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ON ALMOST COMPLEX EMBEDDINGS OF RATIONAL

HOMOLOGY BALLS

PAOLO LISCA AND ANDREA PARMA

Abstract. We use elementary arguments to prove that none of the Stein rational
homology 4-balls shown by the authors and Brendan Owens to embed smoothly but
not symplectically in the complex projective plane admit such almost complex embed-
dings. In particular, we show that those rational balls admit no symplectic embeddings
in the complex projective plane without appealing to the work of Evans and Smith.

1. Introduction

Let p > q ≥ 1 be coprime integers and Bp,q the Stein rational homology ball smooth-
ing of the quotient singularity 1

p2
(pq − 1, 1). In [12] the authors extended work of

Brendan Owens [14] by exhibiting a subfamily

{B(k,m), k ≥ 0, m ≥ 1} ⊂ {Bp,q}

such that each B(k,m) smoothly embeds in the complex projective plane. We later
realized that the smooth embeddings constructed in [12] were obtained using certain
special handlebody decompositions of CP2 called horizontal and that every smooth,
closed, orientable 4-manifold admits horizontal decompositions [10]. In [11] we use
horizontal decompositions to prove the existence of many more smooth embeddings of
the rational balls Bp,q into CP

2.
Work of Evans and Smith [6] – based on Weimin Chen’s adjunction formula for

pseudoholomorphic curves in almost complex orbifolds [2] – implies that B(k,m) admits
no symplectic embedding in CP

2. In fact, Evans and Smith show that Bp,q embeds
symplectically in CP

2 if and only if there are integers s and t such that

(ES) p2 + s2 + t2 = 3pst and ± q ≡ 3s/t mod p.

Note that the above sign ambiguity is irrelevant because (ES) holds for (p, q) if and only
if it holds for (p, p− q). In fact, Bp,q and Bp,p−q are symplectomorphic [6, Remark 2.8].
The main purpose of this note is to show by elementary arguments independent

of [6] that the smooth embeddings constructed in [14, 12] are not homotopic to almost
complex embeddings. In particular, we deduce that the rational balls B(k,m) admit no
symplectic embedding in CP

2 without appealing to [6]. We achieve this by associating to
each collared, orientation-preserving topological embedding j : Bp,q →֒ CP

2 an integer
c(j) which identifies the homotopy class of j and a sign h(j) ∈ {±1} which, together
with c(j), determines whether the pull-back by j of the standard complex structure of
CP

2 is homotopic to the Stein structure on Bp,q. Recall that, given a closed, topological
4-manifold X , a topological embedding j : Bp,q →֒ X is collared if the restriction j|∂Bp,q

extends to a topological embedding [−1, 1] × ∂Bp,q →֒ X . The following is our main
result.

Theorem 1.1. There is a collared, orientation-preserving topological embedding of Bp,q

into a closed, oriented topological 4-manifold X homotopy equivalent to CP
2 if and
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only if pq − 1 is a quadratic residue modulo p2. Moreover, to each collared topological

embedding j : Bp,q →֒ CP
2 one can associate an integer 0 < c(j) < p2 such that c(j)2 +

1 ≡ pq mod p2 and a sign h(j) ∈ {±1} having the following properties:

• if j1, j2 : Bp,q →֒ CP
2 are two collared topological embeddings, then j1 is homo-

topic to j2 if and only if c(j1) ≡ c(j2) mod p;
• let J0 denote the standard complex structure on CP

2. Then, the pulled-back

almost complex structure j∗(J0) is homotopic to the Stein structure on Bp,q if

and only if h(j)q ≡ 3c(j) mod p and

(1)
c(j)2(p2 − pq − 1)− 1

p2
≡

h(j)c(j)q + 3

p
mod 2.

