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The differential heating of electrons and ions by turbulence in weakly collisional magnetized
plasmas and the scales at which such energy dissipation is most effective are still debated. Using a
large data sample measured in the Earth’s magnetosheath by the Magnetospheric Multiscale mission
and the coarse-grained energy equations derived from the Vlasov-Maxwell system we find evidence
of a balance over two decades in scales between the energy cascade and dissipation rates. The decline
of the cascade rate at kinetic scales (in contrast with a constant one in the inertial range), is balanced
by an increasing ion and electron heating rates, estimated via the pressure-strain. Ion scales are
found to contribute most effectively to ion heating, while electron heating originates from both
ion and electron scales. These results can potentially impact the current understanding of particle
heating in turbulent magnetized plasmas as well as their theoretical and numerical modeling.

One of the central problems in turbulent media is to un-
derstand how energy is transferred across scales and how
it is eventually dissipated. For weakly collisional plasma
such as the solar wind or planetary magnetosheaths,
the pioneering work of Politano and Pouquet [1] enables
us, in the framework of incompressible Magnetohydro-
dynamics (MHD) and under the assumptions of fully
developed turbulence, to express the cascade rate as a
function of third order structure functions of the velocity
and magnetic field [2]. These results have been extended
to account for compressibility [3, 4], the contribution of
the Hall current at subion scales [5–7], different fluid
closure equations [8] and temperature anisotropy [9]
and have been used extensively to measure the cascade
rate in spacecraft data [10–23]. In recent years the
coarse-graining (CG) method, initially developed for
hydrodynamics [24, 25], gained popularity in the plasma
physics community [26–30]. This formulation provides
an alternative way to measure the cascade rate and
enables us to overcome some limitations imposed by the
stringent hypotheses of fully developed turbulence (e.g.,
spatial homogeneity). Indeed, the CG approach can
be employed not only to measure the average cascade
rate over large plasma portions but also to address
localized cross-scale energy transfer in reconnecting
current sheets [31, 32]. In this work we scale-filter the
Vlasov-Maxwell equations and measure the nonlinear
energy cascade rate and the exchanges between its
various forms (kinetic, electromagnetic and “thermal”,
defined below) as a function of scale, with a particular
focus on the turbulent plasma heating given by the
pressure-strain interaction [33, 34].
The Coarse Graining theory– To study cross-scale
energy transfer we apply the spatial CG approach
to the moments of the Vlasov equation, written for
an electron-ion plasma (α = e, i), and the Maxwell
ones. All variables are low-pass filtered at a scale ℓ,

e.g vℓ =
∫
drGℓ(r)v(x + r), where Gℓ is a centered,

normalized filtering kernel with variance of order ℓ2 [35].
To include the effects of compressibility we introduce a
density-weighted filtering (Favre filtering) defined for a

given field f as: f̃ℓ = ρf ℓ/ρℓ [36, 37]. For conciseness of
the notations the filtering scale ℓ is not written explicitly
unless necessary.

At each scale ℓ we can write the equations for the large-
scale bulk flow (Ẽ f

α = ρα|ṽα|2/2), electromagnetic (EM,

Eem
= (|E|2 +|B|2)/8π) and thermal energies (Eth

α =
Tr(Pα)/2):

∂

∂t

(
Ẽ f
i + Ẽ f

e

)
= −∇ ·F f

ℓ + j ·E

+ Pi : ∇vi + Pe : ∇ve − π(x, ℓ) (1)

∂

∂t
Eem

= −∇ ·Fem
ℓ − j ·E (2)

∂

∂t
Eth

α = −∇ ·F th
ℓ −∇ · hα

− Pα : ∇vα − ϕα(x, ℓ) (3)

where

π(x, ℓ) =
∑
α=e,i

−ρα
[
ṽαvα − ṽαṽα

]
: ∇ṽα

+ (∇Pα) · (ṽα − vα)

