
A Fast Implicit QR Eigenvalue Algorithm for

Companion Matrices

D. A. Bini a,1 P. Boito a,1 Y. Eidelman b L. Gemignani a,1

I. Gohberg b

aDipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5,
56127 Pisa, Italy

bSchool of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel

Abstract

An implicit version of the shifted QR eigenvalue algorithm given in [D. A. Bini,
Y. Eidelman, I. Gohberg, L. Gemignani, SIAM J. Matrix Anal. Appl. 29 (2007),
no. 2, 566–585] is presented for computing the eigenvalues of an n × n companion
matrix using O(n2) flops and O(n) memory storage. Numerical experiments and
comparisons confirm the effectiveness and the stability of the proposed method.

Key words: Companion matrix, quasiseparable structure, QR iteration, eigenvalue
computation, complexity
2000 MSC: 65F15, 65H17

1 Introduction

The paper concerns the efficient computation of the eigenvalues of companion
matrices. A fast and numerically robust algorithm for this task, devised in
[4], is based on the use of the explicit QR iteration applied to an input com-
panion matrix A ∈ Cn×n represented as a rank-one perturbation of a unitary
matrix, namely, A = U − zwT , where U ∈ Cn×n is unitary and z, w ∈ Cn.
The computational improvement with respect to the customary methods is

Email addresses: bini@dm.unipi.it (D. A. Bini), boito@mail.dm.unipi.it
(P. Boito), eideyu@post.tau.ac.il (Y. Eidelman), gemignan@dm.unipi.it (L.
Gemignani), gohberg@post.tau.ac.il (I. Gohberg).
1 This work was partially supported by MIUR, grant number 2002014121, and by
GNCS-INDAM.

Preprint submitted to Linear Algebra and its Applications 9 July 2009

achieved by exploiting the quasiseparable Hessenberg structure in the QR it-
erates inherited from the rank properties of the input companion matrix A.
More specifically, in [4] it is shown that each iterate A(k) is a Hessenberg ma-
trix expressed as the sum of a unitary matrix U (k) plus a rank-one correction.
The fast implementation of the explicit QR iteration takes in input a com-
plete set of generators for the quasiseparable structure of A(k) and returns as
output a complete set of generators for the quasiseparable structure of A(k+1).
The reduction of matrix operations to manipulating a set of O(n) parameters
enables one to perform each QR step in O(n) floating point operations (flops)
with O(n) memory storage. In [4] it is also pointed out that in practice, due to
rounding errors, some additional computations must be carried out in order to
maintain both the quasiseparable structure of A(k) and the unitary property
of U (k).

In the classical numerical linear algebra literature [12,17,2] it is generally
claimed that the implicit QR method should be preferred to its explicit coun-
terpart since it can be faster in the case of multiple shifts, more stable numer-
ically and, moreover, admits suitable variants for the case of real inputs. The
(multishift) QR iteration proceeds as follows:

A0 = A

qk(A
(k)) = Q(k)R(k), (QR factorization)

A(k+1) := Q(k)HA(k)Q(k),

(1)

where qk(z) is a monic polynomial of degree one (single-shift step) or two
(double-shift step) suitably chosen to accelerate the convergence.

The bulge-chasing implicit QR techniques manage to perform the transforma-
tion A(k) → A(k+1) without explicitly forming the matrix qk(A

(k)). The implicit
determination of A(k+1) from A(k) was first described by Francis [11,10] (see
also [12] and [17] and the references given therein). Let Q1 be a Householder
matrix chosen to annihilate the subdiagonal entries in the first column of
qk(A

(k)). The transformation A(k) → QH
1 A(k)Q1 corrupts the upper Hessen-

berg form of A(k) by creating a bulge of size deg(qk(z)) at the top left corner
of the matrix. It is shown that the computation of A(k+1) essentially consists
of chasing the bulge down and to the right of the matrix until it disappears.
The task can be accomplished by a standard Hessenberg reduction employ-
ing a sequence Q2, . . . , Qn−1 of Householder matrices. The resulting algorithm
requires O(n2) flops and it is provably backward stable [15].

The first implicit fast and accurate QR eigenvalue algorithm for real compan-
ion matrices has been presented in [6]. The algorithm employs a factored rep-
resentation of A(k) as the product of a unitary Hessenberg by a quasiseparable
upper triangular matrix. A similar representation was previously considered
in [1] for the efficient eigenvalue computation of certain rank-one corrections

2

of unitary matrices. The bulge-chasing procedure is performed in linear time
by taking advantage of the special form of A(k). Specifically, the multiplica-
tion on the left by the elementary unitary matrix QH

j amounts to a suitable
rearrangement of the Schur factorization of the unitary factor by perform-
ing a sequence of swapping operations. Moreover, the multiplication on the
right by Qj involves the updating of the quasiseparable structure of the up-
per triangular factor via manipulations of its generators. At the end of this
updating process an auxiliary compression step is still required to recover a
minimal-order quasiseparable parametrization for the triangular factor.

In this paper we modify the algorithm given in [4] to incorporate single-shift
and double-shift implicit techniques, thus obtaining a fast adaptation of the
implicit QR method for the case where the initial matrix A = A(0) ∈ Cn×n is
in companion form. Our algorithm basically differs from the method in [6] in
that we use a different compact way to represent the matrices involved. Specif-
ically, the novel scheme still relies on the representation of each iterate A(k)

as a rank-one correction of a unitary matrix, namely, A(k) = U (k)− z(k)w(k)T

.
Our eigenvalue algorithm takes in input a condensed representation of U (k),
the perturbation vectors z(k) and w(k) as well as the coefficients of the shift
polynomial qk(z) and returns as output the generators of A(k+1) computed
by means of (1). Differently from the approach pursued in [3] and [4], here
the use of a suitable factored representation of U (k) makes it possible the up-
dating of the decomposition during the bulge-chasing process in a stable way
without any additional compression and/or re-orthogonalization step. A mini-
mal quasiseparable representation of U (k) is easily computed from its factored
form and then used for finding the unitary matrices Qj involved in the bulge-
chasing process. The proposed algorithm is therefore logically simple, efficient
and numerically stable. It turns out that the QR iteration can be performed
at the cost of O(n) flops using O(n) storage. Numerical experiments confirm
that the algorithm is stable. Experimental comparisons are also included by
showing that in the considered cases our algorithm outperforms the one in [6].

Algorithms for explicit and implicit QR iterations with Hermitian and small
rank perturbations of Hermitian matrices may be found in [5,7–9]. An implicit
QR algorithm for companion matrices was also discussed in [16].

The paper is organized as follows. In Sect. 2 we recall the structural properties
and introduce condensed representations for the matrices generated by the QR
process applied to an input companion matrix. Fast algorithms that carry out
both the single-shift and the double-shift implicit QR iteration applied to such
matrices are described in Sect. 3. In Sect. 4 we address some complementary
issues concerning deflation and stopping techniques while in Sect. 5 the results
of extensive numerical experiments are reported. Finally, the conclusion and
a discussion are the subjects of Sect. 6.

3

2 Matrix structures under the QR iteration applied to a compan-
ion matrix: The classes Hn and Un

In this section we analyze some matrix structures which play a fundamental
role in the design of a fast adaptation of the shifted QR eigenvalue algorithm
(1) applied to an input matrix A = A(0) ∈ Cn×n in companion form.

For a given monic polynomial p(z) of degree n,

p(z) = p0 + p1z + . . . pn−1z
n−1 + zn =

n∏
i=1

(z − ξi),

the associated companion matrix A is defined by

A =



0 −p0

1 0 −p1

1
. . .

...
. . . 0

...

1 −pn−1


.

It is well known that the set of eigenvalues of A coincides with the set of zeros
ξ1, . . . , ξn of p(z) and this property provides the classical reduction between
the computation of polynomial zeros and eigenvalues of companion matrices.
Matrix methods based on the QR iteration (1) applied to a companion matrix
are customary for polynomial root-finding: in fact, the MATLAB 2 command
roots relies on this approach.

