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ON ALMOST COMPLEX EMBEDDINGS OF RATIONAL
HOMOLOGY BALLS

PAOLO LISCA AND ANDREA PARMA

ABSTRACT. We use elementary arguments to prove that none of the Stein rational
homology 4-balls shown by the authors and Brendan Owens to embed smoothly but
not symplectically in the complex projective plane admit such almost complex embed-
dings. In particular, we show that those rational balls admit no symplectic embeddings
in the complex projective plane without appealing to the work of Evans and Smith.

1. INTRODUCTION

Let p > g > 1 be coprime integers and B, , the Stein rational homology ball smooth-
ing of the quotient singularity I%(pq — 1,1). In [I2] the authors extended work of
Brendan Owens [14] by exhibiting a subfamily

{B(k,m), k>0,m>1} C{B,,}

such that each B(k, m) smoothly embeds in the complex projective plane. We later
realized that the smooth embeddings constructed in [12] were obtained using certain
special handlebody decompositions of CP? called horizontal and that every smooth,
closed, orientable 4-manifold admits horizontal decompositions [10]. In [I1] we use
horizontal decompositions to prove the existence of many more smooth embeddings of
the rational balls B, , into CP”.

Work of Evans and Smith [6] — based on Weimin Chen’s adjunction formula for
pseudoholomorphic curves in almost complex orbifolds [2] — implies that B(k, m) admits
no symplectic embedding in CP?. In fact, Evans and Smith show that B, , embeds
symplectically in CP? if and only if there are integers s and ¢ such that

(ES) p?+ s>+ 1> =3pst and =+ q=3s/t mod p.

Note that the above sign ambiguity is irrelevant because (ES) holds for (p, ¢) if and only
if it holds for (p,p —q). In fact, B,, and B, ,_, are symplectomorphic [6, Remark 2.8].

The main purpose of this note is to show by elementary arguments independent
of [6] that the smooth embeddings constructed in [I4], 12] are not homotopic to almost
complex embeddings. In particular, we deduce that the rational balls B(k, m) admit no
symplectic embedding in CP? without appealing to [6]. We achieve this by associating to
each collared, orientation-preserving topological embedding j : B, , — CP? an integer
¢(7) which identifies the homotopy class of j and a sign h(j) € {£1} which, together
with ¢(j), determines whether the pull-back by j of the standard complex structure of
CP? is homotopic to the Stein structure on B, 4. Recall that, given a closed, topological
4-manifold X, a topological embedding j : B, , — X is collared if the restriction j|sp,,
extends to a topological embedding [—1,1] x 9B, , < X. The following is our main
result.

Theorem 1.1. There is a collared, orientation-preserving topological embedding of B, ,
into a closed, oriented topological 4-manifold X homotopy equivalent to CP? if and
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only if pq — 1 is a quadratic residue modulo p*>. Moreover, to each collared topological

embedding j : B,, — CP? one can associate an integer 0 < c(j) < p* such that c¢(j)? +

1 = pg mod p? and a sign h(j) € {&1} having the following properties:

o if j1,jo: Bpg — CP? are two collared topological embeddings, then j; is homo-
topic to jo if and only if c(j1) = c¢(j2) mod p;

o let Jy denote the standard complex structure on CP?*. Then, the pulled-back
almost complex structure j*(Jo) is homotopic to the Stein structure on B, , if
and only if h(j)q = 3¢(j) mod p and

) U)W —pa=1) =1 _ h(j)e()a+3

P? p

Remarks 1.2. (a) In view of Theorem [[T]it is natural to ask whether there is a rational

ball B, ; and two non-homotopic orientation-preserving embeddings ji, jo : Bp 4 — CP?.

(b) Theorem [[.1] is consistent with the results of [6] in the following sense. For any

symplectic embedding j : B, , — CP? the almost complex structure j*(.Jy) is homotopic

to the Stein structure on B, , and therefore if (ES) holds the conditions of Theorem L]

must be satisfied by some integer 0 < ¢ < p? and some sign h € {£1}. Lemma L3

implies that this is indeed the case.

mod 2.