− nαqαvα ·
[
(Ẽ −E) +

1

c

(
ṽα ×B − ṽα × B̃

)]
(4)

is the cross-scale energy transfer (or turbulent cascade)
rate across the scale ℓ. The quantities j ·E and PSα ≡
Pα : ∇vα are the only sink terms of the large-scale EM
and thermal energy, respectively, and appear as a source
in the large scale bulk flow energy. This implies that
any process that changes the large-scale thermal energy
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must go through the PSα channel. At the same time
equation (1) shows that (a fraction of) j.E can lead to
plasma heating (via the PSα) without having to modify
the large scale bulk flow energy. This can be seen even
more clearly by summing equations (1) and (3), which
indicates that j ·E acts as a source for the total kinetic
energy of the plasma particles (bulk flow and thermal
energy) [38]. The quantity ϕα = Pα : ∇vα − Pα : ∇vα

stands for a nonlinear cascade of thermal energy. This
term transfers thermal energy from large to small spa-
tial scales and will not be discussed in this work since
we only consider transfer to the thermal energy and not
how this quantity rearranges itself over scales. While
j · E and Pα : ∇vα are cumulative quantities, encom-
passing the energy exchanges from all scales larger than
ℓ, the cross-scale terms π, ϕ measure the transfer across
scale ℓ. The spatial fluxes in the form ∇ · F , including
the divergence of the filtered heat flux ∇ · hα, move the
large scale energies in space and disappear after integra-
tion over a suitable domain. The full derivation of these
equations and the expression of the spatial fluxes can be
found in Appendix A together with a discussion of the
difference between equations (1)-(3) and those derived in
Yang et al. [29]. Summing equations (1)-(2) and aver-
aging over a portion of plasma yields:

∂

∂t

〈
Ẽ f
i + Ẽ f

e + Eem
〉
+∇ ·

〈
F f

ℓ +Fem
ℓ

〉
=

PSi(ℓ) + PSe(ℓ) − Π(ℓ) (5)

where in the right hand side we find the average PS
interaction, PSα(ℓ) = ⟨Pα : ∇vα⟩, filtered at scale ℓ,
and the net energy cascade Π(ℓ) = ⟨πℓ⟩.
Equation (5) states that, under the assumption of
suitable boundary conditions, what is lost by the
large-scale energies either cascades to smaller scales
or is transferred to thermal energy. In this view the
pressure-strain interaction plays the role of an energy
sink. For this reason we will refer to it as dissipation,
even if it is somehow inappropriate (see discussion
below).

We evaluate equation (5) between scales ℓ0 and ℓ < ℓ0.
Under the hypotheses of negligible spatial fluxes and en-
ergy stationarity (or a simple balance between the two)
at scales smaller than ℓ0, we find:

Π(ℓ0)−Π(ℓ) = −∆PSi(ℓ)−∆PSe(ℓ) (6)

where −∆PSα(ℓ) = −PSα(ℓ) + PSα(ℓ0) is the cumula-
tive contribution to thermal heating rate of species α in
the range [ℓ, ℓ0]. Equation (6) shows that any difference
between Π(ℓ0) and Π(ℓ) will reflect the amount of en-
ergy that is lost to thermal energy between those two
scales. In this perspective, a constant cascade rate in-
dicates an inertial range where dissipation is negligible,
while a scale-dependent cascade rate is the signature of

active dissipation. It must be stressed that relation (5)
comes directly from Vlasov-Maxwell equations, and as
such is not limited by any fluid approximation since no
closure equation is imposed on the pressure. This implies
that if kinetic effects play a role in heating the plasma,
this will be captured by the PS interaction, which ex-
plains why the energy cascade rate (inherently a fluid
quantity) could capture dissipation via Landau damping
in turbulence simulations [39]. However, the interpreta-
tion of PS as a measure of change in the thermal energy
(i.e., heating) is grounded on the assumption that the
spatial fluxes contribution ∇ · ⟨F th