Remarks 1.2. (a) In view of Theorem 1.1 it is natural to ask whether there is a rational
ball Bp,q and two non-homotopic orientation-preserving embeddings j1, j2 : Bp,q →֒ CP

2.
(b) Theorem 1.1 is consistent with the results of [6] in the following sense. For any
symplectic embedding j : Bp,q →֒ CP

2 the almost complex structure j∗(J0) is homotopic
to the Stein structure on Bp,q and therefore if (ES) holds the conditions of Theorem 1.1
must be satisfied by some integer 0 < c < p2 and some sign h ∈ {±1}. Lemma 4.3
implies that this is indeed the case.

Corollary 1.3. Let j : Bp,q →֒ CP
2 be a collared, orientation-preserving topological

embedding. If j∗(J0) is homotopic to the Stein structure on Bp,q then q2+9 ≡ 0 mod p.
In particular, B(k,m) does not smoothly embed in CP

2 as an almost complex manifold.

A fortiori, B(k,m) does not admit symplectic embeddings in CP
2.

Proof. Let j : Bp,q →֒ CP
2 be an embedding as in the statement such that j∗(J0) is

homotopic to the Stein structure on Bp,q and let c(j) and h(j) be the integers provided
by Theorem 1.1. Since c(j)2 + 1 ≡ pq mod p2, we have c(j)2 ≡ −1 mod p, hence
h(j)q ≡ 3c(j) mod p implies q2 ≡ −9 mod p. On the other hand, the rational balls
B(k,m) were shown [14, 12] to be of the form Bp,q with q2 + 9 not divisible by p for
each k ≥ 0 and m ≥ 1. The statement follows. �

Remark 1.4. By recent work of Gompf [7, Corollary 1.2] the existence of a topological
embedding Bp,q ⊂ CP

2 implies that the (image of the) interior of Bp,q is topologically
isotopic to a Stein open subset U ⊂ CP

2. By Corollary 1.3, in the case of the smooth
embeddings B(k,m) ⊂ CP

2 of [14, 12] the Stein structure which exists on int(B(k,m))
as a smoothing of a quotient singularity is not homotopic to the Stein structure pulled-
back from U by the time-1 map of the isotopy.

Earlier work of Gompf [9] implies thatBp,q embeds holomorphically in CP
2 if there is a

smooth embedding j : Bp,q →֒ CP
2 such that j∗(J0) is homotopic to the Stein structure

on Bp,q. In fact, it follows by [9, Theorem 2.1] that after a smooth ambient isotopy
of CP2 the induced complex structure on the image of j makes it a holomorphically
embedded Stein handlebody. One can combine Theorem 1.1 with [9] to obtain the
following.

Corollary 1.5. A smooth, orientation-preserving embedding j : Bp,q →֒ CP
2 is homo-

topic to a holomorphic embedding if and only if h(j)q ≡ 3c(j) mod p and Equation (1)
holds.

Proof. We have observed above that by [9] if j : Bp,q →֒ CP
2 is a smooth, orientation-

preserving embedding, then j is homotopic to a holomorphic embedding if and only if
j∗(J0) is homotopic to the Stein structure on Bp,q. On the other hand, by Theorem 1.1
the latter condition on j is equivalent to the stated congruences. �
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Remark 1.6. We do not know which Bp,q’s smoothly embed in CP
2, although many

pairs (p, q) are obstructed by Donaldson’s Theorem A [4]. Indeed, assuming Bp,q ⊂ CP
2

one can construct a positive definite 4-manifold of the form W = P ∪
(
CP

2 \Bp,q

)
for

a suitable 4-dimensional plumbing P with positive definite intersection lattice ΛP . By
Donaldson’s theorem the intersection lattice ΛW is standard, and arguing as in [14,
Section 3] one can find a contradiction. On the other hand, it is not difficult to find
Bp,q’s such that p is not a Markov number, p divides q2+9 but Donaldon’s theorem does
not obstruct the existence of a smooth embedding. For instance, B10,1 and B73,8 are such
rational balls. In fact, it is easy to check that for (c, h) ∈ {(3,−1), (97, 1)} in the first
case and (c, h) ∈ {(1998, 1), (3331,−1)} in the second case the conditions of Theorem 1.1
are satisfied, so that the balls B10,1 and B73,8 could conceivably admit holomorphic
embeddings into CP2, although by [6] they admit no such symplectic embeddings. These
examples have led us to the following question.