Corollary 1.3. Let j: By, — CP? be a collared, orientation-preserving topological
embedding. If j*(Jo) is homotopic to the Stein structure on B, then ¢>+9 = 0 mod p.
In particular, B(k,m) does not smoothly embed in. CP* as an almost complex manifold.
A fortiori, B(k,m) does not admit symplectic embeddings in CP?.

Proof. Let j : By, — CP? be an embedding as in the statement such that j*(Jy) is
homotopic to the Stein structure on B, , and let ¢(j) and h(j) be the integers provided
by Theorem [l Since ¢(j)*> + 1 = pg mod p?, we have c¢(j)* = —1 mod p, hence
h(j)q = 3c(j) mod p implies ¢> = —9 mod p. On the other hand, the rational balls
B(k,m) were shown [14, 12] to be of the form B,, with ¢* + 9 not divisible by p for
each k > 0 and m > 1. The statement follows. O

Remark 1.4. By recent work of Gompf [7, Corollary 1.2] the existence of a topological
embedding B,, C CP? implies that the (image of the) interior of B, , is topologically
isotopic to a Stein open subset U C CP?. By Corollary [[3} in the case of the smooth
embeddings B(k,m) C CP?* of [14, [12] the Stein structure which exists on int(B(k, m))
as a smoothing of a quotient singularity is not homotopic to the Stein structure pulled-
back from U by the time-1 map of the isotopy.

Earlier work of Gompf [9] implies that B, , embeds holomorphically in CP? if there is a
smooth embedding j : B, , < CP? such that j*(Jy) is homotopic to the Stein structure
on B,,. In fact, it follows by [9, Theorem 2.1] that after a smooth ambient isotopy
of CP? the induced complex structure on the image of j makes it a holomorphically
embedded Stein handlebody. One can combine Theorem [ with [9] to obtain the
following.

Corollary 1.5. A smooth, orientation-preserving embedding j : B, , — CP? is homo-
topic to a holomorphic embedding if and only if h(j)q = 3¢(j) mod p and Equation ()
holds.

Proof. We have observed above that by [9] if j : B, , — CP? is a smooth, orientation-
preserving embedding, then j is homotopic to a holomorphic embedding if and only if

J*(Jo) is homotopic to the Stein structure on B, ,. On the other hand, by Theorem [I.1]
the latter condition on j is equivalent to the stated congruences. U
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Remark 1.6. We do not know which B, ;s smoothly embed in CP?, although many
pairs (p, ) are obstructed by Donaldson’s Theorem A [4]. Indeed, assuming B, , C CP?
one can construct a positive definite 4-manifold of the form W = P U (CP*\ B,,) for
a suitable 4-dimensional plumbing P with positive definite intersection lattice Ap. By
Donaldson’s theorem the intersection lattice Ay, is standard, and arguing as in [14]
Section 3] one can find a contradiction. On the other hand, it is not difficult to find
B,,’s such that p is not a Markov number, p divides ¢*+9 but Donaldon’s theorem does
not obstruct the existence of a smooth embedding. For instance, By and B3 g are such
rational balls. In fact, it is easy to check that for (¢, h) € {(3,—1),(97,1)} in the first
case and (¢, h) € {(1998,1), (3331, —1)} in the second case the conditions of Theorem [L.1]
are satisfied, so that the balls Byo; and Br3g could conceivably admit holomorphic
embeddings into CIP?, although by [6] they admit no such symplectic embeddings. These
examples have led us to the following question.

Question 1.7. Is there a B, , which admits a holomorphic embedding but no symplectic
embedding into CP* 2

Acknowledgments. The present work is part of MIUR-PRIN project 2017JZ2SW5.
The authors wish to thank the referee for their accurate and helpful report.