ℓ +hα⟩ in equation (3)
are negligible. Notice that this condition applies to aver-
aged filtered fields and not to local (pointwise) quantities.
Data selection and methods– We use data from the Mag-
netospheric Multispacecraft (MMS) mission [40], which
enables us to compute the spatial derivatives in PSα and
Π using the gradiometer technique [41]. We use FluxGate
Magnetometer data for the magnetic field, the Spin-Plane
Double Probe [42] and the Axial Double Probe [43] for
the electric field and the Fast Plasma Investigation [44]
for the plasma data. Spin-tone removal is applied to the
electron velocity data [45]. The CG operation in space-
craft data at a given time-scale τ is computed as fτ (t) =∫
dt′Gτ (t

′)f(t+t′) where Gτ is a 1-dimensional Gaussian

kernel with variance τ2/4: Gτ (t) = e−2t2/τ2

/
√
πτ2/2.

The time scale τ is related to the spatial scale ℓ via the
mean flow speed ℓ ∼ τVf ∼ 1/k using the Taylor hypoth-
esis. To minimize the finite sample size effect, the maxi-
mum scale τmax should be significantly smaller than the
duration of the interval under consideration. The small-
est accessible scale τmin is constrained by the instrument
time resolution (typically 150ms for ions); we set τmin

at twice this value. When combining MMS products of
different time resolutions, we re-sample the data at the
frequency of the least resolved quantity. It is worth not-
ing that the electron contributions to the cascade rate
and PSe do not involve ion data, and as such they are
computed down to (twice) the electron data time resolu-
tion of 30ms.
To ensure the robustness of the results with respect to the
choice of the start and final time of each interval we follow
this pipeline: we compute π, Pi : ∇vi, Pe : ∇ve for all the
data points in the interval [tstart, tend]. We then average
the above quantities in an interval [tstart+∆t1, tend−∆t2].
By varying independently ∆t1,∆t2 between 0 and 10%
of the interval duration we obtain different estimates of
the cascade rate Π and PSα. At each scale, we take the
median value as our best estimate and use the median
absolute deviation as the error bar estimate. A differ-
ent method (not shown) based on propagating the esti-
mated error of the FPI measurements [46] yields smaller
or comparable uncertainties to those obtained here with
the above empirical method.
Results– We show in Fig. 1 and in Fig. 7 the data from
MMS3 taken in the Earth’s magnetosheath (2016/02/23,
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FIG. 1. Panel (a) shows the time series of the magnetic
field measured by MMS3 in Geocentric Solar Ecliptic (GSE)
coordinates. Panel (b) displays the power spectrum of the
magnetic field data computed using the Welch method [47].
Power-law fit and compensated spectra are shown. Time se-
ries for other relevant quantities are shown in Fig. 7.

20:02:35 - 20:04:44). During this time the average plasma
conditions were: B ≈ 35 nT , ne ≈ 19 cm−3, Ti ≈ 175 eV
Te ≈ 27 eV . The ratio of thermal to magnetic pres-
sure is βi ≈ 1.07, βe ≈ 0.16. The mean flow speed
Vf ≈ 300 km/s and the angle between the flow and the
magnetic field θvB ≈ 100o. The inter-spacecraft separa-
tion is of ∼ 11 km. The magnetic field power spectrum
(Fig. 1) displays a f−1.7 scaling in the MHD range and
steepens to f−2.75 at higher frequencies.
Fig. 2(a) shows the balance between the energy cascade
rate Π and the dissipation rate as a function of scale τ . At
large scales, within the inertial range, the dominant pro-
cess is the cascade, while at smaller scales, approaching
τ ∼ 4 s (kρi ∼ 0.2) , dissipation grows and the turbulent
cascade is progressively weakened. Following equation
(6), the decline in the cascade rate is counterbalanced by
a rise in the ion and electron PS, maintaining the sum of
the three quantities constant over two decades of scales.
Fig. 2(a) shows that the small-scale edge of the MHD
range is highly dissipative as the cascade rate weakens
by a factor ∼ 4, consistent with the idea of increased dis-
sipation around the spectral break [48]. Throughout the
weakly dissipative subion range the cascade rate keeps
weakening progressively.
From the behaviour of quantities ∆PSα it is not immedi-
ate to infer at which scales ions and electrons are heated
most. PSα being a cumulative quantity, the contribution
to the heating rate of a given scale range (τ ,τ + ∆τ) is
simply qα(τ)∆τ ≡ −PSα(τ)+PSα(τ +∆τ), which is the
quantity plotted in Fig. 2(b) after binning logarithmi-
cally the range of scales.