The general routines for Hessenberg matrices require O(n2) flops and O(n2)
memory space per iteration. Fast adaptations of the QR eigenvalue algorithm
applied to the companion matrix A can achieve better (linear) estimates both
for the cost and for the storage. The computational improvement is due to the
exploitation of certain additional matrix structures in the iterates A(k), k ≥ 0,
that follow from the companion form of A = A(0). Specifically, it is worth
noting that A = A(0) is an upper Hessenberg matrix which can be expressed as
a rank-one perturbation of the unitary companion matrix U = U (0) associated

2 MATLAB is a registered trademark of The Mathworks, Inc..

4

with the polynomial zn − 1, i.e.,

A =



0 . . . 0 1

1
. . . 0
.

...

1 0


−



p0 + 1

p1

...

pn−1


(

0 0 . . . 1

)

The Hessenberg shape is preserved under the QR iteration and, moreover,
from (1) it follows that A(k+1) is a rank-one perturbation of a unitary matrix
whenever A(k) fulfills the same property. Therefore each matrix A(k), k ≥ 0,
generated by the QR iteration (1) applied to the initial companion matrix A =
A(0) can be recognized as a member of a larger class of structured matrices.

Definition 2.1 Let Hn ⊂ Cn×n be the class of n × n upper Hessenberg ma-
trices defined as rank-one perturbations of unitary matrices. That is, B ∈ Hn

if there exist U ∈ Cn×n unitary and z, w ∈ Cn such that

B = U − zwT . (2)

The vectors z = (zi)
n
i=1, w = (wi)

n
i=1 are called the perturbation vectors of

the matrix B.

The Hessenberg form of B implies some additional properties of the unitary
matrix U .

Definition 2.2 We define the class Un to be the set of n×n unitary matrices
U = (ui,j)

n
i,j=1 such that

ui,j = zi · wj, 1 ≤ j ≤ i− 2, 3 ≤ i ≤ n, (3)

for suitable complex numbers zi and wj referred to as lower generators of the
matrix U .

Let B be a matrix from the class Hn represented in the form (2) with the
unitary matrix U and the vectors z = (zi)

n
i=1 and w = (wi)

n
i=1. Then the

matrix U belongs to the class Un and the numbers zi, i = 1, . . . , n and wi, i =
1, . . . , n−2 are lower generators of the matrix U . In the reverse direction let U
be a unitary matrix from the class Un with lower generators zi (i = 3, . . . , n)
and wi (i = 1, . . . , n− 2). Take arbitrary numbers z1, z2 and wn−1, wn and set
z = (zi)

n
i=1, w = (wi)

n
i=1, the matrix B = U − zwT belongs to the class Hn.

In this paper we use essentially representations of the matrices from the class
Un as a product U = V F , where V and F are unitary matrices with zero
entries above some superdiagonal and below some subdiagonal respectively.
We consider in more details properties of such matrices. Denote by ⊕ the

5

direct sum of two matrices such that

A⊕B =

 A 0

0 B

 .

Lemma 2.3 Let W = (wij)
n
i,j=1 be unitary matrix and let m be positive inte-

ger.

The matrix W satisfies the conditions wij = 0 for i > j + m if and only if W
admits the factorization

W = W1W2 · · ·Wn−m, (4)

where

Wi = Ii−1 ⊕Wi ⊕ In−i−m, i = 1, . . . , n−m (5)

with (m + 1)× (m + 1) unitary matrices Wi.

The matrix W satisfies the conditions wij = 0 for j > i + m if and only if W
admits the factorization

W = Wn−mWn−m−1 · · ·W2W1 (6)

with the unitary matrices Wi (i = 1, . . . , n− 2) of the form (4).

PROOF. Assume that

wi,j = 0, i > j + m. (7)

The first column of the matrix W has the form

W (:, 1) =

 w1

0

 ,

where w1 is an m + 1-dimensional column with the unit norm. We take a

unitary (m + 1)× (m + 1) matrix W1 such that WH
1 f1 =

(
1 0 0

)T

and then

determine the matrix W1 by the formula (5). We get WH
1 W (:, 1) = e1, where

e1 is the first vector from the standard basis in Cn and since the matrix W ∗
1 W

is unitary we conclude that

W = W1

 1 0

0 Ŵ2



6

with a unitary (n− 1)× (n− 1) matrix Ŵ2 which satisfies the condition (7).
Next we apply the same procedure to the matrix F̂2 and so on and on the
(n−m− 1)-th step we obtain the factorization (16).

Assume that the matrix W has the form (4) with the matrices Wi (i =
1, . . . , n − m) of the form (5). We prove by induction in n that the condi-
tion (7) holds. For n = m + 2 we have obviously

W = W1W2 =

W1 0

0 1


 1 0

0 W2


and therefore wn,1 = wm+2,1 = 0. Let for some n ≥ 2 the (n − 1) × (n − 1)
matrix

W̃ = W̃1 · · · W̃n−m−1,

where

W̃i = Ii−1 ⊕Wi ⊕ In−i−m−1, i = 1, . . . , n−m− 1

with (m + 1)× (m + 1) matrices Wi, satisfies the condition (12). The matrix
W defined via (4), (5) may be done in the form

W = W1 · · ·Wn−m−1Wn−m =

 W̃ 0

0 1


 In−m−1 0

0 Wn−m

 .

Hence it follows that

W (m+ i+1 : n, 1 : i) =

 W̃ (m + i + 1 : n− 1, 1 : i)

0

 , i = 1, . . . , n−m−1

which completes the proof of the first part of the lemma.

Applying the first part of the lemma to the transposed matrix W T we prove
the second part. 2

Remark 2.4 Every matrix Wi (i = 1, . . . , n − 2) may be taken either as a
(m + 1) × (m + 1) Householder matrix or as a product of complex Givens
rotations.

For a matrix U ∈ Un we derive a condensed representation as a product of
elementary unitary matrices.

Definition 2.5 Let z = (zi)
n
i=1 be a vector and let Vi, i = 2, . . . , n be 2 × 2

unitary matrices. We say that the vector z is reduced by the matrices Vi (i =

7

2, . . . , n) if there exist complex numbers βi, i = 2, . . . , n such that the relations

βn = zn, VH
i

 zi

βi+1

 =

 βi

0

 , i = n− 1, . . . , 2, (8)

hold. Define the unitary matrix V ∈ Cn×n as the product

V = Vn−1 · · ·V2, (9)

where

Vi = Ii−1 ⊕ Vi ⊕ In−i−1, 2 ≤ i ≤ n− 1. (10)

We say also that the vector z is reduced by the matrix V .

From (9) by Lemma 2.3 it follows that V = (vi,j) is a unitary lower Hessenberg
matrix, i.e.,

vi,j = 0, j > i + 1. (11)

Lemma 2.6 Let U ∈ Cn×n be a unitary matrix from the class Un with lower
generators zi (i = 3, . . . , n), wj (j = 1, . . . , n − 2) and let z1, z2, wn−1, wn

be arbitrary numbers. Assume that the vector z = (zi)
n
i=1 is reduced by 2 × 2

unitary matrices Vi, i = 2, . . . , n−1, define the unitary matrix V via relations
(9), (10). Then the unitary matrix F = V H · U = (fi,j) has null entries below
the second subdiagonal, i.e.,

fi,j = 0, i > j + 2. (12)

PROOF. Set w = (w1, . . . , wn)T , z = (z1, . . . , zn)T and define the matrix
B ∈ Cn×n as in (2). It is clear that B is an upper Hessenberg matrix. Fur-
thermore the relations (9)-(8) imply that the vector g = V Hz = (gi) has null
components gi for i > 3. By Lemma 2.3 V is a lower Hessenberg matrix. Hence
using the fact that B and V H are upper Hessenberg matrices we conclude that
the matrix

F = V H · U = V H ·B + (V Hz) ·wT

satisfies the relations (12). 2

Lemma 2.7 Every matrix U from the class Un admits the decomposition

U = V · F, (13)

where V is a unitary lower Hessenberg matrix and F = (fij) is a unitary
matrix satisfying the condition fi,j = 0, i > j + 2. Moreover one can take
the matrix V in the form

V = Vn−1 · · ·V2, (14)

