on 205 

management decisions and the fact that the modelled reuse technologies do not significantly affect 206 

greenhouse productivity (Charles et al., 2006). No allocation is considered since there is only one 207 

marketable product. The system under study is defined by a series of inputs and outputs occurring at 208 

different life cycle stages (Figure 1).  209 
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210

211 
Figure 1. System boundaries. Source: Authors’ own elaboration. 212 

 213 

The foreground system is defined by the use phase, i.e. the set-up and management of soilless 214 

cultivation by farm labour, including plant training, seedling transplanting, replacement of exhausted 215 

with new substrate, use of water, electricity, fertilisers and pesticides, as well as harvesting and 216 

packing marketable tomatoes. The background system includes the production, manufacturing, 217 

assembly, maintenance, dismantling and end-of life of all the materials, resources and energy used. 218 

The outputs are emissions to the environment, drainage water and marketable tomatoes. 219 

In soilless systems, the applied nutrient solution exceeds crop needs by about 30 %, to ensure 220 

proper crop development and optimal yield (Sonneveld & Voogt, 2009)). When this surplus (drainage 221 

water) is not properly managed, like in open-loop soilless culture, crop nutrients leach to the ground 222 

and generate environmental problems (Incrocci et al., 2020; Kläring, 2001). To avoid those problems, 223 

technology is readily available for farm uptake that allows to collect the surplus solution and to reuse 224 

it for different purposes, as follows:  225 

1. Recovering water for indirect uses via treatment in a municipal wastewater treatment plant 226 

(EIP-AGRI, 2019c);  227 

2. Recovering water and nutrients for the fertigation of other soil-grown greenhouse crops or for228

growing more salt resistant soilless crops on the same farm (cascade cropping) (Elvanidi et 229 

al., 2020; García-Caparrós et al., 2018); 230 

Fertigation: water; pipelines; tanks; electronic
components; transports; electricity

Greenhouse:
seedlings; structure; interior;
tomato packaging; transports;
electricity

Outputs:
emissions;
drainage
water;
tomatoes

Fertilisers:
macro / micronutrients

Substrate:
stone wool / coir pith

Pesticides:
insecticides, fungicides

System
boundary

Crop cultivation:
transplanting;
training; fertigation;
plant protection;
harvest; packing

Foreground
system

Waste: landfilling
/ recycling /
composting /
land spreading

Background
system
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3. Recirculating drainage water on the same crop (closed-loop fertigation) (Savvas and Gruda,231

2018).  232 

Those strategies are not mutually exclusive and can be considered by the decision-maker for 233 

incremental changes. 234 

To achieve the goal of the study four scenarios are built to represent open-loop fertigation and the 235 

three reuse strategies above.  236 

To extend the usefulness of the study to the Mediterranean context, the assessment considers two 237 

widely used substrates, i.e. rockwool, as observed in the case study, and coir pith (Massa et al., 2020) 238 

and two different end-life treatments for each substrate. This is done by developing four subscenarios. 239 

Key assumptions for each scenario and subscenario are described below. 240 

 241 

2.1. Scenarios and subscenarios 242 

BAU - business as usual scenario. This scenario shows what if nothing changes compared to the real-243 

world situation observed in the case study. Key assumptions: 244 

- Direct emissions from fertilisers and pesticides: no emissions to soil are considered, as it is 245 

assumed that all soluble crop nutrients leach to water bodies and that pesticides are sprayed 246 

with closed windows (cf. Maaoui et al., 2021), so emissions to air can be calculated 247 

considering a drift fraction of 5% applied quantity of active ingredients (Juraske et al., 248 

2007). 249 

- The farmer keeps the greenhouse in optimal operating conditions, by guaranteeing the 250 

following material useful lives: concrete and metals, 20 years; fertigation/sterilisation 251 

control units, 10 years; floor mulching and plastic tanks, 5 years; the rest of plastics, 3 years, 252 

but for raffia thread, clips and wedges for plant training that are replaced twice per year; 253 

pollination hives (cardboard) are replaced twice per year; substrate, 2 years (Torrellas et al., 254 

2012a); 255 

- Waste is collected by the local waste company and sorted, based on quality, for proper 256 

allocation among the treatment or recycling facilities. Waste stage is modelled, based on 257 

the cut-off method (Ekvall and Tillman, 1997), as follows: 50% concrete, metals, plastics, 258 

cardboard, electric and electronic materials are recycled and 50% landfilled. 259 

Largely, those assumptions hold for the three reuse scenarios, as well. In the next subsections, 260 

key assumptions are presented just when differing from BAU. 261 

 262 

WWTP – drainage water treated in a municipal wastewater treatment plant scenario. This scenario263

shows what if BAU is upgraded with the infrastructure to prevent drainage water leaching, by 264 
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collecting and delivering it to a municipal wastewater treatment plant. A series of emissions to air265

and water are associated with wastewater treatment before releasing water that does not cause further 266 

pollution of water sources (Guven et al., 2018). Key assumptions: 267 

- Tomato yield is equal to BAU; 268 

- The whole yearly volume of drainage water is collected and treated, so there are no direct 269 

emissions from fertilisers to the water compartment; 270 

- Drainage water is delivered to the closest municipal wastewater treatment plant once per 271 

week, by completely emptying the collection tank so that tank plastic materials can be easily 272 

replaced at the end of their useful lives. 273 

 274 

CSC – cascade cropping scenario. This scenario reproduces WWTP showing what if the collected 275 

drainage water is entirely used for the fertigation of a soil-grown greenhouse crop on farm (instead 276 

of delivering it to a wastewater treatment plant). Key assumptions: 277 

- The whole yearly volume of drainage water is recycled on a second crop, so there are no 278 

direct emissions from fertilisers to the water compartment (Ekvall and Tillman, 1997). 279 

- The second cultivation occurs on farm on a neighbouring greenhouse;280 

- The second crop is melon, which is suitable for cascade cropping systems and for the 281 

climate conditions in the case study area and similar greenhouse systems;  282 

- Drainage water is suitable for the fertigation of melon under ordinary conditions in the 283 

case study area and in similar greenhouse systems (duration of crop cycle = 120 days; 1 284 

cycle per year; yield 30 t/ha) subject to accurate salt and nutrient concentration 285 

adjustments, by the farmer to ensure proper crop development (nutritional needs of melon 286 

in kg/ha/yr: N = 165; P2O5 = 60; K2O = 220; CaO = 60; MgO = 40; Fe = 5; B = 5; Cu = 1; 287 

Zn = 4; Mn = 1; based on researchers’ experience and expert interviews (cf. Cellura et al., 288 

2012; Martin-Gorriz et al., 2020). 289 

 290 

CLS - closed-loop fertigation scenario. This scenario shows what if BAU is upgraded with the 291 

infrastructure to recirculate the entire volume of drainage water on the same crop, subject to filtration, 292 

sterilisation and salt and nutrient concentration adjustments. Key assumptions: 293 

- The whole volume of drainage water is collected and recirculated, so there are no direct 294 

emissions from fertilisers to the water compartment; the leftover drainage water at the end 295 

of each crop cycle is delivered to the closest wastewater treatment plant; 296 

- The useful lives of sand filters and UV lamps for the filtration and sterilisation units are 4297

years each. 298 
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299

Stone wool substrate: ordinary and reuse subscenarios (sw-o and sw-r). Stone wool is used in the real-300 

world case study. BAU combination with sw-o is the baseline for comparisons, as this is observed in 301 

the case study. In sw-o, 100% stone wool is landfilled, while packaging materials are recycled (cf. 302 

BAU). Instead, sw-r relies on the assumption that a recycling company specialised in horticultural 303 

substrates collects and recycle both the exhausted substrate and packaging (Diara et al., 2012).  304 

 305 

Coir pith substrate: ordinary and reuse subscenarios (cp-o and cp-r). Generally, exhausted coir pith 306 

(100% mass) is spread on farmland. This is the ordinary management in Mediterranean countries 307 

which is depicted by cp-o. This is already a reuse strategy; however, the farmer may decide to deliver 308 

the exhausted coir pith (100% mass) to the closest composting plant. Packaging materials are then 309 

recycled (cf. BAU). Additional key assumptions of cp-o and cp-r: 310 

- for the inventory analysis, detailed data for modelling the production and manufacturing of 311 

coir pith for horticulture are available for the United Kingdom (Newleaf, 2012). This study 312 

uses those data, while considering transport distances to the case study and that the final 313 

manufacturing and packaging occur in Italy (the closest plant to the case study). 314 