FIG. 2. Panel (a) shows the different terms of equation (6) as
a function of τ and kρi (top axis) for the interval shown in Fig.
1. Shaded regions denote the error bars. At time lags smaller
than the time resolution of the ion data we assume that there
is no additional contribution to ion heating (hence a constant
∆PSi(τ), dotted), moreover only the electron contribution to
the cascade is computed. The (blue) dotted line is a cubic
spline interpolation to aid the visualization. Panel (b) shows
the scale-by-scale ion and electron heating rates (see text).

The total heating rate for each species is defined as
Qα =

∫ τmax

τmin
qα(τ)dτ = PSα(τmax) − PSα(τmin), τmin =

0.3 s (0.06 s) for ions (electrons) is twice the plasma data
resolution and τmax = 30 s for this interval. For ions we
obtain a total heating rate Qi = (8 ± 3) × 10−3 nW/m3

(assuming no additional contribution to ion heating orig-
inates from scales smaller than 0.3 s). For electrons, we
estimate the heating rate Qe similarly to ions. How-
ever, that quantity is complemented by an extra term
given by the energy cascade rate at the smallest avail-
able time lag, namely Π(τ = τmin) (highlighted in Fig.
2(a) for τmin ∼ 0.06s), i.e. Q⋆

e = Qe + Π(τmin). This is
based on the assumption that the residual cascade rate
Π(τmin) will be entirely converted into electron heat-
ing at the smallest scales. Thus, we obtain the value
Q⋆

e = (7.5 ± 0.4) × 10−3 nW/m3 for the total electron
heating rate. The cascade rate at MHD scales has a
value of Π(τmax) = (2.1±0.1)×10−2 nW/m3 placing the
ratio Π(τmax)/(Qi + Q⋆

e) ≃ 1. We thus verify equation
(6) : the cascading energy has been converted to thermal
energy via the PS. This observation confirms previous
numerical results where the balance between the cascade
rate and dissipation via PS was first reported [29, 48, 49]
and improves over the comparison between PS and the
cascade rate estimate via incompressible third order laws
presented in [50].

The study of the scale-dependent heating rate qα(τ)∆τ
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informs us about the scales most effective in heating the
two species. Figure 2(b) shows that the largest contri-
bution to ion heating comes from τ ≈ 8 s ( kρi ≈ 0.1),
in the same range of scales electrons are substantially
heated. The residual cascade rate at τmin = 0.06 s,
assumed to sustain the turbulence and eventually
heat electrons at scales kρi ≳ 13 [51], accounts for
Π(τmin)/Q

⋆
e ∼ 35% of the total electron heating rate.

Statistics – To confirm the statistical robustness of the
previous results we perform the same analysis for a large
set of MMS intervals taken in the magnetosheath. The
selection criteria of the data intervals are given in Ap-
pendix B together with additional details of the dataset.
We further narrowed down the selection to keep only data
intervals that satisfy (within the error bars) the energy
balance defined by Π(τmax)/(Qi +Q⋆

e) ∈ [0.4, 1.6] to en-
sure that spatial fluxes and time derivatives in equation
(5) are negligible in the range of scales we are considering.
This guarantees a reliable estimation of the cascade rate,
the ion and electron heating rates, and the related effec-
tive dissipation scales. Out of the 84 intervals studied,
39 satisfy the strict balance condition imposed, showing
that relation (6) is reasonably satisfied (to order unity) in
the magnetosheath. To increase the size of the statistical
sample, for a given interval we consider each spacecraft as
an independent realization, although the spatial deriva-
tives (but not other quantities) involved in equation (6)
are computed from the four spacecraft and thus are iden-
tical for a given event, obtaining a total of 70 events that
satisfy the balance condition, summarized in Fig. 3. For
these events we show in Appendix C the values of the
cascade rate at different scales.