Question 1.7. Is there a Bp,q which admits a holomorphic embedding but no symplectic

embedding into CP
2 ?

Acknowledgments. The present work is part of MIUR-PRIN project 2017JZ2SW5.
The authors wish to thank the referee for their accurate and helpful report.

2. Embeddings into homotopy complex projective planes

If pq − 1 is a quadratic residue mod p2 then the linking form of −∂Bp,q is realized
by the matrix (p2) [5, Theorem 3.1], so it follows from work of Boyer and Stong [1, 15]
that −∂Bp,q is the boundary of a an oriented, simply connected topological 4-manifold
V with intersection form (p2). Gluing Bp,q and V along their boundaries produces a
closed, oriented topological 4-manifold X homotopy equivalent to CP

2 and containing
a topologically embedded collared copy of Bp,q. This establishes one direction of the
first sentence of Theorem 1.1. To prove the other direction we will use the following

Proposition 2.1. Let X be a closed, oriented topological 4-manifold homotopy equiv-

alent to CP
2. Let j : Bp,q →֒ X be a collared, orientation-preserving topological embed-

ding and set V := X \ j(Bp,q). Then, H1(V ;Z) = 0 and H2(V ;Z) ∼= Z. Moreover, if

i : V →֒ X is the inclusion map, the subgroup i∗(H2(V ;Z)) ⊂ H2(X ;Z) ∼= Z has index

p.

Proof. A Mayer-Vietoris argument [14, Lemma 3.1] applied to the decomposition

CP
2 = j(Bp,q) ∪ V

gives H1(V ;Z) = 0 and H2(V ;Z) ∼= Z. Let g ∈ H2(V ;Z) be a generator and

α ∈ H2(V, ∂V ;Z) ∼= H2(V ;Z) ∼= Hom(H2(V;Z),Z)

a relative homology class such that α · g = 1. Recall [6, § 2.3] that H1(Bp,q) ∼= Z/pZ.
Then, p∂∗α ∈ H1(∂V ;Z) has zero image in H1(Bp,q;Z). This implies that pPD(α) ∈
H2(V ;Z) is the restriction of a class in H2(X ;Z), i.e. k times a generator Λ ∈ H2(X ;Z)
for some k ∈ Z. Let ℓ := PD(Λ) ∈ H2(X ;Z). Then,

p = p〈PD(α), g〉 = k〈Λ, g〉 = k(ℓ · i∗g).

Thus, we have i∗g = dℓ, where d divides p. Exactness of the sequence

H2(∂V ;Z) = 0 → H2(V ;Z) ∼= Z
(g·g)·
−→ H2(V, ∂V ;Z) ∼= Z

→ H1(∂V ;Z) ∼= Z/p2Z → H1(V ;Z) = 0

shows that d2 = p2, and the statement follows. �
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Corollary 2.2. Let X be a closed, oriented topological 4-manifold homotopy equivalent

to CP
2 and j : Bp,q →֒ CP

2 a collared, orientation-preserving topological embedding.

Then, pq − 1 is a quadratic residue mod p2.

Proof. Proposition 2.1 implies that the intersection form of V is represented by the
matrix (p2), which therefore presents the linking form on ∂V = −∂Bp,q = L(p2, p2 −
pq+1). It easily follows (cf. [5, Theorem 3.1]) that pq−1 is a quadratic residue modulo
p2. �

3. An auxiliary 4-manifold and its intersection lattice

In this section we establish some facts which will be used in Section 4 to prove the
second part of Theorem 1.1. Let j : Bp,q →֒ CP

2 be a collared, orientation-preserving
topological embedding and let V ⊂ CP

2 be the topological 4-manifold of Proposi-
tion 2.1. Let Rp,q be the minimal resolution of the cyclic quotient singularity of type
1
p2
(pq − 1, 1). Note that there is a canonical identification ∂Rp,q = ∂Bp,q because Bp,q

is a smoothing of the same singularity. We use this identification to define the oriented
topological 4-manifold