- Manual labour only is required to separate the sleeves from the exhausted substrate and no 315 

additional labour force is hired.  316 

 317 

2.2. Eco-efficiency analysis and interpretation 318 

In the LCA, impact categories at midpoint level are selected rather than endpoint due to better 319 

consensus characterisation methods and lower statistical uncertainty (Bare et al., 2000). Impact 320 

characterisation uses ILCD 2011 Midpoint+ (EC and JRC, 2010) for climate change, ozone depletion, 321 

photochemical ozone formation, acidification, terrestrial eutrophication, marine eutrophication, 322 

freshwater eutrophication, water resource depletion, and mineral, fossil and renewable resource 323 

depletion; and USEtox 2 (recommended + interim) (Rosenbaum et al., 2008), for human toxicity 324 

cancer, human toxicity non-cancer and freshwater toxicity.  325 

The LCA software is SimaPro 9 (Pré Consultants B.V.; licence available from the University 326 

of Pisa). In principle, LCA results depend on input data and on the impact assessment model (Gentil 327 

et al., 2010). There are two major reasons for that, i.e. the integration with and selection of supporting 328 

databases, and the implementation of impact assessment models (Lopes Silva et al., 2019). Databases 329 

are not necessarily compatible with each other, due to differences in data formatting and quality 330 

requirements, geographical and technological coverage, allocation procedures, and time relevance331

(Shonnard et al., 2015; Zhou et al., 2014). The implementation of impact assessment methods can 332 
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result in the inclusion of different characterisation factors, with no observed consistency as to which333

software includes a substance and which excludes it (Speck et al., 2016). 334 

In the LCC, the present total costs of production (TCOP) are used to evaluate economic-335 

environmental trade-offs in the contribution to impacts of life cycle stages. As future cash flows are 336 

relevant for the assessment, which considers the greenhouse production system over its useful life 337 

and includes the end of life of all materials (Nieder-Heitmann et al., 2019). TCOP is used to calculate 338 

the net present value of discounted cash flows (NPV), using an interest rate of 10% as in similar 339 

studies (Boulard et al., 2011; Hollingsworth et al., 2020)1. Scenarios are economically viable when 340 

NPV>0 (scenario profitability increases with NPV). To improve the communication of findings, the 341 

EE uses the profitability index (PI), calculated as the ratio between NPV and investment costs: 342 

profitable scenarios have PI >1 and they should be preferred to the baseline when they show a greater 343 

PI of BAUsw-o. 344 

EE uses relative values, i.e. percent change with respect to the baseline (Zhang et al., 2019). 345 

Improvement or worsening of environmental and economic indicators are plotted on a two-way 346 

graph, to identify the scenarios that are both economically and environmentally desirable (Ferrández-347 

García et al., 2016; UNEP/SETAC, 2008). Eco-efficient scenarios show improvements in both the 348 

environmental and economic dimension, i.e. the percent change is negative for LCA impact 349 

categories (x-axis) and positive for PI (y-axis). Positive values for LCA impact categories and 350 

negative for PI pinpoint inefficient scenarios. The remaining combinations (environmental 351 

improvements, but economic worsening or the other way around) identify partially efficient 352 

scenarios. 353 

Sensitivity analyses are carried out to estimate the effects of data choices on study findings 354 

(ISO 14040:2006). Sensitive parameters in the LCA and LCC are selected based on expert 355 

consultation and/or impact assessment findings, to support practical decision-making and limit the 356 

context-specificity of the study. 357 

The comparison of absolute impact assessment figures with the literature largely involves LCA 358 

findings and uses studies of tomato greenhouse production in Mediterranean countries with the same 359 

system boundaries of the present research. However, the life cycle impact assessment method and the 360 

considered impact categories may differ, thereby preventing the comparison of most absolute values, 361 

but climate change (Dias et al., 2017). This is due to the large consensus among researchers on the 362 

use of the most recent characterization factors published by the Intergovernmental Panel on Climate 363 

                                                 
1 An interest rate of about 10% is consistent with the average internal rate of return of investments to advance 

agricultural systems (The Economist, 2015). 
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Change, with the more widespread time horizon being 100 years (Levasseur, 2015), like in the present364

study. 365 

 366 
3. Data367

Data collection (2019) was the most critical part of the study. The use of secondary data was 368 

limited to the background system. Multiple data sources were combined to carefully consider the 369 

similarities among the production contexts, facilities, and market conditions, and to validate data (cf. 370 

Basset-Mens et al., 2019) (Figure 2; see the Annex for a detailed description of the process).  371 
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 372 
Figure 2. The data collection process. Source: Authors' own elaboration.  373 
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3.1. Case study374
The case study was selected having an ongoing agreement with the University of Pisa for 375 

carrying out field experiments. The case study is located in Tuscany (central Italy), in the province 376 

of Pistoia (administrative centre 43°56′N 10°55′E)2, an area specialised in protected agriculture377

(Figure 3).  378 

 379 

 380 
Figure 3. Case study map. Source: Authors' own elaboration. 381 

 382 

The province has a total surface of 965km2 and an average height above the sea level of 245m. 383 

The average annual precipitation is 1200mm, distributed over 95.1 days, and the average annual 384 

temperature is 15.3°C (Consorzio LaMMA, 2022). 385 

According to the most recent data (CREA, 2021), the agricultural sector of Tuscany was worth 386 

over €3.2 billions in 2019, largely due to crop cultivation (61%). Among crop farms, horticultural 387 

and floricultural farms displayed the greatest gross revenues, with an average of €186,000 per farm, 388 

about 40% more than cereal and wine farms. However, horticultural and floricultural farms were the 389 

most intensive fertiliser users, with greater than average annual consumptions of nitrogen (503 kg/ha) 390 

and phosphorous (457 kg/ha) fertilisers (on average Tuscan farms used 77 kg/ha nitrogen and 47 391 

kg/ha phosphorous fertilisers) (CREA, 2021). The agri-food sector significantly contributed to the392

                                                 
2 Italian provinces are level 3 territorial units under the Nomenclature of Territorial Units for Statistics of the EU 

(European Commission, 2021). 
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regional economy and hold a strategic role to stimulate the economic development of rural areas393

(IRPET, 2021), with over €2.2 billion total value added and 1.69 full-time equivalents per farm (30% 394 

more than the national average) (CREA, 2021). Most Tuscan farms were involved in local supply 395 

chains, with 54% of production inputs and 70% of outputs being, respectively supplied and demanded 396 

from within Tuscany; that demand was driven by food processors, restaurants and retailers (IRPET, 397 

2021).  398 

 399 

3.2. Inventory building 400 

The total agricultural area is 2 ha divided into two locations, located 4 km apart; the distance 401 

from suppliers and waste management plants is similar between the two locations. The utilised 402 

agricultural area includes 8 multi-span tunnels, with no heating system. Greenhouse surfaces range 403 

between 500 m2 to 2500 m2 (length = 34-55 m; width = 16-45 m; spans = 2-5; ridge height = 4.5 m; 404 

gutter height = 2.3 m). There are two crop growing seasons per year (March-July and August-405 

December, 264 days/year in total). Accurate fertigation to meet crop needs is guaranteed by a 406 

computerized fertigation unit and a drip irrigation system. The unit embeds light sensors and a 407 

weather station, to modulate the distribution of the solution and the opening of rooftop ventilators. 408 

Plant protection complies with Integrated Pest Management rules. Soilless tomato cultivation (on 409 

stone wool substrate) with open-loop system was introduced in 2010. Stone-wool growing bags are 410 

used for 2 harvest years in a row and disposed to landfill at end-of life. All harvested tomatoes of 411 

commercial quality (marketable yield) are sold to a local retailer, who set the price to the farmer. The 412 

residual biomass (non-marketable tomatoes and crop residues) is spread on farmland. Labour force 413 

includes two farm household members (full-time) and a full-time worker. Farm structure is in line 414 

with relevant official statistics for farms specialized in horticulture in Tuscany (European 415 

Commission, 2020e). The life cycle inventory for the LCA is built in the SimaPro software, with the 416 

support of the Ecoinvent® 3.6 database (Wernet et al., 2016) for the background system (Tables 1 417 

through 3)3. 418 

 419 
Table 1. Life cycle inventory (reference period 2014-2018): material and resource inputs of all scenarios. Production and 420 

manufacturing are based on the Ecoinvent® 3.6 database (Wernet et al., 2016), when not differently stated. BAU: business as usual; 421 
WWTP: wastewater treatment plant; CSC: cascade cropping; CLS: closed-loop fertigation. EDTA: ethylenediaminetetraacetic acid. 422 
Source: Authors own elaboration. 423 