8

where
Vi = Ii−1 ⊕ Vi ⊕ In−i−1, 2 ≤ i ≤ n− 1 (15)

with 2× 2 unitary matrices Vi and the matrix F in the form

F = F1F2 · · ·Fn−2, (16)

where
Fi = Ii−1 ⊕Fi ⊕ In−i−2, 1 ≤ i ≤ n− 2. (17)

with 3× 3 unitary matrices Fi

PROOF. Let zi (i = 3, . . . , n), wj (j = 1, . . . , n − 2) be lower generators of
the matrix U and let z1, z2, wn−1, wn be arbitrary numbers. Determine 2 × 2
unitary matrices Vi such that the relations (8) hold, and define the unitary
matrix V via (14), (15). By Lemma 2.3 the matrix V is lower Hessenberg.
Moreover by Lemma 2.6 the matrix F = V H · U is lower banded with band-
width 2. 2

Summing up, we obtain that any matrix B from the class Hn can be repre-
sented as

B = U − zwT = V · F − zwT ,

where V and F are unitary matrices represented in the factored form as spec-
ified by (14), (15) and (16), (17), and z and w are the perturbation vectors.
Hence, the matrix B ∈ Hn is completely specified by the following parameters:

(1) the unitary matrices Vk, k = 2, . . . , n− 1 defining the matrix V ;
(2) the unitary matrix Fk, k = 1, . . . , n− 2 defining the matrix F ;
(3) the perturbation vectors z and w.

These parameters are also called the generating elements of the matrix B.

The decomposition of U ∈ Un by means of the elementary matrices Vk and
Fk is numerically robust but not easy to be manipulated under the QR iter-
ation applied to B. In this respect a more suited condensed form of U is its
quasiseparable parametrization introduced in [4]. The representation gives an
explicit description of each entry of U as the product of certain vectors and
matrices of small size. We will show that for every matrix from the class Un

there exist vectors gj ∈ C2, 1 ≤ j ≤ n, hj ∈ C2, 1 ≤ j ≤ n, and matrices
Bj ∈ C2×2, 2 ≤ j ≤ n, such that

ui,j = gT
i B×

i,jhj, for j − i ≥ 0, (18)

where B×
i,j = Bi+1 · · ·Bj for n ≥ j ≥ i + 1 and B×

i,j = I2 if i = j. The elements
gj, hj (j = 1, . . . , n), Bj (j = 2, . . . , n) are called upper generators of the ma-
trix U . The next result shows that generators of U can be easily reconstructed

9

from the two sequences of elementary matrices Vk and Fk defining the unitary
factors V and F , respectively. The recurrence relations for the upper genera-
tors can also be used to compute some elements in the lower triangular part
of U . In particular we provide the formulas for the subdiagonal elements of U
involved in the QR iteration.

Theorem 2.8 Let U = (ui,j) be a unitary matrix from the class Un with
the given factorization U = V F , where the factors V and F defined by the
formulas (14), (15) and (16), (17) using the given unitary 2 × 2 matrices
Vi (i = 2, . . . , n− 1) and unitary 3× 3 matrices Fi (i = 1, . . . , n− 2).

The entries ui,j, max{1, i − 2} ≤ j ≤ n, 1 ≤ i ≤ n, satisfy the following
relations:

ui,j = gT
i B×

i,jhj for j − i ≥ 0; (19)

ui,j = σj for 2 ≤ i = j + 1 ≤ n, (20)

where the vectors hk and the matrices Bk are determined by the formulas

hk = Fk(1 : 2, 1), Bk+1 = Fk(1 : 2, 2: 3), 1 ≤ k ≤ n− 2, (21)

and the vectors gk and the numbers σk are computed recursively

Γ1 =
(

0 1

)
, gT

1 =
(

1 0

)
; (22)

 σk gT
k+1

∗ Γk+1

 = Vk+1

 Γk 0

0 1

Fk, k = 1, . . . , n− 2, (23)

σn−1 = Γn−1hn−1, gT
n = Γn−1Bn−1 (24)

with the auxiliary variables Γk ∈ C1×2.

PROOF. Let the elements gi, hi (i = 1, . . . , N), Bk (k = 2, . . . , n), σk (k =
1, . . . , n − 1) be given via (21)-(24). Using the elements gk, Bk we define the
matrices Gk (k = 1, . . . , N) of sizes k × 2 via relations

Gk = col(gT
i B×

i,k)
k
i=1, k = 1, . . . , n. (25)

It is easy to see that the relations (19), (20) are equivalent to

U(1 : k + 1, k) =

 Gkhk

σk

 , k = 1, . . . , n− 1; U(1 : n, n) = Gnhn. (26)

Next we set
Ck = Vk+1 · · ·V2F1 · · ·Fk, k = 1, . . . , n− 2.

10

Using the formulas (14), (16) we get

Ck =

 Ck(1 : k + 2, 1 : k + 2) 0

0 In−k−2

 , k = 1, . . . , n− 2. (27)

Moreover using (13), (14), (16) we have

U = (VN−1 · · ·Vk+2)Ck(Fk+1 · · ·FN−2), k = 1, . . . , n− 3; U = Cn−2.

Furthermore from (14), (17) we get

Vn−1 · · ·Vk+2 =

 Ik+1 0

0 ∗

 , Fk+1 · · ·Fn−2 =

 Ik 0

0 ∗


and therefore

U(1 : k + 1, 1 : k) = Ck(1 : k + 1, 1 : k), k = 1, . . . , n− 2. (28)

Next we prove by induction that

Ck(1 : k + 2, 1 : k + 2) =
Ck−1(1 : k, 1 : k − 1) Gkhk GkBk+1

∗ σk gT
k+1

∗ ∗ Γk+1

 , k = 1, . . . , n− 2.
(29)

For k = 1 using the formula C1 = V2F1 and the formulas (14), (17) we have
therefore

C1(1 : 3, 1 : 3) =

 1 0

0 V2

F1.

From here using (22), gT
1 = G1 and (21), (23) with k = 1 we get

C1(1, 1 : 3) = F1(1, 1 : 3) = g1

(
h1 B2

)
=

(
G1h1 G1B2

)
,

C1(2 : 3, 1 : 3) = V2

 0 1 0

0 0 1

F1 =

 σ1 gT
2

∗ Γ2


which implies (29) with k = 1.

Let for some k with 1 ≤ k ≤ n− 3 the relation (29) holds. Using the equality

11

Gk =

 GkBk+1

gT
k+1

 one can rewrite (29) in the form

Ck(1 : k + 2, 1 : k + 2) =

 Ck(1 : k + 1, 1 : k) Gk+1

∗ Γk+1

 .

Using the formula Ck+1 = Vk+2CkFk+1 and the formulas (27), (14), (17) we
obtain

Ck+1(1 : k + 3, k + 1 : k + 3) =

 Ik+1 0

0 Vk+2




Ck(1 : k + 1, 1 : k) Gk+1 0

∗ Γk+1 0

0 0 1


 Ik 0

0 Fk+1

 .

From here using the relation Fk+1(1 : 2, 1 : 3) =
(

hk+1 Bk+2

)
and the

formula (23) we get

Ck+1(1 : k + 1, k + 1 : k + 3) =
(

Gk+1hk+1 Gk+1Bk+2

)
,

Ck+1(k + 2 : k + 3, k + 1 : k + 3) = Vk+2

 Γk+1 0

0 1

Fk+1 =

 σk+1 gT
k+2

∗ Γk+2


which completes the proof of (29).

Now combining the relations (28), (29) together we obtain the equalities (26)
for k = 1, . . . , n − 2. Moreover using the equality Cn−2 = U and the relation
(29) with k = n− 2 we have

U(1 : n, n− 1 : n) =


Gn−2Bn−1

gT
n−1

Γn−1

 .