We now wish to delineate the scales at which the PS
interaction is effective in heating the plasma. For each
species, we calculate the fraction of heating coming from
the MHD range (kρi < 0.5), around the ion Larmor scale
(0.5 < kρi < 2) and the subion range (kρi > 2). The re-
sults in Fig. 4(a-c) show that the largest contribution to
the ion heating rate comes from MHD scales (the median
contribution being 60%). The relative importance de-
creases to 30% at the ion Larmor scale and then <10% at
sub-Larmor scales. This result corroborates the assump-
tion made above that the residual cascade at kρi ≳ 10
translates predominantly into electron heating.
The picture that emerges for electrons is more complex:
even if the subion range holds the largest median con-
tribution (70%), a significant contribution (30%) comes
from the MHD and ion scales.

This result demonstrates that electron heating can be
significant at scales comparable with the ion Larmor ra-
dius (including the edge of the MHD range) in line with
previous numerical results [52, 53].
Conclusions – In this work we measure for the first time
using in-situ data the scale dependence of the cascade
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rate and the dissipation rate and show that there ex-
ists a balance that holds for over two decades of scales:
the weakening of the energy cascade as turbulence pro-
ceeds from MHD to kinetic scales is compensated by a
net positive transfer to the thermal energy. On a statis-
tical data set we show that electrons can get substantial
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heating at scales comparable with the ion Larmor radius,
against the conventional wisdom that electron heating oc-
curs solely at electron scales. This questions the validity
of kinetic-hybrid models for plasmas where electrons are
treated as a polytropic fluid whose dissipation is confined
to the small (electron) resistive scales.
Despite the net decline of the cascade rate in the subion
range, the magnetic energy spectra still show clear power
laws all the way down to the electron scales (kρe ≲ 1).
In the absence of a rigorous explanation for this observa-
tion, we speculate that any residual turbulent energy is
bound to cascade to small scales following the scaling law
of one of the existing modes (e.g., Kinetic Alfvén Modes
[52, 54]). Lastly, we mention that identifying PS with
dissipation requires some caution, considering that irre-
versible dissipation can only be achieved via a collisional
operator that activates when small-scale structures are
created in velocity space. In the Vlasov equation used in
this work this term is not included, and thus any kinetic
process (e.g Landau damping) is reversible. Therefore,
rigorously speaking, the observed heating via PS is sim-
ply a reversible exchange with the thermal energy, which
can be given back to flow or electromagnetic fluctuations.
Nevertheless, the fact that in our dataset we consistently
find a net positive heating of the plasma, would imply
that the quantity we measure is indeed irreversibly lost
to thermal energy in which “collisions” (even if scarce)
have certainly played a role. This highlights the need to
study directly the velocity distribution functions to asses
how the plasma dynamic leads to the creation of small
scale structure in velocity space [55–58] as well as iden-
tify the underlying kinetic processes responsible for the
measured heating [38, 59, 60].

DM acknowledges useful discussions with A. Chasapis.
MMS data come from CDPP/AMDA [61] and NASA
GSFC’s Space Physics Data Facility’s CDAWeb. The
Python client SPEASY [62] was used for data retrieval.
DM and FS acknowledge financial support from CNES.