Inputs 
Unit/ha/y
r 

Scenarios 
Notes 

    BAU WWTP CSC CLS    

Water m3 8632 8632 8632 6831 

Sand kg - - - 38   

                                                 
3 Agri-footprint® 4.0 (Blonk Consultants, 2017) and USLCI (NREL, 2012) databases were added to create 

missing processes in Ecoinvent® 3.6. 
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Inputs 
Unit/ha/y
r 

Scenarios 
Notes 

Seedlings pieces 15876 15876 15876 15876   

Cardboard kg 46 46 46 46 Hives; packaging 

Concrete m3 9 9 9 9 
Plinth foundations, walkway; 
outdoor tank in WWTP, CSC = 
0.0007 kg/ha/ha 

Metals kg 263 288 288 272 

Steel: posts, frame reinforcements, 
gutters, axes, profiles, arches, 
ventilators, wire; outdoor tank, sand 
filter 
Cast iron: engine, pumps 

Plastics kg 1807 1956 1942 2017 

LDPE: Greenhouse coverage, 
tomato packaging; slab sleeves; 
packaging; pheromone dispensers 
HDPE: Anti-aphid net; indoor tanks; 
packaging
PET: Pipes, drippers, microtubes 
Polypropylene: Floor mulching, 
raffia thread; outdoor tank 
PVC: Plant gutter system, clips, 
wedges; distribution system; outdoor 
tank 
Polystyrene: Substrate layers 

Stone wool kg 1976 1976 1976 1976 Density: 46.3 kg/m3 

Coir pith (70% fibre, 30% 
pith) 

kg 3450 3450 3450 3450 
Density: 81 kg/m3. Production and 
manufacturing based on (Newleaf, 
2012)

Control units kg 9.5 9.5 9.5 14.5 Fertigation/sterilisation 

UV lamps pieces - - - 0.75 Sterilisation

Electricity, production 
mix 

kWh 2018 3005 3287 5407 
  

Fertilisers             

Calcium nitrate kg 617 617 617 489   

Potassium nitrate kg 547 547 547 433   

Magnesium sulphate kg 824 824 824 1516   

Monopotassium 
phosphate 

kg 732 732 732 580 
  

Potassium sulphate kg 1138 1138 1138 901   

Ferric EDTA kg 167 167 167 132 
 Production and manufacturing 
based on stoichiometry 

Copper EDTA  kg 2.3 2.3 2.3 1.8 
 Production and manufacturing 
excluded from the assessment 
(Zampori et al., 2016) 

Zinc EDTA  kg 9.3 9.3 9.3 7.3 
 Production and manufacturing 
excluded from the assessment 
(Zampori et al., 2016) 

Manganese EDTA kg 12 12 12 9.3 
 Production and manufacturing 
excluded from the assessment 
(Zampori et al., 2016) 

Sulfuric acid kg 2251 2251 2251 1781   

Pesticides   

Pyraclostrobin g 500 500 500 500 

Dimethomorph g 900 900 900 900   

Pyrimethanil g 800 800 800 800   

Fenhexamid g 750 750 750 750   
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Inputs 
Unit/ha/y
r 

Scenarios 
Notes 

Cyprodinil g 300 300 300 300   

Fludioxonil g 200 200 200 200   

Methoxyfenozide g 288 288 288 288   

Emamectin benzoate g 43 43 43 43   

Orange essential oil g 240 240 240 240 
 Production and manufacturing 
based on (Beccali et al., 2009) 

Spirotetramat g 192 192 192 192   

Azadirachtin g 78 78 78 78   

Acetamiprid g 200 200 200 200   

Bacillus thuringiensis g 720 720 720 720 
Production and manufacturing based 
on (Rowe and Margaritis, 2004) 

Spinosad g 240 240 240 240   

Pheromone g 60 60 60 60   

 424 

The greenhouse (B15 class European Standard EN 13031-1:2003) has concrete foundations and 425 

walkway, a steel frame and LDPE covering. Roof and lateral windows are operated by an electric 426 

engine and manually, respectively. Tomato seedlings are sourced from a neighbouring nursery and 427 

transferred to small substrate cubes, before transplanting in the substrate (2646 slabs/ha; 3 plants/m2).  428 

The fertigation control unit prepares and distributes the nutrient solution via drip irrigation. The 429 

floor is covered with polypropylene mulching that, in BAU, has openings for draining the surplus 430 

nutrient solution to the ground. In WWTP, CSC, CLS a gutter system collects that surplus solution, 431 

which is pumped either to an outdoor tank (40m3; concrete base, steel structure, plastic coverage, and 432 

interior; WWTP, CSC), or to indoor plastic tanks (6m3 total) and subsequently through the 433 

sterilisation unit, before recirculation (CLS).  434 

Electricity modelling is based on the Italian country mix, where the share of fossil sources is 435 

61%, of which 13% coal (renewables = 39%; (IEA, 2018).  436 

Due to limitations of the Ecoinvent® 3.6 database, official and refereed literature was retrieved 437 

to bridge information gaps (coir pith, orange essential oil, Bacillus thuringiensis). For missing 438 

fertiliser processes, stoichiometry was used when the process contributed for at least 5% to the 439 

impacts of the life cycle stage (ferric ethylenediaminetetraacetic acid), otherwise the relative 440 

background processes were excluded from the assessment (copper, manganese, and zinc 441 

ethylenediaminetetraacetic acid) (Zampori et al., 2016).  442 

The materials for all greenhouse stages are sourced from farm neighbourhoods, except for 443 

pollination hives and the substrate (Table 2). 444 

 445 
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Table 2. Transport distances and means of transport. Source: Authors’ own elaboration. 446 

Materials 
Distance 
(km/yr) Means of transport 

Greenhouse construction materials; coir pith slabs; fertilisers; pesticides 8.2 Lorry 

Bumblebee hives 228 Van 

Seedlings 9.5 Van 

Tomato packaging 69 Lorry 

Fertigation and drainage water management materials 8.4 Lorry 

Stone wool slabs 334 Lorry 

Construction and demolition materials to dedicated waste plant 3.2 Lorry 

Waste to municipal waste sorting plant  9.9 Lorry 

Drainage water to wastewater treatment plant 8.4 Tank lorry 

 447 

The calculation of emissions to air from fertilisers moves from a mass balance and uses 448 

emissions factors (Nemecek and Kägi, 2007): N2O = 1.25% and NH3 = 2% total nitrogen applied 449 

with fertilisers; NOx = 0.21N2O. The calculation of emissions to air from pesticides is based on 450 

(Juraske et al., 2007) (Table 3).  451 

 452 

Table 3. Life cycle inventory (reference period 2014-2018): outputs of all scenarios. Data are from primary sources, when not 453 
differently stated. BAU: business as usual; WWTP: wastewater treatment plant; CSC: cascade cropping; CLS: closed-loop 454 
fertigation. EDTA: ethylenediaminetetraacetic acid. Source: Authors own elaboration. 455 

Outputs Unit/ha/yr Scenarios Notes 

    BAU WWTP CSC CLS    

Marketable 
tomatoes 

t 193 193 193 191 

90% of gross yield. 
Biomass: BAU, WWTP, CSC = 92 t; CLS = 
89 t; root weight included in the substrate at 
end-of-life 

Drainage water m3 1682 1682 - 12.7   
Emissions to water           
NO3  kg 251.81 - - -   
NH4 kg 5.33 - - -   
PO4 kg 25.4 - - -   
K kg 343.5 - - -   
Ca kg 303.97 - - -   
Mg kg 60.49 - - -   
Na kg 96.78 - - -   
SO4 kg 241.69 - - -   
Cl kg 71.59 - - -   
Fe kg 2.12 - - -   
EDTA kg 3.59 - - -   
Emissions to air (fertilisers)          Calculated from input data based on  
N2O kg 3.33 3.33 3.33 2.09   
NH3 kg 5.33 5.33 5.33 3.35   
NOx kg 0.7 0.7 0.7 0.44   

Emissions to air (pesticides) 
        

 Calculated from input data based on 
(Juraske et al., 2007) 

Pyraclostrobin g 2.5 2.5 2.5 2.5   
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Outputs Unit/ha/yr Scenarios Notes 