Taking here Bn, hn−1, hn, σn−1, g
T
n as in (21), (24) we get

U(1 : n, n− 1 : n) =

 Gn−1hn−1 Gn−1Bnhn

σN−1 gT
nhn


which completes the proof of the theorem. 2

12

Remark 2.9 One can check easily that the relations (18) are equivalent to
the equalities

U(k, k : n) = gT
k Hk, k = 1, . . . , n (30)

with 2× (n− k + 1) matrices Hk defined via relations

Hk = row(B×
k,ihi)

n
i=k, k = 1, . . . , n. (31)

In the next sections we provide a fast adaptation of the implicit QR iteration
(1) applied for computing the complete set of eigenvalues of the input com-
panion matrix A = A0 ∈ Hn. It takes in input the generating elements of the
matrix Ak ∈ Hn together with the coefficients of the shift polynomial qk(z)
and returns as output the generating elements of the matrix Ak+1 ∈ Hn. The
computation is carried out at the total cost of O(n) flops using O(n) memory
space.

3 The Structured QR Iteration

In this section we present a fast modification of the implicit QR iteration
(1) applied to an input matrix A ∈ Hn expressed in terms of its generating
elements, that is, given in the form

A = U − zwT = V · F − zwT = (Vn−1 · · ·V2) · (F1 · · ·Fn−2)− zwT ,

where U = V · F is the factored representation of U ∈ Un and z and w are
the perturbation vectors of A. For the sake of notational simplicity we omit
the superscript k which labels the QR steps.

Let q(z) be a monic polynomial of degree ` ∈ {1, 2} determined to speed up the
convergence of the QR iteration. The cases ` = 1 and ` = 2 are referred to as
the single-shift and the double-shift iteration, respectively. Moreover, let Q1 =
G1⊕ In−`−1 be a unitary matrix suitably chosen to annihilate the subdiagonal
entries in the first column of q(A). The transformation A → QH

1 AQ1 corrupts
the upper Hessenberg form of A by creating a bulge of size ` at the top left
corner of the matrix. It can be shown that the computation of A(1) essentially
consists of chasing the bulge down and to the right of the matrix until it
disappears. The task can be accomplished by a standard Hessenberg reduction
employing a sequence Q2, . . . , Qn−1 of unitary matrices.

The cumulative unitary factor Q(1) such that A(1) = Q(1)HAQ(1) is given by
the product Q(1) := Q1 ·Q2 · · ·Qn−1. The updating of the matrices A → A(1)

and U → U (1) and of the vectors z → z(1) and w → w(1) can be carried out
in n− 1 steps according to the following rules:

13

A1 = QH
1 A; A′

k = AkQk, Ak+1 = QH
k+1A

′
k, k = 1, . . . , n−1; A(1) := An−1Qn−1.

(32)
Here every Ak, k = 1, . . . , n − 1 is an upper Hessenberg matrix. Moreover
using the formula (2) and setting

U1 = QH
1 U ; U ′

k = UkQk, Uk+1 = QH
k+1U

′
k, k = 1, . . . , n−1; U (1) := Un−1Qn−1,

(33)

z1 = QH
1 z; zk+1 = QH

k+1zk, k = 1, . . . , n− 2; z(1) := zn−1 (34)

w1 = w; wT
k+1 = wT

k QT
k , k = 1, . . . , N − 1; w(1) := wn. (35)

we get

Ak = Uk − zkw
T
k , k = 1, . . . , n− 1. (36)

Here Uk are unitary matrices and zk, wk are vectors. Moreover the matrices
QH

k+1 are chosen to remove the bulge in the matrix A′
k and therefore Ak is an

upper Hessenberg matrix. Hence it follows that every matrix Ak belongs to
the class Hn.

The structured QR iteration essentially consists of an efficient procedure for
evaluating the unitary matrices Qj, 1 ≤ j ≤ n− 1, combined with an efficient
scheme for updating the factorized representation of U under the multiplica-
tion on the right and on the left by the matrices Qj. In the next two subsections
we describe the structured QR iteration in the single-shift and in the double-
shift case. Specifically, in Subsection 3.1 we present a detailed description of
the fast single-shift iteration and give a formal proof of its correctness. Then
in Subsection 3.2 we sketch the fast double shift iteration putting in evidence
the basic differences with the single-shift step. A proof of the correctness of the
double-shift iteration proceeds in exactly the same way as for the single-shift
case.

3.1 The Structured QR Iteration: The Single-Shift Case

The procedure FastQR ss for the fast computation of the generating elements
of A(1) such that

A− αI = QR, (QR factorization)

A(1) := QHAQ
(37)

is outlined below. Given the generating elements Vk (k = 2, . . . , n−1), Fk (k =
1, . . . , n− 2), z = (zi)

n
i=1, w = (wi)

n
i=1 of A together with the shift parameter

α, the algorithm calculates the generating elements V(1)
k (k = 2, . . . , N −

1), F (1)
k (k = 1, . . . , N − 2) z(1) = (z

(1)
i)n

i=1, w(1) = (w
(1)
i)n

i=1 of A(1). The

14

condensed representations of A(1) and U (1) are computed by the scheme (32)–
(35), where Qj are Givens rotation matrices determined in the bulge-chasing
process.

Procedure FastQR ss

(1) Using algorithm from Theorem 2.8 compute upper generators gi,hi (i =
1, . . . , n), Bk (k = 2, . . . , n) and subdiagonal entries σk (k = 1, . . . , n − 1)
of the matrix U .

(2) Set βn = zn and for k = n− 1, . . . , 3 compute

βk = (VH
k)(1, 1 : 2)

 zk

βk+1

 . (38)

(3) Compute the Givens rotation matrices Gk, k = 1, . . . , n − 1 and the updated
perturbation vectors z(1),w(1)

(a) Set w
(τ)
1 = w1. Determine the complex Givens rotation matrix G1 such

that

GH
1

 gT
1 h1 − z1w1 − α

σ1 − z2w1

 =

 ∗

0

 (39)

and compute z
(1)
1 ∗ ∗

z
(τ)
2 σ

(τ)
1 (g(τ)

2)T

 = GH
1

 z1 gT
1 h1 gT

1 B1

z2 σ1 gT
2

 . (40)

(b) For k = 1, . . . , n− 2 perform the following.
Compute 

ρ′k ρ′′k

ρ′′′k ρ′′′′k

w
(1)
k w

(τ)
k+1

 =


σ

(τ)
k (g(τ)

k+1)
T hk+1

zk+2w
(τ)
k σk+1

w
(τ)
k wk+1

Gk. (41)

Determine the complex Givens rotation matrix Gk+1 from the condition

GH
k+1

 ρ′k − z
(τ)
k+1w

(1)
k

ρ′′′k − zk+2w
(1)
k

 =

 ∗

0

 . (42)

Compute  z
(1)
k+1

z
(τ)
k+2

 = GH
k+1

 z
(τ)
k+1

zk+2

 (43)

15

 ∗ ∗

σ
(τ)
k+1 (g(τ)

k+2)
T

 = GH
k+1

 ρ′′k (g(τ)
k+1)

T Bk+1

ρ′′′′k gk+2

 . (44)

(c) Compute (
w

(1)
n−1 w

(1)
n

)
=

(
w

(τ)
n−1 wn

)
Gn−1 (45)

and set
z(1)
n = z(τ)

n . (46)

(4) The fourth stage of the algorithm is to compute the generating elements
V(1)

k (k = 2, . . . , n− 1), F (1)
k (k = 1, . . . , n− 2) of the matrix A(1).

(a) Determine the complex Givens rotation matrix V(τ)
2 such that

(V(τ)
2)H

 z
(τ)
2

β3

 =

 β
(1)
2

0

 (47)

with some number β
(1)
2 and compute the 3× 3 matrix

F (τ)
1 =

 1 0

0 (V(τ)
2)H

  GH
1 0

0 1

  1 0

0 V2

F1. (48)

(b) For k = 1, . . . , n− 3 perform the following.
Compute the 3× 3 matrix

Xk+1 =

 GH
k+1 0

0 1

  1 0

0 Vk+2

 V(τ)
k+1 0

0 1

 (49)

and the 4× 4 matrix

Yk =

F (τ)
k 0

0 1

  1 0

0 Fk+1

  Gk 0

0 I2

 . (50)

Determine the complex Givens rotation matrix Zk from the condition

Xk+1(1, 2 : 3)Zk =
(
∗ 0

)
. (51)

Compute the matrix

Wk = Xk+1

 1 0

0 Zk

 (52)

and the matrix

Dk =

 I2 0

0 ZH
k

 Yk. (53)

16

The unitary matrix Wk has the zero entry in the position (1, 3) and the
unitary matrix Dk has the zero entry in the position (4, 1).