X̂ := Rp,q ∪ V

by gluing ∂Rp,q and ∂V along their boundaries. Let n = b2(Rp,q). Using the Mayer-

Vietoris sequence it is easy to check that H1(X̂ ;Z) = 0 and b2(X̂) = n+1. By Poincaré
duality and the Universal Coefficients Theorem we have

Tor(H2(X̂;Z)) ∼= Tor(H1(X̂;Z)) = 0.

Denote by ΛR, ΛV and Λ
X̂
, respectively, the free Abelian groups H2(Rp,q;Z), H2(V ;Z)

and H2(X̂ ;Z) viewed as intersection lattices. Recall that, as a smooth manifold, Rp,q

is the 4-dimensional plumbing of 2-disk bundles over spheres associated to a string of
integers (−a1, . . . ,−an), where ai ≥ 2 for i = 1, . . . , n and

(2) [a1, . . . , an] := a1 −
1

a2 −
1

· · · −
1

an

=
p2

pq − 1

The core 2-spheres of the plumbing S1, . . . , Sn ⊂ Rp,q can be chosen to be smooth
complex curves, and with their complex orientation they define the vertex basis

{v1 = [S1], . . . , vn = [Sn]} ⊂ ΛR.

Let Dn ⊂ Rp,q be a smoothly and properly embedded 2-disk normal to Sn, oriented so
that Sn ·Dn = +1. Note that “the last sphere” Sn is well-defined unless n > 1 and

(a1, a2, . . . , an) = (an, an−1, . . . , a1),

which by [13, Lemmas A.1 and A.2] holds if and only if pq−1 equals its inverse mod p2,
which is p2 − pq − 1. Thus, (a1, . . . , an) is palindromic if and only if p = 2q. But, since

p and q are coprime, this can happen only if (p, q) = (2, 1), and then
p2

pq − 1
= 4 = [4],

so n = 1 and S1 is well-defined.
It is well-known and easy to check that the homology class [∂Dn] is a generator of

H1(∂Rp,q;Z) ∼= Z/p2Z. Recall that by Proposition 2.1 we have H2(V ;Z) ∼= Z.
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Definition 3.1. Let g ∈ H2(V ;Z) be the generator such that i∗g ∈ H2(CP
2;Z) is p

times the class of a complex line, where i∗ is the inclusion-induced map. Moreover, let

α ∈ H2(V, ∂V ;Z) ∼= H2(V ;Z) ∼= Hom(H2(V;Z),Z) ∼= Z

be the (unique) relative homology class such that α · g = 1.

Note that, since g · g = i∗g · i∗g = p2 and we are assuming p > 1, we must have
∂α 6= 0 ∈ H1(V ;Z) = H1(∂Rp,q;Z), otherwise α would be a multiple of g and therefore
α · g 6= 1.

Definition 3.2. Let 0 < c(j) < p2 be the unique integer such that

c(j)[∂Dn] = ∂α ∈ H1(∂Rp,q;Z).

Lemma 3.3. There is an an element vn+1 ∈ Λ
X̂

such that vn+1 · i∗g = 1 and

{v1, . . . , vn, vn+1} ⊂ Λ
X̂

is a basis with associated Gram matrix G = (vi · vj) given by

G =




−a1 1 0 0 · · · 0
1 −a2 1 0 · · · 0
...

...
...

...
...

...

0 · · · 1 −an−1 1 0
0 · · · · · · 1 −an c(j)
0 · · · · · · 0 c(j) −an+1




.

Moreover, c(j)2 ≡ pq − 1 mod p2 and an+1 =
c(j)2(p2 − pq − 1)− 1

p2
.