Dimethomorph g 4.5 4.5 4.5 4.5   
Pyrimethanil g 4 4 4 4   
Fenhexamid g 3.75 3.75 3.75 3.75   
Cyprodinil g 1.5 1.5 1.5 1.5   
Fludioxonil g 1 1 1 1   
Methoxyfenozide g 1.44 1.44 1.44 1.44   
Emamectin 
benzoate g 

0.21 0.21 0.21 0.21 
  

Orange essential 
oil g 

1.2 1.2 1.2 1.2 
 Characterization factor added to the USEtox 
model from (OLCA-Pest project, 2021) 

Spirotetramat g 0.0096 0.0096 0.0096 0.0096   
Azadirachtin g 0.39 0.39 0.39 0.39   
Acetamiprid g 1 1 1 1   
Bacillus 
thuringiensis g 

0.036 0.036 0.036 0.036 
  

Spinosad g 1.2 1.2 1.2 1.2   
Pheromone g 0.003 0.003 0.003 0.003   

 456 

The economic inventory (LCC) is built using a Microsoft Excel® spreadsheet. Data cover the 457 

total production costs over the greenhouse life cycle (purchase, use and end of life management) and 458 

revenues (BAU, WWTP, CSC = € 208494 /ha/yr, CLS = € 206388 /ha/yr) (Table 4). 459 

 460 

Table 4. Life cycle costs and revenues. Source: Authors’ own elaboration. 461 

Costs (€/ha/yr) BAU Other scenarios/subscenarios (different figures only)

Greenhouse     

Investment (including project design) 12600  WWTP, CSC = 12925; CLS = 12800 

Maintenance 1080 WWTP, CSC, CLS = 1830  

Consumables 57311 CLS = 56921 

Transport (consumables only) 5.6   

Electricity 5.4   

Advisory and administration 1000   

Labour 15500   

Fertigation 

Investment 1000 WWTP, CSC = 1500; CLS = 3200 

Maintenance 3300   

Drainage water management  0 WWTP = 9890; CLS = 75 

Electricity 528 WWTP = 789; CSC = 863; CLS = 1423 

Substrate     

Stone wool 3969   

Coir pith 5821   

Fertilisers     

Consumables 5121 CLS = 4053 

Transport 18.6   
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Costs (€/ha/yr) BAU Other scenarios/subscenarios (different figures only)

Pesticides   

Consumables 421   

Transport 0.2   

Waste     

Greenhouse demolition 70.1   

Plastics sw-o, cp-o, cp-c 186 WWTP, CSC = 193; CLS =194 

Plastics sw-r 153 WWTP, CSC = 159; CLS =160 

Substrate sw-o 22117 sw-r, cp-o = 0; cp-c = 6909 

Fertigation/sterilisation units 1.3 CLS = 2.1 

Other waste 33 CLS = 37.0 

 462 
Farmer prices are already charged with the prices for background processes, e.g. delivery, 463 

construction, assembly, to cite a few (Heijungs et al., 2013). Investment costs involve the materials 464 

for building the greenhouse and fertigation infrastructures. Project design, construction fees, overhead 465 

costs farm advisory, and labour are allocated to the greenhouse infrastructure stage. Variable costs 466 

include utilities, consumables and waste and the relative transports. Farmer price for marketable 467 

tomato is €1.2/kg, subject to 10% value added tax (Italian consumption tax system) ( cf. Testa et al., 468 

2014b).  469 

In the environmental and economic inventories (Tables 1 through 4), key differences of reuse 470 

scenarios are in the fertigation and fertilisers stages, as follows: 471 

- WWTP, CSC: greater quantities of construction materials for building the outdoor tank;  472 

- WWTP: higher costs due to the fees for wastewater management; 473 

- CLS: greater quantities of electronic components and plastics for building and operating the 474 

closed-loop system;  475 

- CLS: over 20% water and fertiliser savings. 476 

 477 
Parameters for sensitivity analyses 478 

Based on impact assessment results, a sensitivity analysis is carried out to evaluate the extent 479 

to which extending the lifespan of the greenhouse and fertigation infrastructures from 20 years to 25 480 

and 30 years would affect environmental impacts (Bartzas et al., 2015; Boulard et al., 2011).  481 

Transport distances are sensitive parameters identified via expert interviews, as those observed 482 

in the case study are shorter than in most farms; increasing those distances by 50% and 100% would 483 

improve the understanding of the extent to which transport distance contribute to environmental 484 

impacts.  485 
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The impact of electricity is identified as an important environmental aspect via expert486

interviews, as greenhouses have been more reliant on electronic components through time. To 487 

consider that, a sensitivity analysis is carried out on electricity production. The shares of renewable 488 

and fossil resources are varied to consider 2030 and 2050 targets of Italy’s National Energy Strategy489 

(i.e. phasing out of coal by 2030 and progressive reduction of fossil sources to 40% in 2030 and 7% 490 

in 2050; MATTM, 2017). 491 

Price adjustment up to 20% by retailer companies (key buyers) through time is identified as a 492 

key economic problem for decision makers. A sensitivity analysis is carried out to evaluate the extent 493 

to which price fluctuations of 5%, 10%, 20% affect the economic viability of each scenario-494 

subscenario combination. 495 

 496 
497 

4. Results 498 
 499 

4.1. Life cycle assessment and life cycle costing 500 

Study findings show that upgrading BAU to collect and reuse drainage water for agricultural 501 

purposes on farm (CSC, CLS) or indirect uses off farm (WWTP) abates marine and freshwater 502 

eutrophication (Table 5).  503 

 504 
Table 5. Assessment results per scenario per functional unit (1 ha greenhouse): characterized life cycle impacts per year, total 505 

costs of production (TCOP) per year, net present value (NPV) and profitability index (PI) over the lifetime of the greenhouse (20 506 
years). Source: Authors’ own elaboration. 507 

  BAU WWTP CSC CLS 

Life cycle assessment         

CC (kg CO2 eq, 100 years) 1.93E+04 2.291E+04 2.08E+04 2.09E+04 

OD (kg CFC-11 eq) 1.48E-03 1.85E-03 1.58E-03 1.58E-03 

PM (kg PM2.5 eq) 1.25E+01 1.52E+01 1.40E+01 1.40E+01 

POF (kg NMVOC eq) 5.92E+01 7.15E+01 6.32E+01 6.28E+01 

AC (molc H+ eq) 1.55E+02 1.79E+02 1.66E+02 1.62E+02 

TE (molc N eq) 3.18E+02 3.84E+02 3.45E+02 3.54E+02 

FE (kg P eq) 1.38E+01 9.05E+00 7.17E+00 7.40E+00 

ME (kg N eq) 6.86E+01 5.73E+01 2.15E+01 2.17E+01 

LU (kg C deficit) 3.23E+04 4.25E+04 3.41E+04 3.35E+04 

WRD (m3 water eq) 6.09E+03 7.50E+03 7.56E+03 6.00E+03 

MFR (kg Sb eq) 5.09E+00 5.51E+00 5.42E+00 5.23E+00 

HTC (cases) 1.35E-03 1.81E-03 1.48E-03 1.56E-03 

HTnC (cases) 5.46E-03 9.25E-03 5.32E-03 6.02E-03 

FET (PAF.m3.day) 8.76E+07 1.13E+08 8.48E+07 9.73E+07 

Life cycle costing         

TCOP (€) 1.26E+05 1.39E+05 1.29E+05 1.33E+05 
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BAU WWTP CSC CLS

NPV 20 years (€) 5.28E+05 3.93E+05 4.76E+05 4.38E+05 

PI 20 years 2.02E+00 1.44E+00 1.74E+00 1.52E+00 

 508 

Compared to BAU, freshwater eutrophication (FE) and marine eutrophication (ME) are, 509 

respectively, -34% and -16% when the drainage water is treated in a wastewater treatment plant 510 

(WWTP), -48% and -69% when drainage water is recycled on a second crop (CSC), and -46% and -511 

68% when drainage water is recirculated on the same crop (CLS) (Parada et al., 2021).  512 

Despite water savings, water resource depletion (WRD) does not decrease markedly (-1%) in 513 

CLS compared to BAU, as in BAU the entire volume of fertigation water is released to the 514 

environment. 515 

In BAU, TCOP confirms previous research (Llorach-Massana et al., 2016). Reuse scenarios 516 

increase TCOP between 2% (CSC) and 10% (WWTP) and reduce PI compared to BAU, especially 517 