Compute the factorization

Wk =

 1 0

0 V(τ)
k+2

 V(1)
k+1 0

0 1

 (54)

with unitary 2× 2 matrices V(τ)
k+2,V

(1)
k+1 and the factorization

Dk =

F (1)
k 0

0 1

  1 0

0 F (τ)
k+1

 (55)

with 3× 3 unitary matrices F (1)
k ,F (τ)

k+1.
(c) Compute

V(1)
n−1 = GH

n−1V
(τ)
n−1, (56)

F (1)
n−2 = F (τ)

n−2

 Gn−2 0

0 1

  1 0

0 Gn−1

 . (57)

Theorem 3.1 Let A = U−zwT be a matrix from the classHn with generating
elements Vk (k = 2, . . . , n−1), Fk (k = 1, . . . , n−2), z = (zi)

n
i=1, w = (wi)

n
i=1

such that the vector z is reduced by the matrix

V = Vn−1 · · ·V2, Vi = Ii−1 ⊕ Vi ⊕ In−i−1, 2 ≤ i ≤ n− 1.

Then the output data V(1)
k (k = 2, . . . , N − 1), F (1)

k (k = 1, . . . , N − 2),

z(1) = (z
(1)
i)n

i=1, w(1) = (w
(1)
i)n

i=1 returned by FastQR ss are the generating
elements of the matrix A(1) satisfying (37) and, moreover, z(1) is reduced by
the matrix

V (1) = V
(1)
n−1 · · ·V

(1)
2 , V

(1)
i = Ii−1 ⊕ V(1)

i ⊕ In−i−1, 2 ≤ i ≤ n− 1.

PROOF. Using Stage 1 of the algorithm we obtain upper generators and
subdiagonal entries of the matrix U .

On Stage 2 of the algorithm we use the fact that the vector z is reduced by the
matrix V and compute the parameters βk, k = N, . . . , 3 using the formulas
(8).

To justify Stage 3 of the algorithm we prove by induction that the formulas
(39), (42) determine the unitary matrices Gk, k = 1, . . . , n − 1 such that the

17

unitary matrices Qk = Ik−1⊕Gk ⊕ In−k−1 make the transformations (32)-(35)
and moreover for k = 1, . . . , n− 1 the relations

Uk(k + 1, k : n) =
(

σ
(τ)
k (g

(τ)
k+1)

T Hk+1

)
(58)

hold and the vectors zk, wk have the form

zk = (z
(1)
1 , . . . , z

(1)
k , z

(τ)
k+1, zk+2, . . . , zn)T , (59)

wk = (w
(1)
1 , . . . , w

(1)
k−1, w

(τ)
k , zk+1, . . . , zn)T . (60)

where the matrices Uk and the vectors zk, wk are defined in (33)-(35).

On the first step we deal with the matrix

A1 = QH
1 A = U1 − z1w

T
1

with U1 = QH
1 U, z1 = QH

1 z, w1 = w. We have

(A− αI)(1 : 2, 1) =

 gT
1 h1 − z1w1 − α

σ1 − z2w1


and determine the complex Givens rotation matrix G1 from the condition (39).
Next using the formula (30) with k = 1, 2, the formula (20) with k = 1 and

the relation H1 =
(

h1 B2H2

)
we get

U(1 : 2, 1 : N) =

 gT
1 h1 gT

1 B2H2

σ1 gT
2 H2

 .

Using the formula (40) we obtain (58), (59), (60) with k = 1. Let for some k
with 1 ≤ k ≤ n− 2 the statement of induction holds. From the formulas (33)
it follows that

Uk(k + 2, k : n) = U(k + 2, k : n).

Furthermore using the formulas (30), (20) we obtain

Uk(k + 2, k + 1 : N) =
(

σk+1 gT
k+2Hk+2

)

and from the formulas (36), Ak(k + 2, k) = 0 and (59), (60) it follows that

Uk(k + 2, k) = zk+2w
(τ)
k . Moreover using the formula (58) and the equality

Hk+1 =
(

hk+1 Bk+2Hk+2

)

18

we obtain

Uk(k + 1 : k + 2, k : N) =

 σ
(τ)
k (g

(τ)
k+1)

T hk+1 (g
(τ)
k+1)

T Bk+2Hk+2

zk+2w
(τ)
k σk+1 gT

k+2Hk+2

 . (61)

We have

A′
k = AkQk = UkQk − zk(w

T
k Qk) = U ′

k − zkw
T
k+1.

Postmultiplication of a matrix C by the matrix Qk means only postmultipli-
cation of the columns k, k + 1 of C by the matrix Gk. Hence applying the
formula (41) we obtain

U ′
k(k + 1 : k + 2, k : n) =

 ρ′k ρ′′k (g
(τ)
k+2)

T Bk+2Hk+2

ρ′′′k ρ′′′′k gT
k+2Hk+2


and

wk+1 = (w
(1)
1 , . . . , w

(1)
k , w

(τ)
k+1, wk+2, . . . , wn)T .

Now the elements in the (k + 1, k), (k + 2, k) positions in the matrix A′
k are

ρ′k − z
(τ)
k+1w

(1)
k , ρ′′′k − zk+2w

(1)
k

and we determine the matrix of Givens rotation GH
k+1 from the condition (42).

Next consider the matrix

Ak+1 = QH
k+1A

′
k = QH

k+1U
′
k −QH

k+1zkw
T
k+1 = Uk+1 − zk+1w

T
k+1.

Premultiplication of a matrix C by the matrix QH
k+1 means only premultiplica-

tion of the rows k+1, k+2 of C by the matrix GH
k+1. Hence using the formulas

(44), (43) we obtain

Uk+1(k + 2, k + 1 : N) =
(

σ
(τ)
k+1 (g

(τ)
k+2)

T Hk+2

)
and

zk+1 = (z
(1)
1 , . . . , z

(1)
k , z

(1)
k+1, z

(τ)
k+2, zk+3, . . . , zn)T .

Thus we have determined the Givens rotation matrices Gk, k = 1, . . . , n − 1
and the vectors zn−1, wn−1. To finish the proof of Stage 3 notice that the last
coordinates of the vectors zn−1 = z1 and wn = w(1) are given by the formulas
(46) and (45).

Now we will justify Stage 4 of the algorithm. By the definition of generating
elements we have

U = (Vn−1 · · ·V2)(F1 · · ·Fn−2), (62)

19

where
Vi = Ii−1 ⊕ Vi ⊕ In−i−1, Fi = Ii−1 ⊕Fi ⊕ In−i−2.

We should prove that the matrix U (1) admits the factorization

U (1) = (V
(1)
n−1 · · ·V

(1)
2)(F

(1)
1 · · ·F (1)

n−2), (63)

where

V
(1)
i = Ii−1 ⊕ V(1)

i ⊕ In−i−1, F
(1)
i = Ii−1 ⊕F (1)

i ⊕ In−i−2

with the matrices V(1)
i ,F (1)

i determined in the algorithm, and moreover the
vector z(1) is reduced by the matrix V (1). To do this we prove by induction
that every unitary matrix Uk from (33) admits the factorization

Uk = V̂ (k) · F̂ (k), k = 1, . . . , n− 2 (64)

with

V̂ (k) = Vn−1 · · ·Vk+2V
(τ)
k+1V

(1)
k · · ·V (1)

2 , F̂ (k) = F
(1)
1 · · ·F (1)

k−1F
(τ)
k Fk+1 · · ·Fn−2,

where

V
(τ)
k+1 = Ik ⊕ V(τ)

k+1 ⊕ In−k−2, F
(τ)
k = Ik−1 ⊕F (τ)

k ⊕ In−k−2

and the matrices Vi, Fi and V
(1)
i , F

(1)
i are defined above. Moreover we will

prove that the vector zk defined in (34) is reduced by the matrix V̂ (k), i.e.,

βn = zn, VH
i

 zi

βi+1

 =

 βi

0

 , i = n− 1, . . . , k + 2; (65)

(V(τ)
k+1)

H

 z
(τ)
k+1

βk+2

 =

 β
(1)
k+1

0

 , (66)

(V(1)
i)H

 z
(1)
i

β
(1)
i+1

 =

 β
(1)
i

0

 , i = k, . . . , 2. (67)

From (62) it follows that the matrix U1 = QH
1 U has the form

U1 = (Vn−1 · · · Ṽ3)(Q
H
1 V2F1)(F2 · · ·Fn−2).