Proof. By construction, the pair (c(j)PD([Dn]),PD(α)) ∈ H2(Rp,q;Z) ⊕ H2(V ;Z) is
mapped to zero by the difference of the restriction maps

H2(Rp,q;Z)⊕H2(V ;Z) → H2(∂Rp,q;Z) ∼= H2(∂V ;Z).

Therefore, by the cohomology Mayer-Vietoris sequence there is a homology class vn+1 ∈

H2(X̂ ;Z) such that PD(vn+1) ∈ H2(X̂;Z) is sent to c(j)PD([Dn]) by the restriction map

H2(X̂;Z) → H2(Rp,q;Z) and to PD(α) by the restriction map H2(X̂ ;Z) → H2(V ;Z).
We claim that the classes v1, . . . , vn, vn+1 are a basis Λ

X̂
. Since by construction

vn+1 · g = 1, the lattice 〈g〉 ⊂ H2(V ;Z) generated by g is primitive in ΛX̂ , i.e. the
quotient Λ

X̂
/〈g〉 is torsion-free. Since g · g = p2, the lattice 〈g〉 is nondegenerate.

Applying [3, Lemma A34] we obtain

det(〈g〉⊥) = det(〈g〉) = p2.

Since 〈v1, . . . , vn〉 is a finite-index sublattice of the non-degenerate lattice 〈g〉⊥ having
the same determinant, by [3, Lemma A5] we have 〈v1, . . . , vn〉 = 〈g〉⊥. Thus, for each
λ ∈ ΛX̂ the class

λ− (λ · g)vn+1 ∈ 〈g〉⊥

is a integral linear combination of v1, . . . , vn. This shows that 〈v1, . . . , vn, vn+1〉 = ΛX̂ ,
and since the classes vi are clearly independent the claim holds.
Since [Dn] · vn = 1, by the definition of vn+1 we have vn+1 · vn = c(j). Setting

an+1 := −vn+1 · vn+1, we see that the Gram matrix G = (vi · vj) has the stated form.
Using e.g. [13, Lemmas A1 and A2] one can check that the numerator of the fraction
[a1, . . . , an−1] is the integer between 0 and p2 which is the inverse mod p2 of pq− 1, i.e.
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p2 − pq − 1. Moreover, since ΛX̂ is unimodular of signature (1, n) and the submatrix
of G given by the first n− 1 rows and columns is negative definite, we have

det(G) = (−1)n = −(−1)np2an+1 − c(j)2(−1)n−1(p2 − pq − 1).

Thus, c(j)2(−pq − 1) ≡ 1 mod p2, i.e. c(j)2 ≡ pq − 1 mod p2, and the formula for an+1

follows. �

As before, let g ∈ H2(V ;Z) be the generator of Definition 3.1. Then, by Lemma 3.3
we can write

i∗g =

n+1∑

i=1

bivi ∈ ΛX̂

for some b1, . . . , bn+1 ∈ Z.

Lemma 3.4. There is a unique integer h(j) ∈ {±1} such that b1, . . . , bn are given by

the recursive rule:

b1 = h(j)c(j), b2 = a1b1, bs = as−1bs−1 − bs−2, s = 3, . . . , n.

Moreover, bn = b1(p
2 − pq − 1) and h(j)bn+1 = (anbn − bn−1)/b1 = p2.

Proof. Since g · g = p2, the lattice 〈g〉 is a finite-index sublattice of the non-degenerate
lattice Λ⊥

R = 〈v1, . . . , vn〉
⊥ having the same determinant, therefore by [3, Lemma A5]

we have 〈g〉 = Λ⊥

R. By Lemma 3.3, b := (b1, . . . , bn+1)
t ∈ Z

n+1 generates the kernel of
the n× (n+ 1) matrix

M :=




−a1 1 0 0 · · · 0
1 −a2 1 0 · · · 0
...

...
...

...
...

...
0 · · · 1 −an−1 1 0
0 · · · · · · 1 −an c(j)




viewed as a homomorphism Zn+1 → Zn. The system Mb = 0 consists of the n equations

(3)





−a1b1 + b2 = 0,

bs−2 − as−1bs−1 + bs = 0, s = 3, . . . , n,

bn−1 − anbn + c(j)bn+1 = 0.