WWTP (-29%) and CLS (-25%), though keeping their profitability (PI>1). The reduction of PI in 518 

reuse scenarios contrasts with the findings of similar studies (Galdeano-Gómez et al., 2017).  519 

Different to ME and FE, terrestrial eutrophication (TE) increases, especially in WWTP (+21%), 520 

as this impact depends more on emissions to air (Posch et al., 2008; Seppälä et al., 2006). Compared 521 

to BAU, direct emissions to air differ slightly in CLS only, while indirect emissions increase in all 522 

reuse scenarios due to the greater material quantities.  523 

Acidification (AC) is directly related to the applied quantity of fertilisers (Muñoz et al., 2008) 524 

and, like TE, depends on emissions to air (especially NH3, NO2, SOx) (Posch et al., 2008; Seppälä et 525 

al., 2006). Reuse scenarios do not allow the reduction of TE and AC. 526 

The impact on climate change is close to (Martínez-Blanco et al., 2009) or lower than (Payen 527 

et al., 2015; Torrellas et al., 2012) similar studies. Reuse scenarios increase the remaining impact 528 

categories (PM, OD, POF, LU, MFR, HTC, HtnC, FET), compared to BAU. Environmental 529 

worsening is moderate in CLS, ranging between 3% (MRF) and 16% (HTC), but it is more relevant 530 

in WWTP, especially for land use and toxicity (+32% LU, +34% HTC, +69% HTnC, +29% FET), 531 

due to the large volume of chemically-treated drainage water in the wastewater treatment plant 532 

(Linderholm et al., 2012). Just CSC can reduce toxicity impacts (ca. -3% HTnC and FET).  533 

The contribution analysis emphasises the effect of the fertigation and fertilisers stages on 534 

impact assessment results (Figure 4). 535 

 536 
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537

 538 
Figure 4. Life cycle stage contribution to environmental impacts and TCOP. Source: Authors’ own elaboration.539 

 540 

The effect of the wastewater treatment plant is pinpointed by the contribution of the fertigation 541 

stage to toxicity impacts in WWTP (HTnC = 52%, FET = 35%, HTC = 26%) and CLS (HTnC = 542 

32%, FET = 35%, HTC = 18%), compared to BAU. In WWTP, toxicity impacts are caused by 543 

industrial processes to produce plastics and construction materials (HTC) and the wastewater 544 

treatment plant (HTnC, FET). 545 

In reuse scenarios, the fertigation stage increases TCOP as well, especially in WWTP (1.8 times 546 

BAU) and CLS (1.2 times BAU).  547 

Compared to BAU, the fertilisers stage contributes -59% to ME (7.4 kg N eq) in CLS and -81% 548 

(9 kg N eq) in WWTP; while ME of the fertigation stage is 2.5 times BAU in CLS (3.9 kg N eq) and 549 

10 times CLS in WWTP (39 kg N eq). Similar reasoning applies to FE; the absolute FE values for 550 

the fertigation and fertilisers stages are as follows: fertigation, BAU = 1.3 kg P eq, WWTP = 3.4 kg 551 

P eq, CSC = 1.5 kg P eq, CLS = 2.3 kg P eq; fertilisers, BAU = 11 kg P eq, WWTP, CSC = 3.7 kg P 552 

eq, CLS = 3.2 kg P eq. 553 
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Study findings confirm previous research (Martínez-Blanco et al., 2011; Testa et al., 2014a), by554

identifying the greenhouse stage as the major source of environmental and economic impacts in all 555 

scenarios, especially with respect to TCOP (€ 87502-88252) mainly due to consumables, CC (6660-556 

7316 kg CO2 eq), MFR (4 kg Sb eq), HTC (9·10-4 cases) mainly due to the production of construction 557 

materials and electricity (CC). 558 

Other life cycle stages are minor, with reuse scenarios not deviating much from BAU, as in 559 

previous research (Torrellas et al., 2012). Direct emissions from pesticides contribute substantially to 560 

toxicity impacts (Schmidt Rivera et al., 2017). A possible explanation for the reduced contribution of 561 

pesticides is the adoption of Integrated Pest Management. Most environmental impacts of substrate 562 

(stone wool) are generated during manufacturing and emissions after landfilling (cf. Savvas and 563 

Gruda, 2018). TCOP (€ 3969 substrate; € 22408-22420 waste) depends to a great extent on the 564 

purchase and landfilling of stone wool.  565 

Compared to landfilling, recycling exhausted stone wool allows slight environmental 566 

improvements, but great cost savings (-18% TCOP) (Figure 5). 567 

 568 
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 569 
Figure 5. Contribution to LCA impact categories and LCC of different subscenarios. Source: Authors’ own elaboration.570 

Coir pith is biodegradable on farm (land spreading) or via composting; so, cp-o and cp-r 571 

subscenarios do not include landfilling. Shifting to coir pith allows small environmental 572 

improvements in some impact categories (2% to -3% of CC, OD, AC, TE) and relevant environmental 573 

worsening in other impact categories, as shown elsewhere (Antón et al., 2005a; QUANTIS, 2012). 574 

Especially, ME and LU grow by ca. +30% and +300%, respectively, due to land occupation by 575 

coconut plantations and emissions from fibre and pith processing. Despite the higher purchase cost 576 

(€ 2.2/coir pith slab vs. € 1.5/stone wool slab), shifting to coir pith decreases TCOP up to -16% (sw-577 

o), by abating the disposal fees at end of life (€ 1.4/kg for landfilling stone wool, € 0.8/kg for578 

composting coir pith, no cost for spreading coir pith on land and recycling stone wool). Subscenarios 579 

alternative to the baseline (sw-o) have a negligible effect on PM, MFR, and WRD. 580 

581
Sensitivity analyses 582 

The extension of the useful life of the production facilities up to 30 years reduces all absolute 583 

impact figures, with no remarkable differences among scenarios (Figure 6).584
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585

 586 
Figure 6. Sensitivity of characterised impacts (BAU) to increased lifespan and transport distance, and future changes in the 587 

Italian electricity mix. Source: Authors’ own elaboration, 588 

 589 

CC and OD decrease, as in similar studies (Bartzas et al., 2015), though the greatest 590 

environmental impact mitigation potential is in terms of MFR (> 25% reduction) and HTC (> 12% 591 

reduction), due to the smaller quantities of construction materials. 592 

Transportation does not contribute much to environmental impacts (cf. Bartzas et al., 2015), as 593 

this study is limited to the farm gate (Page et al., 2012), then even doubling distance has not major 594 

effects on the overall impact of transports (max increase: OD = about +5%).595 

Future changes in the production of the Italian electricity mix can have a marked effect on LU 596 

(up to +15% in 2030), due to the increase of photovoltaic mounting systems. Other environmental 597 

impacts are expected to decrease up to -5% (OD).  598 
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Changes in producer price for tomatoes markedly affect the economic viability of scenario-sub-599

scenario combinations (Figure 7).  600 

 601 
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602 
Figure 7. Changes in producer price: sensitivity of net present value (NPV) and scenario viability with respect to the baseline (BAUsw-o). Source: Authors’ own elaboration. 603 
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When considered per se, all scenarios but WWTPsw-o, would be viable even with -20%604

producer price. Instead, no scenario would be viable compared to the baseline with the same reduction 605 

of the producer price. WWTPsw-o, CLSsw-o display the largest NPV fluctuations and would require 606 

at least +10% producer price to be viable, while a 5% increase would be enough for the rest of 607 

scenarios. CSCsw-r, CSCcp-o, CLScp-o, and BAUcp-r would be viable even with -5% producer price 608 

and BAUsw-r even with -10%.  609 

 610 

4.2. Eco-efficiency analysis 611 

EE emphasises the trade-offs among impact categories (Figure 8).  612 

 613 
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The x-axis identifies the scenarios that are economically acceptable for the farmer (PI change617

> 0%) and those that are not. Study findings suggest that adopting a reuse strategy would make sense 618 

just if coupled with changes to the substrate material (here coir pith instead of stone wool) and/or in 619 

the way how exhausted slabs are managed at end of life. Then, WWTPsw-o, CSCsw-o, CLSsw-o are 620 

generally inefficient. The changes simulated by subscenarios have the potential to reduce TCOP, by 621 

avoiding landfilling fees throughout the greenhouse lifetime, thereby increasing PI up to 34% (BAU-622 

sw-r). This explains why BAU-subscenario combinations alternative to the base line (BAUsw-o) are 623 

eco-efficient with respect to a series of impact categories, but ME, FE, and WRD. However, the 624 

potential environmental improvements are very low, especially in BAUsw-r (almost neutral), and 625 

never exceed -3% (AC in BAUcp-o, BAUcp-r) reduction in the absolute values of characterised 626 

impacts. Other generally inefficient scenarios are WWTPcp-r and CLS-cpr. TCOP increase in WWTP 627 

and CLS compared to BAU due to the adoption of the reuse technology makes the abatement of 628 

substrate-related costs (sw-r, cp-o) necessary to raise PI and then encourage farmer uptake.  629 