2. EMBEDDINGS INTO HOMOTOPY COMPLEX PROJECTIVE PLANES

If pg — 1 is a quadratic residue mod p? then the linking form of —9B,, is realized
by the matrix (p?) [5, Theorem 3.1], so it follows from work of Boyer and Stong [, [15]
that —0B, , is the boundary of a an oriented, simply connected topological 4-manifold
V with intersection form (p?). Gluing B, , and V along their boundaries produces a
closed, oriented topological 4-manifold X homotopy equivalent to CP? and containing
a topologically embedded collared copy of B, ,. This establishes one direction of the
first sentence of Theorem [[LIl To prove the other direction we will use the following

Proposition 2.1. Let X be a closed, oriented topological 4-manifold homotopy equiv-
alent to CP?. Let j: B,, = X be a collared, orientation-preserving topological embed-

ding and set V := X \ j(B,,). Then, Hi(V;Z) = 0 and Hy(V;7Z) = Z. Moreover, if
i:V — X is the inclusion map, the subgroup i,(Hy(V;Z)) C Ho(X;Z) = Z has index
p.
Proof. A Mayer-Vietoris argument [14, Lemma 3.1] applied to the decomposition
CP? = j(B,,) UV
gives H1(V;Z) =0 and Hy(V;Z) = Z. Let g € Hy(V;Z) be a generator and
a € Hy(V,0V:Z) = H*(V;Z) = Hom(Hy(V; Z), Z)

a relative homology class such that a- g = 1. Recall [0 § 2.3] that H,(B,,) = Z/pZ.
Then, po,a € H,(0V;Z) has zero image in Hy(B,,;Z). This implies that pPD(«a) €
H?(V;Z) is the restriction of a class in H?(X;Z), i.e. k times a generator A € H*(X;Z)
for some k € Z. Let £ := PD(A) € Hy(X;Z). Then,

p = pPD(a), 9) = k(A, g) = k(L - i.g).
Thus, we have i,g = df, where d divides p. Exactness of the sequence
Ho(0V;Z) = 0 — Ho(V;Z) = 298 Hy(V,0V,2) 2 7
— H(0V;Z2) 2 Z/p*Z — H\(V;Z) =0
shows that d? = p?, and the statement follows. O
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Corollary 2.2. Let X be a closed, oriented topological 4-manifold homotopy equivalent
to CP? and j : Bpg — CP? a collared, orientation-preserving topological embedding.
Then, pq — 1 is a quadratic residue mod p?.

Proof. Proposition 2.1l implies that the intersection form of V' is represented by the
matrix (p?), which therefore presents the linking form on 0V = —9B,, = L(p*,p* —

pq+1). Tt easily follows (cf. [5, Theorem 3.1]) that pg— 1 is a quadratic residue modulo
2

p-. U

3. AN AUXILIARY 4-MANIFOLD AND ITS INTERSECTION LATTICE

In this section we establish some facts which will be used in Section (4] to prove the
second part of Theorem [LTl Let j : B,, < CP? be a collared, orientation-preserving
topological embedding and let V' C CP? be the topological 4-manifold of Proposi-
tion 2.1l Let R,, be the minimal resolution of the cyclic quotient singularity of type
I%(pq —1,1). Note that there is a canonical identification OR, , = 0B, , because B,
is a smoothing of the same singularity. We use this identification to define the oriented
topological 4-manifold

X:=R,,UV
by gluing JR,, and OV along their boundaries. Let n = by(R,,). Using the Mayer-

R
Vietoris sequence it is easy to check that Hy(X;Z) = 0 and by(X)
duality and the Universal Coefficients Theorem we have

n+1. By Poincaré

Tor(Hy(X; Z)) = Tor(Hy (X; Z)) = 0.

Denote by Ag, Ay and A, respectively, the free Abelian groups Hy (R q; Z), Ho(V; Z)

and Hg()? ; Z) viewed as intersection lattices. Recall that, as a smooth manifold, R,
is the 4-dimensional plumbing of 2-disk bundles over spheres associated to a string of
integers (—ay,...,—a,), where a; > 2 fori=1,...,n and

2

1 P
2 ceyp] = ay — =
() [(1,1, ,(l] ai 1 pq—l
ag — ——

Qn

The core 2-spheres of the plumbing Si,...,5, C R,, can be chosen to be smooth
complex curves, and with their complex orientation they define the vertex basis

{Ul = [Sl], e, Uy = [Sn]} C AR.