Appendix A: The Coarse Grained Equations –
The CG operation at a given scale ℓ is a convolution
e.g. vℓ =

∫
drGℓ(r)v(x + r), where Gℓ is a centered,

normalized filtering kernel with variance of order ℓ2. It
is a linear operation and it commutes with all derivatives
so it can be straightforwardly applied to the moments of
the Vlasov equations. In the following, we omit the fil-
tering scale ℓ when there is no risk of ambiguity. Let us
consider the filtered continuity and momentum-balance
equations:

∂tρ̄+∇ · (ρ̄ṽ) = 0

∂t(ρ̄ṽ) +∇ · (ρ̄ṽṽ) = −∇ · P̄ + qn̄

[
Ē +

(ṽ × B̃)

c

]
−∇ · (ρ̄(ṽv − ṽṽ))

+ qn̄(Ẽ − Ē) +
qn̄

c

(
ṽ ×B− ṽ × B̃

)
(7)

We recall the Favre filtering definition (used above)
which enables us to write ρvℓ = ρ̄ℓṽℓ. We stress that
the Favre operator is linear but does not commute with
derivatives.
The large scale bulk flow kinetic energy is defined as

Ẽf = 1
2 ρ̄ṽ · ṽ. We derive:

∂tẼf =
|ṽ|2

2
∂tρ̄+ ρ̄ṽ · ∂tṽ =

=
|ṽ|2

2
∂tρ̄+ ṽ · ∂t(ρ̄ṽ)− |ṽ|2∂tρ̄ =

= ṽ∂t(ρ̄ṽ) +
|ṽ|2

2
∇ · (ρ̄ṽ)

(8)

Substituting the momentum equation (7) and rearrang-
ing, we find:

∂tẼf = −∇ ·
[
Ẽf ṽ + v̄ · P̄ + ρ̄ṽ · (ṽv − ṽṽ)

]
+ P̄ : ∇v̄ + qnv · Ē+

+ ρ̄[ṽv − ṽṽ] : ∇ṽ − (∇P̄) · (ṽ − v̄)

+ nqv ·
[
(Ẽ −E) +

1

c

(
ṽ ×B − ṽ × B̃

)]
.

(9)

In the first line we find the spatial flux of large-scale bulk
flow energy:

Ff
ℓ = ρ̄

|ṽ|2

2
ṽ + v̄ · P̄ + ρ̄ṽ · (ṽv − ṽṽ).

The second line contains transfer terms to thermal and
electromagnetic energies, namely the filtered Pressure-
Strain and the single species contribution to the filtered
j ·E. The remaining two lines are (minus) the cross-scale
energy transfer across scale ℓ (the local cascade rate) of
each species.
Notice that if the pressure is isotropic and E = B = 0
we recover the expression given by Aluie [37] for com-
pressible hydrodynamics. This was not the case for
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the equation proposed in Yang et al. [29] where the
baropycnal work ∇P · (ṽ − v̄) was not included in the
cascade rate.

Moving to the large-scale electromagnetic energy, we fil-
ter two of Maxwell’s equations:

c∇× Ē = −∂tB̄ c∇× B̄ = 4πj̄ − ∂tĒ (10)

which can be combined to compute the evolution of
the large-scale electromagnetic energy Eem = (|Ē|2 +
|B̄|2)/8π

∂tEem = −∇ ·
( c

4π
Ē × B̄

)
− j̄ · Ē (11)

where at the right hand side we find the filtered Poynting
flux Fem

ℓ = c
4π Ē × B̄ and the filtered j ·E.

Notice that no cascading mechanism is present in this
equation but only the exchange with the plasma. This
is to be expected as Maxwell’s equations are linear and
all the physics of turbulence must be contained in the
plasma equations.
Lastly, we write the equation for the thermal energy
Eth = Tr(P)/2, which we derive from the second order
centered moment of the Vlasov equation:

∂tEth +∇ ·
(
vEth

)
= −P : ∇v −∇ · h (12)

where the divergence of the heat flux h appears in the
right hand side. Applying the CG operation we find:

∂tEth +∇ ·
(
vEth + h̄

)
= −P̄ : ∇v̄− (P : ∇v− P̄ : ∇v̄)

(13)
where we find the spatial flux of thermal energy
F th

ℓ = vEth, the filtered heat flux h = h∗Gℓ, the cascade
of thermal energy across scale ℓ, ϕℓ = (P : ∇v−P̄ : ∇v̄).