As expected from LCA results, water reuse technologies are eco-efficient with respect to FE 630 

and ME, when coupled with the adoption of reuse strategies for substrate management. WWTPcp-o 631 

and WWTPcp-r are exceptions, being eco-efficient just in terms of FE. The contribution of eco-632 

efficient scenario-subscenario combinations to reduce FE and ME while increasing PI, compared to 633 

the baseline, are as follows: WWTPsw-r (FE = -34%, ME = -17%, PI = +3.8%), CSCsw-r (ME = -634 

48%, FE  = -69%, PI = +19%), CLSsw-r (FE = -46%, ME = -69%, PI = +5.6%), CSCcp-o (FE = -635 

42%, ME = -38%, PI = +16%), CLScp-o (FE = -41%, ME = -38%, PI = +2.7%), CSCcp-r (FE = -636 

42%, ME = -38%, PI = +5.8%). 637 

Study findings highlight that reuse scenarios do not allow to achieve eco-efficiency in terms of 638 

other environmental impact categories. The only exception to this pattern is CLS in case stone wool 639 

is replaced with coir pith, which in turn is spread on farmland at the end of its useful life. If the farmer 640 

decides to keep the business as usual, eco-efficiency can be achieved in terms of CC, OD, PM, AC, 641 

TE, MFR.  642 

Concerning WRD, adopting CLS is the only way to enable eco-efficiency, though with 643 

relatively little environmental improvement. Again, subscenario matters, by affecting both 644 

environmental and economic impact indicators. CLSsw-r and CLScp-o can, respectively, reduce 645 

WRD with -1.5% and -1%, and increase PI with 5.5% increase of PI with 2.5%; CLSsw-o and CLScp-646 

r are just partially eco-efficient due to the high fees for stone wool landfilling and coir pith composting 647 

at end of life, respectively. 648 

CSC and CLS are eco-efficient reuse strategies to reduce the critical impacts of greenhouse649

cropping (FE, ME) (cf. Martin-Gorriz et al., 2020; Rufí-Salís et al., 2020b). While CLS only allows 650 
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WRD reduction (about -1%), CSC offers greatest returns to the farmer (PI increases up to 19%). The651

eco-efficiency of both scenarios, however, occurs when the substrate is not landfilled and there is no 652 

disposal fee for the farmer. Profitable substrate management alternatives for the farmer involve (i) 653 

using stone wool and delivering the exhausted substate to a recycling plant, or (ii) using coir pith and 654 

spreading the exhausted substrate on farmland.  655 

 656 

5. Discussion 657 

5.1. Key research findings 658 

Study findings show that reusing drainage water can mitigate FE and ME of soilless 659 

greenhouse cropping, especially due to the reduction of the contribution of the fertiliser stage to 660 

environmental impacts, coherently with the literature (Rufí-Salís et al., 2020b). Largely, this is 661 

because reuse strategies prevent nitrogen and phosphorus emissions to water (Antón et al., 2005a). 662 

TE does not deviate much across the evaluated scenarios, being associated with direct emissions to 663 

air. 664 

When the adoption of closed-loop fertigation is considered within the whole farm economy, 665 

reduced eutrophication impacts can add to other environmental improvements due to a more efficient 666 

use of water and fertilisers (Clark and Tilman, 2017; Montero et al., 2009). However, the reduction 667 

of ME and FE comes at greater economic costs (TCOP) compared to the baseline (BAU scenario). 668 

Reuse scenarios reduce PI, due to the high investment costs for the technological upgrade, 669 

maintenance costs (electronic components should be replaced every 10 years) and wastewater 670 

treatment fees, which are not compensated by greater returns from product sale. This finding contrasts 671 

with other literature, which suggests the existence of reinforcing feedback loops between the 672 

optimisation of fertiliser and water inputs and the improvement of the economic performance of 673 

Mediterranean greenhouses (Galdeano-Gómez et al., 2017).  674 

Reusing drainage water through closed-loop fertigation does not deliver a marked reduction of 675 

WRD compared to BAU. This is probably due to the selected life cycle impact assessment method. 676 

In the ILCD method, WRD is estimated via a scarcity model (Frischknecht et al., 2009), which 677 

considers the volume of water withdrawal and replenishment in an area and provides and indicator 678 

for the deprivation of water resources to users in that area (Boulay et al., 2015).  679 

In general, the relatively low CC found here might be due to the different assumptions about 680 

the lifespan of the greenhouse and fertigation infrastructures, thereby pointing to the relevance of 681 

proper maintenance for extending the lifetime of infrastructures (Parajuli et al., 2019).682 

EE is a useful tool to identify the relevant technological options for consideration by decision683

makers and policy makers. Per each environmental impact category, eco-efficient scenarios can 684 
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simultaneously reduce environmental impacts and increase of the profitability of the investment,685

compared to the status quo (Figure 9).  686 

 687 

 688 
Figure 9. Eco-efficient scenarios. Environmental improvement is calculated as the negative of % change per each impact 689 

category. LCA impact categories are displayed on the primary y-axes (left-hand side); PI is displayed on the secondary y-axes (right-690 
hand side). Source: Authors' own elaboration. 691 

Results suggest that small changes to the status quo can markedly increase farm profit, i.e. by 692 

just modifying substrate management at end of life (BAUsw-r) or by replacing inorganic with organic 693 

substrate, as well (BAUcp-o, BAUcp-r). To enable marked reductions of acidification and, especially, 694 

eutrophication deeper changes are needed in the greenhouse technology, i.e. water reuse strategies 695 

should be adopted. Both CSC and CLS are eco-efficient alternatives to the current production 696 

technology, provided that the substrate is not landfilled and there is no disposal fee for the farmer. 697 

For example, exhausted stone wool slabs can be delivered to a recycling plant, while exhausted coir 698 

pith can be spread on farmland. Delivering drainage water to a wastewater treatment plant is another 699 

option, which could be relevant for consideration by decision-makers, for example when contextual 700 

conditions (e.g. poor farmer knowledge about other technologies) prevent the proper management of 701 

CSC or CLS systems. 702 

The findings of this study show that increasing the efficiency of use of fertilisers and water 703 

through circular processes can have positive environmental and economic implications for the 704 

greenhouse sector, which is especially important to guarantee continuous production against sudden 705 

shortage of inputs or growth of farmer costs. With that respect, supporting research and innovation to 706 
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foster technological change in greenhouses is required to trigger farmer behaviour towards the707

sustainable transformation of intensive food production systems (Sarabia et al., 2021). 708 

The development and findings of the presented research suggest a series of lessons learnt with 709 

theoretical and policy implications beyond the case study level (Yin, 2014).  710 

 711 

5.2. Theoretical implications 712 

The contribution of this article to the literature is twofold:  713 

1. Methodologically, the article sustains the use of LCC within EE, by basing the analysis on 714 

co-developed and methodologically consistent LCA and LCC and aims at helping method 715 

harmonisation; especially: (i) by comparing improvement scenarios with the baseline, using 716 

relative values of all the LCA impact categories under study and of the economic indicator; 717 

(ii) by using the profitability index (calculated based on discounted cash flows and 718 

investment costs) as the economic indicator; (ii) by supporting the graphical representation 719 

of EE to enable the straightforward understanding of study findings, plotting all the 720 

scenarios under evaluation on a two-way graph. 721 

2. Content wise, the article (i) is an important data source for further research, by providing a 722 

detailed inventory of production inputs and outputs for all the evaluated alternatives; (ii) 723 

bridges a gap in the literature by showing comprehensive evidence about the environmental-724 

economic implications of keeping the conventional open-loop fertigation technology vs. 725 

adopting three alternative reuse strategies for drainage water (treatment in a wastewater 726 

treatment plant, cascade cropping, closed-loop fertigation) and the substrate; (iii) compares 727 

inorganic vs. organic substrates and develops what if situations to show the extent to which 728 

reusing the substrate can improve the eco-efficiency of the greenhouse; (iv) supports policy 729 

design and decision making to encourage the uptake of reuse strategies in the short or mid-730 

term by focusing on incremental technologies that are readily available on the market.  731 