Taking the matrix V(τ)
2 from (47) and the matrix F (τ)

1 from (48) we obtain

U1 = V̂ (1) · F̂ (1)

with
V̂ (1) = Vn−1 · · ·V3V

(τ)
2 , F̂ (1) = F

(τ)
1 F2 · · · F̃n−2.

20

Furthermore using the relations (8) with i = n, . . . , 3 and (47) we conclude

that the vector z1 is reduced by the matrix V̂ (1) = Vn−1 · · ·V3V
(τ)
2 .

Assume that for some k with 1 ≤ k ≤ n − 3 the induction statement holds.
Hence the matrix Uk+1 = QH

k+1UkQk has the form

Uk+1 = Tk+1 · Sk+1

with

Tk+1 = (Vn−1 · · · Ṽk+3)(Q
H
k+1Vk+2V

(τ)
k+1)(V

(1)
k · · ·V (1)

2),

Sk+1 = (F
(1)
1 · · ·F (1)

k−1)(F
(τ)
k Fk+1Qk)(Fk+2 · · ·Fn−2).

We have

QH
k+1Vk+2V

(τ)
k+1 = Ik ⊕Xk+1 ⊕ In−k−3

and

F
(τ)
k Fk+1Qk = Ik−1 ⊕ Yk ⊕ In−k−3

with the 3× 3 unitary matrix Xk+1 from (49) and the 4× 4 unitary matrix Yk

from (50). Next we determine a 2×2 unitary matrix Zk from the condition (51)
and compute the matrix Wk by the formula (52). The unitary 3×3 matrix Wk

has the zero entry in the position (1, 3). Hence this matrix can be factorized

in the form (54) with unitary 2× 2 matrices V(τ)
k+2,V

(1)
k+1. Set

Zk = Ik+1 ⊕Zk ⊕ In−k−3

and furthermore V̂ (k+1) = Tk+1Zk, F̂ (k+1) = ZH
k Sk+1. We have

Uk+1 = V̂ (k+1) · F̂ (k+1), (68)

where

V̂ (k+1) = (Vn−1 · · ·Vk+3)(Q
H
k+1Vk+2V

(τ)
k+1Zk)(V

(1)
k · · ·V (1)

2) =

(Vn−1 · · ·Vk+3)(V
(τ)
k+2V

(1)
k+1)(V

(1)
k · · · Ṽ (1)

2)

which yields the desired representation for the matrix V̂ (k+1).

Let us check that the vector zk+1 is reduced by the matrix V̂ (k+1). Indeed
using the relations (49), (52), (54) we have (V(1)

k+1)
H 0

0 1


 1 0

0 (V(τ)
k+2)

H

 =

 1 0

0 ZH
k


 (V(τ)

k+1)
H 0

0 1


 1 0

0 VH
k+2


Gk+1 0

0 1

 .

21

Moreover using the relations (43), (66) and the relation (65) with i = k + 2
we get

 1 0

0 ZH
k


 (V(τ)

k+1)
H 0

0 1


 1 0

0 VH
k+2


Gk+1 0

0 1




z
(1)
k+1

z
(τ)
k+2

βk+3

 =

 1 0

0 ZH
k


 (V(τ)

k+1)
H 0

0 1


 1 0

0 VH
k+2




z
(τ)
k+1

zk+2

βk+3

 =

 1 0

0 ZH
k


 (V(τ)

k+1)
H 0

0 1




z
(τ)
k+1

βk+2

0

 =

 1 0

0 ZH
k




β
(1)
k+1

0

0

 =


β

(1)
k+1

0

0

 .

Hence it follows that

(V(τ)
k+2)

H

 z
(τ)
k+2

βk+3

 =

 β
(1)
k+2

0

 , (V(1)
k+1)

H

 z
(1)
k+1

β
(1)
k+2

 =

 β
(1)
k+1

0


which together with the relations (65) with i = N − 1, . . . , k + 3 and (67)
implies that the vector zk+1 is reduced by the matrix V̂ (k+1).

Thus applying Lemma 2.6 to the matrix Uk+1 we get

F̂ (k+1)(k + 3, k) = 0. (69)

Furthermore we get

F̂ (k+1) = (F
(1)
1 · · ·F (1)

k−1)(Z
H
k F

(τ)
k Fk+1Qk)(Fk+2 · · ·Fn−2).

Here we have

ZH
k F

(τ)
k Fk+1Qk =


Ik−1 0 0

0 Dk 0

0 0 IN−k−3


with the 4× 4 matrix Dk from (53). This implies

F̂ (k+1) = (F
(1)
1 · · ·F (1)

k−1)


Ik−1 0 0

0 Dk 0

0 0 In−k−3

 (Fk+2 · · ·FN−2).

22

We have Dk(4, 1) = F̂ k+1(k + 3, k) and using (69) we conclude that the 4× 4
unitary matrix Dk has the zero entry in the (4, 1) position. Hence the matrix

Dk admits the factorization (55) with 3×3 unitary matrices F (1)
k ,F (τ)

k+1. Hence
it follows that

F̂ (k+1) = (F
(1)
1 · · ·F (1)

k−1)(F
(1)
k F

(τ)
k+1)(Fk+2 · · ·FN−2),

which completes the proof of (64).

Thus the unitary matrix Un−2 admits the factorization

Un−2 = V̂ (n−2) · F̂ (N−2)

and therefore the matrix U (1) = QH
n−1Un−2Qn−2Qn−1 has the form

U (1) = (QH
n−1V

(τ)
n−1)(V

(1)
n−2V

(1)
2)(F

(1)
1 · · ·F (1)

n−3)(F̃
(τ)
n−2Qn−2Qn−1).

From here using (56), (57) we obtain the desired factorization (63) for the
unitary matrix U (1).

Next using (43) with k = n− 1 and (56) we get

(V(1)
n−1)

H

 z(1)n− 1

β(1)
n

 = (V(1)
n−1)

HGn−1GH
n−1

 p
(1)
n−1

p(1)(N)

 =

 β
(1)
n−1

0


which together with (67) with k = n− 2 means that the vector z(1) is reduced

by the matrix V (1) = V
(1)
n−1 · · ·V

(1)
2 . 2

Remark 3.2 Notice that in the subsequent iteration the parameter β3 may be
updated by the formula (66) with k = 2, i.e.,

(V(τ)
3)∗

 z
(τ)
3

β4

 =

 β
(1)
3

0

 .

In this case the Stage 2 of FastQR ss can be skipped.

3.2 The Structured QR Iteration: The Double Shift Case

The double shift technique follows again the scheme (32)–(35). In this case,
however, the matrices Qk are of the type Qk = Ik−1 ⊕ Gk ⊕ In−k−2, where Gk

is a 3× 3 unitary matrix and 1 ≤ k ≤ n− 2. The goal is to reduce the matrix
q(A) = (A− α1In)(A− α2In) in upper Hessenberg form, where α1 and α2 are

23

the eigenvalues of the 2× 2 trailing block in the matrix A. At the beginning,
Q1 is chosen in such a way that it reduces the first column of q(A).

The lower triangular part of the matrix A′
k−1 obtained after k − 1 steps of

(32)–(35) is given by

tril(A′
k−1, 0) =



a
(1)
1

γ
(1)
1 a

(1)
2

.

γ
(1)
k−2 a

(1)
k−1

δk−1 âk

θk−1 γ̂k âk+1

ξk−1 ηk γ̂k+1 ak+2

.

γn−1 an



.

In general, the matrix Gk is chosen so that

GH
k


δk−1 âk ∗

θk−1 γ̂k âk+1

ξk−1 ηk γ̂k+1

 =


β

(1)
k−1 a

(1)
k ∗

0 γ̂
(1)
k a

(1)
k+1

0 0 γ
(1)
k+1

 .