As a conclusion we want to mention a caveat: the careful
reader may notice that there is a certain freedom in
separating the terms into spatial fluxes or cascades as
one can always turn one into the other using an integra-
tion by parts. The criteria we followed (which constrain
the equations in this form) were mentioned above:
no cascading mechanism should appear in Maxwell’s
equation and that in the limiting case E = B = 0 we
should recover the hydrodynamic limit where the terms
have been carefully arranged according to their physical
meaning (see Aluie [37]).

Appendix B: Turbulent intervals identification –
The pipeline follows with minor modifications the proce-
dure outlined in Stawarz et al. [63].
To identify suitable turbulence events we check, between
October 2015 and May 2018, for intervals with contin-
uous burst data available. We remove intervals with
sharp jumps in the plasma parameters or with crossing of
boundaries. We also exclude events in which large scale
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FIG. 5. Panels (a-c) show histogram of the intervals duration,
ion and electron plasma β. Panel (d) shows the location in
the plane XGSE − YGSE of each magnetosheath turbulence
interval examined in this study. The shaded region and the
continuous line denote the probable magnetopause location
based on the Shue model [66].

inhomogeneities are present; for instance we avoid large
scale density gradients and large scale variation of the
angle θvB between the flow and the magnetic field.
Following [63] we check the stability of the magnetic cor-
relation scale over different length sub-intervals and the
applicability of the Taylor hypothesis.
We avoid intervals for which the magnetic field spectrum
only displays a shallow “f−1 range” [64] instead of the
usual inertial range.
We then compute the Elongation E and Planarity P [65]
of the tetrahedron formation and only retain intervals for
which

√
E2 + P 2 < 0.6 to avoid configurations that are

too distorted. As a last step we discard intervals shorter
than 120 s. As a general rule, with the aim of increasing
the statistics, we favour having a larger number of shorter
intervals (e.g., 180-200 s) rather than having one single
longer event (> 10min). Fig. 5 displays some features of
the dataset used in this work.
Appendix C: Statistics of the Cascade Rate –
We estimate the value of the energy cascade rate in the
Earth’s magnetosheath at different scales: the small-scale
edge of the MHD range kρi = 0.2, around the ion scale
kρi = 2 and at the subion scale kρi = 10. Histograms of
the cascade rate at different scales are displayed in Fig.
6. To provide a statistically significant measure we iden-
tify the minimum number of consecutive logarithmically
spaced bins containing over 60% of the data set. Figure
6(a) shows that MHD scales generally exhibit a cascade
rate in the interval [0.3− 1.4]× 10−2 nW/m3 , compara-
ble with the values reported in [17, 19] using third order
laws in the Earth’s magnetosheath. Notably, this rate
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FIG. 6. Histogram of the cascade rate at different scales,
kρi = 0.2, 2, 10 respectively. The shaded blue region denotes
the minimum number of contiguous bins that contains 60%
of the data set.

diminishes by a factor of two upon reaching kρi = 2
[Fig. 6(b)] and further weakens by an additional factor
of two at kρi = 10 [Fig. 6(c)] reaching a rate in the range
[0.1 − 0.5] × 10−2 nW/m3 . This shows that the subion
range is weakly dissipative and that at kρi ∼ 10 a signif-
icant ratio (∼ 30%) of the cascade rate at MHD scales
remains available to sustain the turbulence cascade all
the way down to electron scales [51].

Appendix D: MMS event on 23 February 2016– In
Fig. 7, we present the data from MMS3 for (2016/02/23,
20:02:35 - 20:04:44), corresponding to the magnetic en-
ergy spectrum displayed in Fig. 1.
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