This contribution has been achieved via a challenging data collection process, to achieve the 732 

required data granularity for modelling the differences between the compared technologies. Data 733 

collection and validation relied on an accurate protocol developed by the research team and on the 734 

establishment of trusted relationships with farmers, advisors and supply chain actors (Hellweg and 735 

Mila i Canals, 2014).  736 

 737 

5.3. Policy implications 738 

Achieving UN Sustainable Development Goals requires the coordination of food chain actors,739

towards shared broad objectives. A strand of literature has highlighted the need for a radical change 740 
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in the way how food is produced (Ruben et al., 2021). However, incremental innovation can offer741

great opportunities to improve the sustainability of food production, as well, as shown in this article. 742 

Eco-efficient reuse strategies for greenhouse production can improve the environmental and 743 

economic performance of fresh vegetable production (UNEP, 2017; Zhou et al., 2021). The findings 744 

of this research suggest that effective strategies could rely on the promotion of incremental innovation 745 

to foster the reuse of drainage water and cultivation substrates. In the European Union, the European 746 

Innovation Partnership 'Agricultural Productivity and Sustainability' set up a focus group of experts, 747 

to raise awareness about the opportunities of the diffusion of reuse strategies in Mediterranean 748 

greenhouse (EIP-AGRI, 2019a, 2019d). However, reuse technologies are not widespread in 749 

Mediterranean countries (Incrocci et al., 2020), despite their availability on the market (Massa et al., 750 

2020, 2010). Two critical barriers have prevented their diffusion, i.e. the high uptake costs of 751 

technology and the lack of an effective knowledge network for mitigating farmers’ risk aversion (EIP-752 

AGRI, 2019b; Juntti and Downward, 2017).  753 

 754 

5.3.1. Recommendations to address the cost barrier 755 

To remove the cost barrier, this article compares the environmental-economic trade-offs of 756 

incremental technologies, the adoption of which can be modulated based on context-specific factors, 757 

including the ease of access to loans for the farmer (Norman and Verganti, 2014; Pearce et al., 2018). 758 

This findings aim at reducing uncertainty in policy making to encourage the adoption of reuse 759 

strategies in Mediterranean greenhouses (Herrero et al., 2021). The observed ability of the alternatives 760 

to open-loop fertigation to reduce freshwater and marine eutrophication sustains the endorsement by 761 

the European Innovation Partnership for Agricultural Productivity and Sustainability (EIP-AGRI) of 762 

reuse technologies as strategies to reduce the environmental burden of greenhouse vegetable 763 

production in Mediterranean countries, while not affecting farming viability (EIP-AGRI, 2019a, 764 

2019e). The findings of this study present cascade cropping as a promising alternative to the status 765 

quo, by offering the greatest opportunities for improving the environmental-economic impacts of 766 

greenhouses. There is a need for the commitment of policy makers and extension services to 767 

implement adequate supporting instruments, educational campaigns and training to support the 768 

diffusion cascade cropping. Considering the water emergency, study findings point to the shift to 769 

closed-loop fertigation as a strategy for reducing the burden of greenhouse cropping on water 770 

resources. Then this technology should be considered by policy makers for improving the delivery of 771 

more sustainable fresh vegetables in water scarce areas and where climate change is projected to 772 

significantly affect the water balance (Rocha et al., 2020). However, the evidence presented in this773

article pinpoints trade-offs among environmental and economic impacts, similar to recent research 774 
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(Martin-Gorriz et al., 2020; Rufí-Salís et al., 2020b). Especially, (i) technological innovation to775

reduce the eutrophication potential can increase the climate change potential, which should be a 776 

matter of concern for policy makers, given the growing climate emergency (IPCC, 2021); and (ii) 777 

findings about the economic profitability of reuse strategies contrast with other literature, which 778 

suggests the existence of reinforcing feedback loops between the optimisation of fertiliser and water 779 

inputs and the improvement of the economic performance of Mediterranean greenhouses (Galdeano-780 

Gómez et al., 2017). More research is still needed that integrates economic and environmental 781 

assessments into ready to use decision tools for decision makers and policy makers (Gava et al., 782 

2020). In the EU, this is of utmost importance in the framework of the European Union’s Circular783 

Economy Action Plan and the Farm to Fork Strategy. Reusing exhausted coir pith on farmland is 784 

already feasible and is a common practice in the case study area and in similar contexts. Instead 785 

recycling stone wool requires dedicated plants. Key producers of stone wool substrates have 786 

implemented producer take-back programmes (see e.g. Grodan (ROCKWOOL B.V.), 2017). To the 787 

best of authors’ knowledge, no similar programme has been activated in the case study area, so far.788 

This suggests that targeted extended product responsibility legislation for the horticultural sector 789 

might have a high potential to boost the diffusion of eco-efficient technology (Galati et al., 2020). 790 

More specific agricultural policy instruments can sustain the diffusion of eco-efficient reuse 791 

technologies in Mediterranean greenhouses, by remunerating farmers based on the achieved 792 

environmental improvements, as e.g. results-based payments of the coming Common Agricultural 793 

Policy post-2020. In the European Union, new policy tools might mitigate north-south differences in 794 

the diffusion of reuse technologies as well (Thompson et al., 2020), as e.g. the recently enforced 795 

Water Reuse Regulation and the coming Integrated Nutrient Management Action Plan co-developed 796 

with Member States (European Parliament and Council, 2020).  797 

5.3.2. Recommendations to address the knowledge network barrier 798 

Coping for the lack of an effective knowledge network requires the improvement of the local 799 

Agricultural Knowledge and Innovation System. Even though understanding how to bridge this gap 800 

is beyond the scope of the presented research, this article could be a starting point for further studies 801 

based on stakeholder involvement in participatory activities. This could improve the existing evidence 802 

by generating a science-policy society dialogue about the multiple aspects of the production context 803 

(e.g. spatial variability, local conditions, decision makers' opinions) that are required for effective 804 

policy making. Involving stakeholders in participatory activities could have the double benefit of 805 

improving the social capital and generating input for planning new policy action. For example, 806 

participatory activities may support the understanding of the implications of technological change in807

socio-ecological systems. This would shade light on the interactions between biophysical elements 808 
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and governance mechanisms associated with the adoption of reuse strategies in greenhouse farming809

(Le Moal et al., 2019). Other participatory activities may involve multi-criteria analysis workshops, 810 

where stakeholders are asked to express their opinion about multiple assessment indicators and trade-811 

offs. This enables a greater contextualisation of findings that can provide useful inputs to design of 812 

innovative incentive mechanisms for farmers (De Luca et al., 2017).  813 

 814 
6. Conclusions 815 

This study shows how reuse strategies can improve the environmental and economic 816 

performance of greenhouse farming, by providing evidence from a multiple scenario analysis based 817 

on real-world data from a Mediterranean case study. A comparative eco-efficiency analysis is carried 818 

out over sixteen scenarios, by adopting a life cycle perspective. The scenarios represent different 819 

combinations of what if situations with respect to drainage water and substrate management. The 820 

purpose is to shed light on the potential sustainability improvement (or worsening) achievable through 821 

the adoption of incremental reuse technologies. 822 

Eco-efficient technological innovation in greenhouse cropping requires the application of reuse 823 

strategies to the management of both drainage water and the growing substrate. Replacing open-loop 824 

fertigation with cascade cropping or close-loop fertigation enables almost 20% increase of the 825 

profitability index, while simultaneously reducing freshwater eutrophication (from 1.38E+01 kg P eq 826 

to 7.17E+00 kg P eq or 7.40E+00 kg P eq, respectively) and marine eutrophication (from 6.86E+01kg 827 

P eq to 2.15E+01 kg P eq and to 2.17E+01 kg P eq, respectively), when the exhausted substrate is 828 

reused (complete recycling of stone wool) at end of life and there is no disposal fee for the farmer 829 

(using coir pith as soil amendment).  830 

There are important trade-offs among impact categories, with the compared technologies 831 

having the potential to increase a series of environmental impact categories, such as, e.g., toxicity. 832 