Let D, C R, 4 be a smoothly and properly embedded 2-disk normal to S,,, oriented so
that S, - D,, = +1. Note that “the last sphere” S,, is well-defined unless n > 1 and

<a17a27 < '7an> = (an7an717 o '7a1)7

which by [13, Lemmas A.1 and A.2] holds if and only if pg—1 equals its inverse mod p?,
which is p? — pg — 1. Thus, (ay, ..., a,) is palindromic if and only if p = 2¢. But, since
2

p —4=[4,
pqg—1

p and ¢ are coprime, this can happen only if (p,q) = (2,1), and then

son =1 and S is well-defined.
It is well-known and easy to check that the homology class [0D,] is a generator of
H(OR, ;Z) = Z/p*Z. Recall that by Proposition 211 we have Hy(V;Z) = Z.
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Definition 3.1. Let ¢ € Hy(V;Z) be the generator such that i,g € Hy(CP%Z) is p
times the class of a complex line, where i, is the inclusion-induced map. Moreover, let

a € Hy(V,0V:Z) = H*(V;Z) = Hom(Hy(V; Z), Z) = 7Z
be the (unique) relative homology class such that « - g = 1.

Note that, since ¢ - ¢ = i,g - i,g = p? and we are assuming p > 1, we must have
da#0¢€ H\(V;Z) = Hi(0OR, ;Z), otherwise a would be a multiple of g and therefore

a-gF# 1.
Definition 3.2. Let 0 < ¢(j) < p? be the unique integer such that
c(7)[0D,) = 0 € Hi(OR, ;7).
Lemma 3.3. There is an an element v,41 € Ag such that vp4 -i,9 = 1 and
{vi,.. ., Un, g1} C Ay

is a basis with associated Gram matriv G = (v; - v;) given by

—a; 1 0 0 0
1 —ay 1 0 0
a— : : : : : :
0 - 1 —a,, 1 0
0 o ... 1 —a, cj)
0 O C(j) _an+1
c(j)*p?—pg—1)—1

Moreover, ¢(7)? = pq — 1 mod p* and a,,, = 5
p
Proof. By construction, the pair (¢(j)PD([D,]),PD(a)) € H*(R,,Z) ® H*(V;Z) is
mapped to zero by the difference of the restriction maps

H*(R,,;;7)® H*(V;Z) — H*(0R,,;7) = H*(OV; Z).

Therefore, by the cohomology Mayer-Vietoris sequence there is a homology class v, ;1 €
Hy(X; Z) such that PD(v,41) € H2(X;7Z) is sent to ¢(j)PD([D,]) by the restriction map
H%(X;Z) — H%(R,;Z) and to PD(a) by the restriction map H2(X:Z) — H2(V;Z).

We claim that the classes vi,...,v,,v,41 are a basis Ag. Since by construction
Unt1 - g = 1, the lattice (g) C Hy(V;Z) generated by g is primitive in Ag, i.e. the
quotient A /(g) is torsion-free. Since g-g = p*, the lattice (g) is nondegenerate.
Applying [3, Lemma A34] we obtain

det((g)") = det({g)) = p*.

Since (vy,...,v,) is a finite-index sublattice of the non-degenerate lattice (g)* having
the same determinant, by [3, Lemma A5] we have (vy,...,v,) = (g)*. Thus, for each
A € Ag the class

A= (- g)onss € {g)*
is a integral linear combination of vy, ..., v,. This shows that (vi,...,vs, Ups1) = Ag,
and since the classes v; are clearly independent the claim holds.