Observe that, while in classical implicit QR algorithm with double shift the
matrix Gk is only required to reduce the first column of the bulge, in this case
the whole bulge should be eliminated in order to ensure that Ak attains again
an upper Hessenberg form.

The bulge chasing step to be applied to the matrix Uk can be described as
follows. Set Rk = Uk(k + 1 : k + 4, k : k + 3), we have

Rk =



σ
(t)
k ρk+1 (g

(t)
k+1)

T hk+2 (g
(t)
k+1)

T Bk+3hk+3

z
(t)
k+2w

(t)
k σ

(τ)
k+1 (g

(τ)
k+2)

T hk+2 (g
(τ)
k+2)

T Bk+3hk+3

zk+3w
(t)
k zk+3w

(τ)
k+1 σk+2 (gk+3)

T hk+3

zk+4w
(t)
k zk+4w

(τ)
k+1 zk+4wk+2 σk+4



24

and next

GH
k+1

1

 Rk

Gk

1

 =



σ
(1)
k ∗ ∗ ∗

z
(t)
k+2w

(1)
k σ

(t)
k+1 ρk+2 (g

(t)
k+2)

T hk+3

z
(τ)
k+3w

(1)
k z

(τ)
k+3w

(t)
k+1 σ

(τ)
k+2 (g

(τ)
k+3)

T hk+3

zk+4w
(1)
k zk+4w

(t)
k+1 zk+4w

(τ)
k+2 σk+4


.

The updated vectors z(k+1) and w(k+1) are defined so that


w

(1)
k

w
(t)
k+1

w
(τ)
k+2

 = GH
k


w

(t)
k

w
(τ)
k+1

wk+2



and 
z

(1)
k

z
(t)
k+1

z
(τ)
k+2

 = GH
k+1


z

(t)
k

z
(τ)
k+1

zk+2

 .

Once determined through the bulge chasing process, the matrices Qj are used
to compute the product representation for the updated U . Let us describe the
general update step, using for the product representation the same notation
as in the previous section. In order to exploit the bulge chasing properties of
the matrices Qj, consider an update step where the current unitary term Uk

is multiplied by Qk on the right and by QH
k+1 on the left. We have:

QH
k+1 · Uk ·Qk

= QH
k+1 · Vn−1 · · ·Vk+3V

(τ)
k+2V

(t)
k+1 · · ·V

(1)
2 · F (1)

1 · · ·F (t)
k F

(τ)
k+1Fk+2Fn−2 ·Qk

= V
(k)
n−1 · · ·QH

k+1 · Vk+3 · V (τ)
k+2 · V

(t)
k+1 · · ·V

(1)
2 · F (1)

1 · · ·F (k)
(t) · F

(τ)
k+1 · Fk+2 ·Qk · · ·Fn−2.

Let us examine more closely the product Pk+1 = QH
k+1 · Vk+3 · V (τ)

k+2 · V
(t)
k+1. We

have:

25

GH
k+1

1

 ·

 I2

Vk+3

 ·


1

V(τ)
k+2

1

 ·

V(t)
k+1

I2



=

GH
k+1

1

 ·



∗ ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


=



∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


,

that is, multiplying on the left by QH
k+1 spoils the lower Hessenberg structure

of Vk+3 · V (τ)
k+2 · V

(t)
k+1. Analogously, multiplying on the right by Qk spoils the

structure of the product F
(t)
k · F (τ)

k+1 · Fk+2:

F (t)
k

I2

 ·


1

F (τ)
k+1

1

 ·

 I2

Fk+2

 ·

Gk

I2




∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗


·

Gk

I2

 =



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗


.

In order to restore these structures, define a 3 × 3 unitary matrix Zk+2 such
that Pk+1 ·ZH

k+2 is again lower Hessenberg, where Zk+2 = Ik+1⊕Zk+2⊕In−k−4,
and consider the updated Uk in the form

QH
k+1 · Uk ·Qk

= Vn−1 · · ·QH
k+1 · Vk+3 · V (τ)

k+2 · V
(t)
k+1 · ZH

k+2 · · ·V
(1)
2 ·

·F (1)
1 · · ·Zk+2 · F (t)

k · F (τ)
k+1 · Fk+2 ·Qk · · ·Fn−2.

Since Pk+1 · ZH
k+2 is lower Hessenberg, it can be re-factorized as

Pk+1 · ZH
k+2 = V

(τ)
k+3 · V

(t)
k+2 · V

(1)
k+1,

where

26

V
(τ)
k+3 = Ik+2 ⊕ V(τ)

k+3 ⊕ In−k−4,

V
(t)
k+2 = Ik+1 ⊕ V(t)

k+2 ⊕ In−k−3,

V
(1)
k+1 = Ik ⊕ V(1)

k+1 ⊕ In−k−2,

for suitable 2 × 2 unitary matrices V(τ)
k+3, V

(t)
k+2 and V(1)

k+1. Because of the way
in which the matrices Qj have been chosen, the matrix Zk+2 must also have

the property of restoring the structure of the product F
(t)
k · F (τ)

k+1 · Fk+2. It is

therefore possible to compute 3×3 unitary matrices F (1)
k , F (t)

k+1 and F (τ)
k+2 such

that
Zk+2 · F (t)

k · F (τ)
k+1 · Fk+2 ·Qk = F

(1)
k · F (t)

k+1 · F
(τ)
k+2,

where

F
(1)
k = Ik−1 ⊕F (1)

k ⊕ In−k−2,

F
(t)
k+1 = Ik ⊕F (t)

k+1 ⊕ In−k−3,

F
(τ)
k+2 = Ik+1 ⊕F (τ)

k+2 ⊕ In−k−1.

4 Convergence Criteria and Deflation Techniques

Deflation is an important concept in the practical implementation of the QR
iteration. Deflation amounts to setting a small subdiagonal element of the
Hessenberg matrix to zero. This is called deflation because it splits the Hes-
senberg matrix into two smaller subproblems which may be independently
refined further.

For the sake of clarity, suppose that after k iterations of the QR algorithm
the subdiagonal entry β

(k)
n−s of A(k) becomes small enough to be considered

negligible. A customary criterion requires that such an entry be small compared
with its diagonal neighbors

|β(k)
n−s| ≤ u · (|a(k)

n−s,n−s|+ |a(k)
n−s+1,n−s+1|).

If this condition is satisfied, then β
(k)
n−s is set to zero which makes A(k) a block

upper triangular matrix:

A(k) =

 A
(k)
1 ?

© A
(k)
2

 ,

where A
(k)
1 ∈ C(n−s)×(n−s) and A

(k)
2 ∈ Cs×s. Now A

(k)
1 and A

(k)
2 can be reduced

into upper triangular form separately. The process is called deflation and con-
tinuing in this fashion, by operating on smaller and smaller matrices, we may

27

approximate all the eigenvalues of A. Specifically, if s = 1 or s = 2 then the
computed eigenvalues of A

(k)
2 may be taken to be eigenvalues of the initial

matrix A.

The matrix U (k) can be partitioned accordingly with A(k):

U (k) =

 U
(k)
1 ?

−u
(k)
2 w

(k)
1

H
U

(k)
2

 ,

where

u(k) =

 u
(k)
1

u
(k)
2

 , w(k) =

 w
(k)
1

w
(k)
2

 , u
(k)
1 , w

(k)
1 ∈ Cn−s, u

(k)
2 , w

(k)
2 ∈ Cs.

Observe that U
(k)
1 and U

(k)
2 are not generally unitary matrices and, therefore,

the matrices A
(k)
1 and A

(k)
2 are specified in terms of the whole matrix U (k) as

follows:

A
(k)
1 =

(
In−s 0

)
U (k)

 In−s

0

 + u
(k)
1 w

(k)
1

H
,

and

A
(k)
2 =

(
0 Is

)
U (k)

 0

Is

 + u
(k)
2 w

(k)
2

H
.

These representations enable the fast QR iteration to be applied to the input
matrices A

(k)
1 and A

(k)
2 . Observe that, even though the whole matrix U (k) is

required for representation purposes, working only on A
(k)
1 or A

(k)
2 means that

only part of the generators are actually involved in the computation.