This supports the call for further research to gain more knowledge about the preferences of food chain 833 

stakeholders, to prioritise interventions through the use of specific weighting criteria. For example, 834 

when water security is the key concern, closed-loop fertigation should be selected to mitigate water 835 

resource depletion. Instead, cascade cropping should be chosen when the economic development is 836 

the priority, as it offers the greatest returns to the farmer. 837 

Two critical aspects emerge across all scenarios, which suggest general recommendations: (i) 838 

the greenhouse infrastructure is the major source of environmental impacts across all scenarios, then 839 

action should be taken to sustain the use of greenhouse materials with extended useful life; (ii) farmer 840 

price for the produced vegetable is a sensitive parameter that can markedly affect the decision towards 841 
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the adoption of technological innovation; supply contracts that acknowledge the sustainability842

attributes of greenhouse vegetable production might reduce the risk of price fluctuation. 843 

The application of eco-efficiency analysis can support the identification of viable pathways to 844 

achieve greater sustainability in greenhouse cropping systems and contribute to continuous method 845 

advancement. However, absolute values should be considered with caution, due to study limitations. 846 

Some limitations are study-specific, such as the geographical and temporal boundaries of data, the 847 

assumptions underlying scenario building, and the use of simplified models for the calculation of 848 

emissions from fertilisers and pesticides. Others are more general, such as the existence of data gaps 849 

and the lack of context-specificity of background databases and characterisation factors, the limited 850 

comparability of life cycle impact assessment results calculated using different methods.  851 

However, the presented research is affected by three main limitations, i.e. (i) the reliance on a 852 

representative farm; (ii) the reduced comparability with published articles; (iii) the selection of the 853 

background databases for building the cradle-to-gate life cycle inventory and of life cycle impact 854 

assessment method. To some extent, the comparative nature of this study reduces the importance of 855 

those limitations, as research findings focus on the potential improvements that can be achieved 856 

compared to a baseline situation. Nevertheless, absolute impact assessment results should be 857 

considered with caution, when compared to the published literature. Those limitations highlight the 858 

need for further research to provide more ex-post assessments of reuse technology adoption in the 859 

real-world. More assessments are needed covering farms with different characteristics. Additionally, 860 

published LCA research should follow agreed and harmonised rules to facilitate the generation of 861 

external validity from case studies and then the delivery of more general recommendations. 862 

Overall, this study suggests some directions for further research: (i) to extend case-based 863 

assessments to different geographical and social contexts, including those not currently covered by 864 

background databases; (ii) to calibrate scenario-based life cycle inventory models using real-world 865 

data; (iii) to involve multidisciplinary stakeholders through participatory methods to identify socially 866 

and financially acceptable interventions for assessment; (iv) to develop specific weighting 867 

frameworks to deal with trade-offs among environmental impacts to support the prioritisation of 868 

interventions based on local conditions and stakeholder needs; (v) to develop win-win supply 869 

contracts for farmers and retailers.  870 

 871 

Annex 1 - Theory 872 

This study develops an eco-efficiency analysis by integrating LCA and LCC. LCA and LCC 873 

are process-based tools to compilate the inventory (quantities, costs) of all the inputs and outputs of874

crop production and to assess the environmental impacts and natural resource use (LCA) and the 875 
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economic impacts (LCC), from raw material acquisition to disposal (Finkbeiner et al., 2006; Huguet876

Ferran et al., 2018; Hunkeler et al., 2008; Swarr et al., 2011). In the LCA, this is done through a 877 

stepwise approach with four phases (see Brentrup et al., 2004; Curran, 2013; Pennington et al., 2004; 878 

Rebitzer et al., 2004 for more details):  879 

(1) goal and scope definition (including the identification of system boundaries the selection if 880 

the functional unit);  881 

(2) life cycle inventory analysis, i.e. the compilation of all the relevant inputs and outputs 882 

(including direct and indirect emissions to the environment and consumption of resources); 883 

(3) life cycle impact assessment: the outputs of the inventory are classified according to the 884 

effect they have on the environment and assigned to impact categories using characterization factors, 885 

representing the potential of specific emissions or resource consumption to contribute to the relative 886 

impact category, as follows:  887 

 =∑ ( ∨


) × , 888 

where, ICi = impact category i; Ej or Rj = emission j or consumption of resource j; CFi,j = 889 

characterization factor for Ej or Rj contributing to ICi. CF are calculated via quantitative models at 890 

the midpoint (CFm) or endpoint (CFe) level. Endpoints are the attributes or aspects of natural 891 

environment's ecosystems, human health, resource availability (areas of protection), identifying the 892 

ultimate environmental impacts of concern; midpoints represent the relative contribution of 893 

emissions/resource consumption to an endpoint at an earlier point on the cause-effect chain between 894 

emissions/resource consumption towards endpoints (JRC, 2012). CFm and CFe are calculated, based 895 

on fate factors (FF), optional exposure factors (EF), effect factors (EFF) and optional damage factors 896 

(DF), as follows (Morelli et al., 2018): 897 

 =  ×  898 

 =  ×  ×  899 

 900 

(4) interpretation, to support result understanding and informed decision making in business 901 

and policy.  902 

The same steps apply to the LCC, except for impact assessment, as data are already expressed 903 

in currency units; instead, attention should be paid to cost grouping and the identification of relevant 904 

economic criteria, such as the definition of costs and the selection of the discount rate, when future 905 

cash flows are relevant for the assessment, to cite a few (Heijungs et al., 2013; Ristimäki et al., 2013; 906 

Swarr et al., 2011).  907 

908
Annex 2 – Data collection process 909 
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The retrieval of farm records (2014-2018) allowed to model the baseline system and to collect910

most information for the inventory analysis; information about the transportation stage (means of 911 

transport and distances) and producer price for tomatoes was asked directly to the farmer via face-912 

to-face interview (cf. Banaeian et al., 2011). The field trial was used to collect additional 913 

information for modelling other scenarios, especially CLS, as well for the daily monitoring of the 914 

volume of drainage water and its concentration of crop nutrients. Daily figures about drainage water915 

volume and emissions to water were summed through the duration of the crop cycle per year and 916 

then averaged over the study period. The analytical methods for emission monitoring are as follows: 917 

- K, Na: flame photometry (Flame Photometer 230 VAC 50, 60 Hz);918 

- Ca, Mg, Cu, Fe, Zn, Mn: atomic absorption spectrophotometry (Varian Model Spectra-919 

AA240 FS, Australia); 920 

- P, B: colorimetric analysis, i.e. P via molybdate method (Olsen and Sommers, 1982), B via 921 

azomethine-H method (Page et al., 1982),  922 

- N: spettrophotomethic analysis, i.e. N-NO3 via salicylic acid method (Cataldo et al., 1975), 923 

N-NH4 via indophenol blue spectrophotometric method (Tartari and Mosello, 1997). 924 

A first round of interviews with experts (farm advisor; a local wholesaler of agricultural 925 

supplies, a local agricultural building company, a representative of the local waste company, who 926 

were identified by farm advisor) was organised to gather missing information needed to complete 927 

system modelling, especially WWTP scenario and sw-r, cp-o, cp-r subscenarios. Missing 928 

information (quantities and prices) included adjustments of BAU greenhouse and fertigation stages 929 

to develop WWTP and CSC scenarios (including the identification of the second crop and relative 930 

nutritional needs); final manufacturing (mixing), physical characteristics, farmer price and end of 931 

life management of coir pith slabs; reuse possibilities for substrates; dismantling of infrastructures; 932 

location, means of transports and fees for solid waste and wastewater treatment. 933 

The gathered data were then used to build the inventory using the Ecoinvent ® 3.6 database 934 

(Wernet et al., 2016) for background processes. For bridging process gaps in the Ecoinvent ® 3.6 935 

database, a literature search was carried out and relevant official and refereed papers used as 936 

reference.  937 

Emission factors for the calculation of emissions to air from fertilisers and pesticides from input 938 

data were taken from the literature and selected by comparison with similar LCA studies. 939 

A second interview round was carried out face-to-face with different experts. Based on the 940 

experience of the research team with farm level studies in horticulture, three farm advisors were 941 

selected who operate in the key greenhouse cropping areas of Tuscany, i.e. the provinces of Pistoia,942

Lucca, and Livorno (NUTS 3 level regions). The experts were asked for feedback on inventory data 943 
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for both the LCA and the LCC of all scenarios and subscenarios, to verify if they were consistent with944

the sector, to propose adjustments and to suggest sensitive parameters. The purpose of the 945 

identification of sensitive parameters was to extend the usefulness of study findings to the sector. The 946 

identified parameters were transport distances, as those observed for the case study were shorter than 947 

for most farms, and farmer prices for tomatoes, as they can be affected by relevant fluctuations on a 948 

yearly basis.  949 
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