Since [D,] - v, = 1, by the definition of v,;; we have v,y - v, = ¢(j). Setting
Apt1 = —Upt1 - Upt1, We see that the Gram matrix G = (v; - v;) has the stated form.
Using e.g. [I3, Lemmas Al and A2] one can check that the numerator of the fraction
[ay, ..., a,_1] is the integer between 0 and p? which is the inverse mod p? of pg — 1, i.e.
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p* — pg — 1. Moreover, since Ay is unimodular of signature (1,n) and the submatrix
of G given by the first n — 1 rows and columns is negative definite, we have

det(G) = (=1)" = —=(=1)"p*ans1 — c()*(=1)" ' (p* —pg - 1).
Thus, ¢(j)*(=pg — 1) = 1 mod p?, i.e. ¢(j)? = pg — 1 mod p?, and the formula for a,
follows. O

As before, let g € Ho(V';Z) be the generator of Definition B.Jl Then, by Lemma

we can write
n+1

i=1
for some by, ...,b,41 € Z.

Lemma 3.4. There is a unique integer h(j) € {£1} such that by, ..., b, are given by
the recursive rule:

b1 = h(])C(]), b2 = albl, bs = asflbsfl — bs,Q, S = 3, oo, n.
Moreover, b, = by(p — pq — 1) and A(j)bus1 = (anbu — bu1)/br = 1.
Proof. Since g - g = p?, the lattice (g) is a finite-index sublattice of the non-degenerate
lattice A% = (vy,...,v,)" having the same determinant, therefore by [3, Lemma A5

we have (g) = Ag. By Lemma B3 b := (by,...,b,1)" € Z"™ generates the kernel of
the n x (n + 1) matrix

—a; 1 0 0 cee 0
1 —ay 1 0 e 0
M = : : : : : :
o - 1 —a,, 1 0
viewed as a homomorphism Z"*! — Z". The system Mb = 0 consists of the n equations
—aiby + by =0,
(3) bS_Q — as—lbs—l + bs = O, s = 3, ey,

bn,1 - CLnbn + C(j)bn+1 =0.

Since b is primitive the b;’s are coprime, so the first n — 1 equations of ([B]) imply that b,
divides by, ..., b,. On the other hand, the last equation implies that b; divides ¢(7)b,11
and therefore, since the b;’s are coprime, that c¢(j) = h(j)b; for some h(j) € Z. Since
by divides b; for i = 1,...,n and ¢(j) # 0, we can define dy,...,d, by the equations
bi =bid;, i =1,...,n. Hence d; = 1 and the d;’s satisfy the n equations

—ayd; +dy =0,
(4) ds_g — as—lds—l + ds = 0, s = 3, ey,
dp—1 — apd, + h(,])anrl = 07
which we may write in the form
d; . h(7)b,
(5) dtlz[ai,...,al],z:l,...,n—l, %

Note that @) and d; = 1 imply that h(j) and d,, are coprime. Hence, it follows from (2))
and the last equation of (B) that h(j) divides p?. But h(j) also divides ¢(j), which is

= [apn, ..., a1].
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coprime with p because by Lemma [3.3] we have ¢(j)> = —1 mod p, therefore h(j) = +1.
It is easy to check by induction that, since a; > 1 for each i, we have

l=dy < <dy,

and the last equation of () yields h(j)b,11 = (anb,—b,—1)/b1. Finally, the last equality
of (@) implies that h(j)b,,1 = p* and by e.g. [13, Appendix] d,(pg — 1) = 1 mod p?,
therefore d,, = p?> — pqg — 1. This concludes the proof. O

4. EMBEDDINGS INTO THE COMPLEX PROJECTIVE PLANE
We continue using the notation of the previous sections.

Lemma 4.1. Let ji,j2: Bpg — CP? two collared topological embeddings. Then, ji is
homotopic to jo if and only if ¢(j1) = c(j2) mod p.