Since b is primitive the bi’s are coprime, so the first n−1 equations of (3) imply that b1
divides b2, . . . , bn. On the other hand, the last equation implies that b1 divides c(j)bn+1

and therefore, since the bi’s are coprime, that c(j) = h(j)b1 for some h(j) ∈ Z. Since
b1 divides bi for i = 1, . . . , n and c(j) 6= 0, we can define d1, . . . , dn by the equations
bi = b1di, i = 1, . . . , n. Hence d1 = 1 and the di’s satisfy the n equations

(4)





−a1d1 + d2 = 0,

ds−2 − as−1ds−1 + ds = 0, s = 3, . . . , n,

dn−1 − andn + h(j)bn+1 = 0,

which we may write in the form

(5)
di+1

di
= [ai, . . . , a1], i = 1, . . . , n− 1,

h(j)bn+1

dn
= [an, . . . , a1].

Note that (4) and d1 = 1 imply that h(j) and dn are coprime. Hence, it follows from (2)
and the last equation of (5) that h(j) divides p2. But h(j) also divides c(j), which is
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coprime with p because by Lemma 3.3 we have c(j)2 ≡ −1 mod p, therefore h(j) = ±1.
It is easy to check by induction that, since ai > 1 for each i, we have

1 = d1 < · · · < dn,

and the last equation of (4) yields h(j)bn+1 = (anbn−bn−1)/b1. Finally, the last equality
of (5) implies that h(j)bn+1 = p2 and by e.g. [13, Appendix] dn(pq − 1) ≡ 1 mod p2,
therefore dn = p2 − pq − 1. This concludes the proof. �

4. Embeddings into the complex projective plane

We continue using the notation of the previous sections.

Lemma 4.1. Let j1, j2 : Bp,q →֒ CP
2 two collared topological embeddings. Then, j1 is

homotopic to j2 if and only if c(j1) ≡ c(j2) mod p.

Proof. Recall that CP∞ is a K(Z, 2) and observe that, since Bp,q is homotopy equivalent
to a 2-dimensional CW-complex, the set [Bp,q,CP

∞] = H2(Bp,q;Z) of homotopy classes
of maps Bp,q → CP

∞ is in 1 − 1-correspondence with [Bp,q,CP
2], the correspondence

being given by composing a map Bp,q → CP
2 with the inclusion CP

2 ⊂ CP
∞. Hence

the homotopy class of a map j : Bp,q → CP
2 is determined by the pull-back j∗(PD(ℓ)),

where ℓ ∈ H2(CP
2;Z) is the class of a complex line. Therefore, j1 is homotopic to

j2 if and only if j∗1(PD(ℓ)) = j∗2(PD(ℓ)). On the other hand, the cohomology exact
sequence of the pair (Bp,q, ∂Bp,q) shows that the inclusion-induced map H2(Bp,q;Z) →
H2(∂Bp,q;Z) is injective. Therefore j∗1(PD(ℓ)) = j∗2(PD(ℓ)) if and only if

j∗1PD(ℓ)|∂Bp,q
= j∗2PD(ℓ)|∂Bp,q

.

Observe that, for each k = 1, 2, we have PD(ℓ)|∂Vk
= pPD(α)|∂Vk

, where Vk :=

CP
2 \ jk(Bp,q). Since by definition of c(jk)

j∗kPD(ℓ)|∂Vk
= pj∗kPD(α))|∂Vk

= pc(jk)PD([∂Dn]), k = 1, 2,

we conclude that j1 is homotopic to j2 if and only if pc(j1) ≡ pc(j2) mod p2, i.e. if and
only if c(j1) ≡ c(j2) mod p. �

Lemma 4.2. Let j : Bp,q →֒ CP
2 be a collared, orientation-preserving topological em-

bedding. Then, the pulled-back almost complex structure j∗(J0) is homotopic to the

Stein structure on Bp,q if and only if h(j)q ≡ 3c(j) mod p and Equation (1) holds.