Proof. Recall that CP™ is a K(Z,2) and observe that, since B, , is homotopy equivalent
to a 2-dimensional CW-complex, the set [B, ,, CP*] = H?*(B,,;Z) of homotopy classes
of maps B,, — CP> is in 1 — 1-correspondence with [B,,, CP?], the correspondence
being given by composing a map B, , — CP? with the inclusion CP* ¢ CP™. Hence
the homotopy class of a map j : B,, — CP? is determined by the pull-back j*(PD(¢)),
where ¢ € Hy(CP? Z) is the class of a complex line. Therefore, j, is homotopic to
J2 if and only if j7(PD(¢)) = j5(PD(¢)). On the other hand, the cohomology exact
sequence of the pair (B, ,, 0B,,) shows that the inclusion-induced map H?(B, ,;Z) —
H?*(dB,4; Z) is injective. Therefore j;(PD(¢)) = j;(PD(¢)) if and only if

Observe that, for each k& = 1,2, we have PD(¢)|sy, = pPD(a)|sy,, where V, =
CP?\ jx(B,,). Since by definition of c(jy)

we conclude that j; is homotopic to jy if and only if pc(j1) = pe(jz) mod p?, i.e. if and
only if ¢(j1) = ¢(j2) mod p. O

Lemma 4.2. Let j: B,, < CP? be a collared, orientation-preserving topological em-
bedding. Then, the pulled-back almost complex structure j*(Jy) is homotopic to the
Stein structure on By, if and only if h(j)q = 3¢(j) mod p and Equation ({l) holds.

Proof. Let so(CP?) € Spin®(CP?) be the Spin-structure associated to the standard
complex structure on CP?, and so(B,,) € Spin®(B,,) the Spin°-structure associated
to the Stein structure on B, ,. Recall that, given any map j: B,, — X there is an
induced pull-back map j* : Spin¢(X) — Spin®(B, ) between the sets of Spin®-structures
on X and B,,. Since B, , is a 2-complex, homotopy classes of almost complex struc-
tures on B, , are in 1-1 correspondence with Spin® structures, with the correspondence
given by sending an almost complex structure to the associated Spin® structure [8, Re-
mark(a), p. 48]. Therefore, j*(.Jy) is homotopic to the Stein structure on B, , if and
only if j#so(CP?) = so(B,,). Therefore, to prove the theorem it suffices to show that
§%50(CP?) = s4(B,,,) if and only if the stated congruences hold.

If j*so(CP?) = s¢(B,,) then, since EO(RM)\@RM = so(Bp,q)\aBpﬂ\, 50(CP?)|y ex-
tends to a Spin®-structure 5o € Spin®(X). Let 8 = c¢1(50) € H*(X;Z). The class
B restricts to R,, as ¢1(R,,), hence we have (3,i.g) = (c;(CP?),i,.g) = 3p because
c1(CP?) = 3PD({), where g € Hy(V;Z) is the generator of Proposition 21l Let
T H2(X;7Z) be the basis dual to {vi,...,vn1}. Since vy,...,v, €
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Hy(R, ,;Z) are homology classes of smooth complex curves of genus zero with their
canonical orientation, by the classical adjunction formula we have

(B,vi) = (c1(Rpyq),vi) =2—a; for i=1,... n
We can write

B = i(Z — ai)vz# + xvfﬂ € HQ()?; Z)
for some z € Z with z = (iﬁz,lvnﬂ) = a,41 mod 2 because 3 is characteristic. Since
1sg = Z?;Lll b;v;, we have
3p=(B,i.g) = 2(2 — a;)b; + Tbpy.
i=1
By Lemma [3.4]

n n—1 n—2 n n n
SO WU SURSD ST ST S
i—2 i—1 i—1 i—1 i—1 i—1
where in the last equality we used that b;p? = a,b, — b,_1 and b, = b (p* — pg — 1).

Therefore

(6) > (2= a)bi = —bipg,
i=1
so by Lemma [3.4] it follows that

3p = —b1pq + xbyy1 = h(j)p(—c(j)q + zp),

therefore h(j)q = 3c(j) mod p and x = w. Since x = (B, v,41) must be congru-

ent to V41 Vp11 = —ap1 mod 2 because [ is characteristic, Equation ([I) follows from
Lemma B3] and the first half of the proof is concluded.

Conversely, let j: B,, — CP? be a collared, orientation-preserving topological em-
bedding and suppose that h(j)g = 3c(j) mod p and (Il) holds. Then, we can write
h(j)c(7)q + 3 = h(j)yp, where y is an integer such that

c(j)2(p* —pq—1)

—1
5 mod 2.
p

)
By Lemma the class

B = Z(Z —a;)vf + yviﬂl € HQ()?;Z)
i=1
satisfies (5, v;) = v;-v; mod 2 foreach i = 1,...,n+1, and therefore it is a characteristic
class on X. Since Hl()? ;Z) = 0 we have = ¢i(s) for a unique Spin® structure
s € Spin®(X), and since | Ry, = C1(Rp,q) the restriction s|g, , coincides with the Spin®-
structure so(R,,) induced by the complex structure. Now observe that, by Lemma 3.4]
and our choice of y,

n

(Brivg) = Y (2= ai)bi + ybuir = —bipg + yh(j)p* = p(—=h(j)c()q + h(j)yp) = 3p.

i=1
In view of Proposition 2.I1this implies 3|y, = ¢;(CP?)|y, therefore, since H,(CP*; Z) =
0, we have 5|V = so(CP?)|y. In particular,

sloy = SO(CP2)\8V=j(6Bp,q)-
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Hence,
jﬁsO(CPQHaBp,q = $|8Rp,q - SO(Rp7Q)|8RP,q = SO(BP7Q)|BBPJI'
As observed in the proof of Lemma E], since the map H*(B,,;Z) — H*(0B,;Z)

induced by the inclusion 0B,, C B,, is injective, so is the inclusion-induced map
Spin®(B, ) — Spin®(0B, ). Therefore

7*50(CP*)|oB,., = 50(Bpa)lon,, == 7*50(CP?) = s0(By,)-
This concludes the proof. O

Proof of Theorem 1.1l The first sentence in the statement of Theorem [ 1] was estab-
lished in Section 2l The second part of the statement follows from the combination of

Lemmas [4.1] and O
We close the paper with the lemma referred to in Remark [L2(b).

Lemma 4.3. If p and q satisfy Equation (ES) for some s and t then there exists an
integer ¢ and a sign h € {£1} satisfying the conditions of Theorem [11.

Proof. Given a triple (p,s,t) satisfying (ES) we can choose an integer c¢q with 0 <
co < p?, such that ¢y = 2 mod p, therefore the condition hg = 3c mod p is satisfied
for some h € {£1} by any c of the form ¢q + kp. It suffices to show that ¢ and h
satisfy the remaining congruences of Theorem [I] for some choice of k. Since ¢3 =
—1 mod p — which implies that ¢y is coprime with p — we can write ¢ = ap — 1, so
that ¢* + 1 = p(a + 2cok) mod p?. The right-hand side is congruent to pq if and only if
2¢pk = g — a mod p, which becomes 2k = (a — q)co mod p after multiplying both sides
by ¢o. If p is odd we can find k£ by simply inverting 2, while if p is even there is a unique
possibility for & modulo £ and two possibilities modulo p because p = 0 mod 2 implies
that (a — q)co is even. In fact, ¢ and ¢y are both odd because they are coprime with
p. In particular, ¢ + 1 is congruent to 2 mod 4. Since ap = ¢ + 1, this shows that a
must be odd — and p = 2 mod 4 — so that (a — ¢)cg is even. We are left with verifying
that ¢ satisfies (). If p is odd, replacing in () all occurrencies of p with 1 we obtain
the equivalent congruence c2¢ + 1 = c¢g + 1 mod 2, which holds because ¢ = ¢ mod 2.
If p is even, by the argument given in the first part of the proof £ is odd. Moreover,

replacing ¢ with ¢+ % changes the right-hand side mod 2 but not the left-hand side, so

that exactly one between ¢ and ¢ + %2 satisfies the congruence. In fact, the right-hand

h
side changes by %, which is odd, while the left-hand side changes by

= C+—
p

which is even because both ¢ and % are odd. O
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