Proof. Let s0(CP
2) ∈ Spinc(CP2) be the Spinc-structure associated to the standard

complex structure on CP
2, and s0(Bp,q) ∈ Spinc(Bp,q) the Spinc-structure associated

to the Stein structure on Bp,q. Recall that, given any map j : Bp,q → X there is an
induced pull-back map j♯ : Spinc(X) → Spinc(Bp,q) between the sets of Spinc-structures
on X and Bp,q. Since Bp,q is a 2-complex, homotopy classes of almost complex struc-
tures on Bp,q are in 1-1 correspondence with Spinc structures, with the correspondence
given by sending an almost complex structure to the associated Spinc structure [8, Re-
mark(a), p. 48]. Therefore, j∗(J0) is homotopic to the Stein structure on Bp,q if and
only if j♯s0(CP

2) = s0(Bp,q). Therefore, to prove the theorem it suffices to show that
j♯s0(CP

2) = s0(Bp,q) if and only if the stated congruences hold.
If j♯s0(CP

2) = s0(Bp,q) then, since s0(Rp,q)|∂Rp,q
= s0(Bp,q)|∂Bp,q

, s0(CP
2)|V ex-

tends to a Spinc-structure s̄0 ∈ Spinc(X̂). Let β = c1(s̄0) ∈ H2(X̂;Z). The class
β restricts to Rp,q as c1(Rp,q), hence we have 〈β, i∗g〉 = 〈c1(CP

2), i∗g〉 = 3p because
c1(CP

2) = 3PD(ℓ), where g ∈ H2(V ;Z) is the generator of Proposition 2.1. Let

{v#1 , . . . , v
#
n+1} ⊂ H2(X̂;Z) be the basis dual to {v1, . . . , vn+1}. Since v1, . . . , vn ∈
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H2(Rp,q;Z) are homology classes of smooth complex curves of genus zero with their
canonical orientation, by the classical adjunction formula we have

〈β, vi〉 = 〈c1(Rp,q), vi〉 = 2− ai for i = 1, . . . , n.

We can write

β =
n∑

i=1

(2− ai)v
#
i + xv#n+1 ∈ H2(X̂ ;Z)

for some x ∈ Z with x = 〈β, vn+1〉 ≡ an+1 mod 2 because β is characteristic. Since
i∗g =

∑n+1
i=1 bivi, we have

3p = 〈β, i∗g〉 =
n∑

i=1

(2− ai)bi + xbn+1.

By Lemma 3.4
n∑

i=2

bi =
n−1∑

i=1

aibi −
n−2∑

i=1

bi =⇒
n∑

i=1

bi =
n∑

i=1

aibi −
n∑

i=1

bi − b1pq,

where in the last equality we used that b1p
2 = anbn − bn−1 and bn = b1(p

2 − pq − 1).
Therefore

(6)

n∑

i=1

(2− ai)bi = −b1pq,

so by Lemma 3.4 it follows that

3p = −b1pq + xbn+1 = h(j)p(−c(j)q + xp),

therefore h(j)q ≡ 3c(j) mod p and x = c(j)q+3h(j)
p

. Since x = 〈β, vn+1〉 must be congru-

ent to vn+1 · vn+1 = −an+1 mod 2 because β is characteristic, Equation (1) follows from
Lemma 3.3, and the first half of the proof is concluded.
Conversely, let j : Bp,q →֒ CP

2 be a collared, orientation-preserving topological em-
bedding and suppose that h(j)q ≡ 3c(j) mod p and (1) holds. Then, we can write
h(j)c(j)q + 3 = h(j)yp, where y is an integer such that

y ≡
c(j)2(p2 − pq − 1)− 1

p2
mod 2.

By Lemma 3.3 the class

β :=
n∑

i=1

(2− ai)v
#
i + yv#n+1 ∈ H2(X̂;Z)

satisfies 〈β, vi〉 ≡ vi ·vi mod 2 for each i = 1, . . . , n+1, and therefore it is a characteristic

class on X̂ . Since H1(X̂ ;Z) = 0 we have β = c1(s) for a unique Spinc structure

s ∈ Spinc(X̂), and since β|Rp,q
= c1(Rp,q) the restriction s|Rp,q

coincides with the Spinc-
structure s0(Rp,q) induced by the complex structure. Now observe that, by Lemma 3.4
and our choice of y,

〈β, i∗g〉 =

n∑

i=1

(2− ai)bi + ybn+1 = −b1pq + yh(j)p2 = p(−h(j)c(j)q + h(j)yp) = 3p.

In view of Proposition 2.1 this implies β|V = c1(CP
2)|V , therefore, since H1(CP

2;Z) =
0, we have s|V = s0(CP

2)|V . In particular,

s|∂V = s0(CP
2)|∂V=j(∂Bp,q).
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Hence,
j♯s0(CP

2)|∂Bp,q
= s|∂Rp,q

= s0(Rp,q)|∂Rp,q
= s0(Bp,q)|∂Bp,q

.

As observed in the proof of Lemma 4.1, since the map H2(Bp,q;Z) → H2(∂Bp,q;Z)
induced by the inclusion ∂Bp,q ⊂ Bp,q is injective, so is the inclusion-induced map
Spinc(Bp,q) → Spinc(∂Bp,q). Therefore

j♯s0(CP
2)|∂Bp,q

= s0(Bp,q)|∂Bp,q
=⇒ j♯s0(CP

2) = s0(Bp,q).

This concludes the proof. �

Proof of Theorem 1.1. The first sentence in the statement of Theorem 1.1 was estab-
lished in Section 2. The second part of the statement follows from the combination of
Lemmas 4.1 and 4.2. �

We close the paper with the lemma referred to in Remark 1.2(b).

Lemma 4.3. If p and q satisfy Equation (ES) for some s and t then there exists an

integer c and a sign h ∈ {±1} satisfying the conditions of Theorem 1.1.

Proof. Given a triple (p, s, t) satisfying (ES) we can choose an integer c0 with 0 <
c0 < p2, such that c0 ≡ s

t
mod p, therefore the condition hq ≡ 3c mod p is satisfied

for some h ∈ {±1} by any c of the form c0 + kp. It suffices to show that c and h
satisfy the remaining congruences of Theorem 1.1 for some choice of k. Since c20 ≡
−1 mod p – which implies that c0 is coprime with p – we can write c20 = ap − 1, so
that c2 + 1 ≡ p(a+ 2c0k) mod p2. The right-hand side is congruent to pq if and only if
2c0k ≡ q − a mod p, which becomes 2k ≡ (a− q)c0 mod p after multiplying both sides
by c0. If p is odd we can find k by simply inverting 2, while if p is even there is a unique
possibility for k modulo p

2
and two possibilities modulo p because p ≡ 0 mod 2 implies

that (a − q)c0 is even. In fact, q and c0 are both odd because they are coprime with
p. In particular, c20 + 1 is congruent to 2 mod 4. Since ap = c20 + 1, this shows that a
must be odd – and p ≡ 2 mod 4 – so that (a− q)c0 is even. We are left with verifying
that c satisfies (1). If p is odd, replacing in (1) all occurrencies of p with 1 we obtain
the equivalent congruence c2q + 1 ≡ cq + 1 mod 2, which holds because c2 ≡ c mod 2.
If p is even, by the argument given in the first part of the proof p

2
is odd. Moreover,

replacing c with c+ p2

2
changes the right-hand side mod 2 but not the left-hand side, so

that exactly one between c and c+ p2

2
satisfies the congruence. In fact, the right-hand

side changes by
hpq

2
, which is odd, while the left-hand side changes by

(
(c+ p2

2
)2 − c2

)
(p2 − pq − 1)

p2
=

(
c+

p2

4

)
(p2 − pq − 1),

which is even because both c and p2

4
are odd. �
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