Remark 4.1 The implicit QR method for eigenvalue computation relies heav-
ily on the implicit Q theorem (see e.g. [12]), which applies to irreducible Hes-
senberg matrices. As a consequence, deflation is a crucial step in implicit QR
and it is necessary to perform it whenever possible.

A more subtle form of deflation should also be applied when two consecutive
subdiagonal entries of A(k) become small (typically, small enough for their
product to be less than or equal to the machine epsilon). In this case, the next
bulge chasing process should only be applied to the submatrix A(k)(r + 1 :
n, r + 1 : n), where r is the index such that the small subdiagonal entries are
A(k)(r+1, r) and A(k)(r+2, r+1). Indeed, it turns out that beginning the bulge
chasing process from the (r + 1)-st row introduces negligible perturbations of
the Hessenberg structure in the entries of indices (r + 2, r) (and (r + 3, r) in
the double shift case).

28

This is an idea that dates back to Francis and is explained in detail in Wilkin-
son’s classical book [18], Chapter 8 Section 38. It is however often overlooked
in textbooks, so we recall it briefly here. Let A be an upper Hessenberg matrix
having small elements ε1 and ε2 in positions (r + 1, r) and (r + 2, r + 1), for a
certain index r, and consider the following partition:

A =



∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 ε1 ∗ ∗ ∗ ∗

0 0 ε2 ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 0 ∗ ∗


=

 X Y

E W

 . (70)

With this notation we have:

Proposition 4.2 Let µ be any eigenvalue of W . Then µ is also an eigenvalue
of a matrix A′, of the same size as A, which differs from A only by an element
ε1ε2/(A(r + 1, r + 1)− µ) in position (r + 2, r).

As a consequence of Proposition 4.2, if the product ε1ε2 is small enough then
the next QR iteration can be applied to the submatrix W , ignoring the fact
that E is not numerically zero and performing in fact a sort of deflation.

In practical implementations, the search for a suitable partition is generally
performed from bottom up, so that one always works on the smallest possible
trailing submatrix. More precisely, before starting each QR iteration on the
current iterate A(k), the following procedure is performed:

- look for the smallest index s such that A(k)(n− s + 1, n− s) is negligible;
- if s = 1 (or s = 2 for the double shift case), then one or two eigenvalues

have been found; exit procedure;
- else look for the largest index r, with n−s ≤ r ≤ n−2 (or n−s ≤ r ≤ n−3

for the double shift case), such that beginning the bulge chasing process
from the (r+1)-st row introduces negligible perturbations of the Hessenberg
structure in the entries of indices (r + 2, r) (and (r + 3, r) for the double
shift case);

- perform bulge chasing on the trailing submatrix A(k)(r + 1 : n, r + 1 : n).

See also [14] for practical criteria and suggestions in the classical (non-structured)
case.

29

5 Numerical Experiments

The algorithms for eigenvalue computation described in the previous sections
have been implemented in Fortran 95, for the single and double shift versions.
These programs deal with the particular case of the companion matrix A
associated with a given polynomial P (x) =

∑n
k=0 ckx

k and have been used to
test the efficiency and stability of the proposed algorithms on several examples.
The software is available upon request to the authors.

The following definitions of errors are used in tests for stability:

• Absolute forward error (a.f.e.): this is the absolute distance between the
eigenvalues computed by the structured method (which will be called here
FASTQR for reference purposes) and the eigenvalues computed by LA-
PACK (routines ZGEEV and DGEEV), which are assumed to be correct.
The absolute forward error is computed as the ∞-norm of the difference
between the two output vectors obtained from FASTQR and LAPACK and
sorted by decreasing absolute value. An estimate for this error, based on the-
oretical arguments, is given by the quantity δ = ε ·‖A‖2 ·max{condeig(A)},
where ε is the machine epsilon and, using Matlab terminology, condeig(A)
is the vector of eigenvalue condition numbers for the matrix A.

• Matrix relative backward error: it is defined as

m.b.e. =
‖Q∗

aA0Qa − (VfFf − pfq
T
f)‖∞

‖A0‖∞
,

where A0 = A is the initial matrix in the QR iteration process, Qa is the
accumulated unitary similarity transformation and Vf , Ff , pf , qf are gener-
ators for the product structure of the final iterate Af .

• Coefficient relative backward error: it is a vector whose entries are defined
as

(c.b.e)k =
|c̃k − ck|
|ck|

if ck 6= 0,

where {c̃k}k=1,...n are the coefficients, computed in high precision, of the
polynomial whose roots are the eigenvalues of A given by our structured
method.

We start with some examples of the behavior of the single shift version of
FASTQR applied to complex polynomials. Most examples in this section are
taken from [4] and [6].

Example 5.1 Given a positive integer n, define P (x) =
∑n

k=0(ak + ibk)x
k,

where ak and bk are uniformly distributed random numbers in [−1, 1].

As discussed in [13] randomly generated polynomials can be useful for gather-
ing statistics on the performance of the program with respect to computational

30

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

deg

tim
e

LAPACK
FASTQR

50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

deg

lo
g(

tim
e)

LAPACK
FASTQR

Fig. 1. Comparison of running times (Example 5.1).

4.5 5 5.5 6 6.5 7 7.5 8
−4

−3

−2

−1

0

1

2

3

4

log(deg)

lo
g(

tim
e)

y = 2.2*x − 13.6

Fig. 2. Experimental estimate of time growth (Example 5.1).

speed and accuracy. Figure 1 shows, on the left, running times for FASTQR
and LAPACK on random polynomials generated as in Example 5.1, for de-
grees ranging between 50 and 350. On the right we report the log-scale plot
of the same data, where it can be seen that FASTQR becomes faster than
LAPACK for polynomials of degree about 100.

31

Figure 2 is a log-log plot of the running times of FASTQR on polynomials of
degrees ranging between 50 and 2000. A linear fit of this plot shows that the
growth of running time is indeed quadratic in n, since the slope of the line
is about 2.2. The number of required QR iteration is usually less than 3 per
eigenvalue.

Polynomials in Example 5.1 are usually rather well-conditioned and the be-
havior of FASTQR is satisfactory both for backward and forward stability
(more details are given in Example 5.4 for the double shift version). In the
next example, coefficients are still random but chosen with an unbalanced
distribution:

Example 5.2 Given a positive integer n, define P (x) = xn +
∑n−1

j=0 ajx
j, with

aj = uj · 10vj , where |uj| is a uniformly distributed random number in [−1, 1]
and vj is a uniformly distributed random number in [−5, 5].

The behavior of FASTQR on such polynomials is shown in the following table:

n m.b.e. a.f.e. δ

50 4.91× 10−15 6.24× 10−10 2.21× 10−8

100 6.63× 10−15 6.95× 10−10 1.61× 10−8

150 7.02× 10−15 3.19× 10−10 1.12× 10−7

500 7.43× 10−15 8.30× 10−10 8.28× 10−7

1000 1.44× 10−14 1.47× 10−9 1.59× 10−6

Backward errors are small, which ensures backward stability. The growth of
the forward error mirrors closely the behavior of the quantity δ, therefore the
output of our method is consistent with theoretical expectations.

Example 5.3 Given a positive even integer n, define P (x) =
∏n/2−1

k=−n/2(x −
2(k+0.5)

n−1
− i sin(2(k+0.5)

n−1
)), where i2 = −1. This is the monic polynomial with

zeros equally spaced on the curve x = t + i sin(πt) with −1 ≤ t ≤ 1.

Results for this class of test polynomials are shown in the following table:

n a.f.e. δ

8 9.84× 10−15 2.11× 10−14

16 8.31× 10−13 4.86× 10−11

32 .76× 10−8 7.83× 10−4

32

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

deg

tim
e

LAPACK
SSS−QR
FASTQR

50 100 150 200 250 300 350 400
10

−3

10
−2

10
−1

10
0

10
1

deg

tim
e

LAPACK
SSS−QR
FASTQR

Fig. 3. Comparison of running times (Example 5.4).

Next, let us consider some examples with real polynomials, to which we apply
the double shift version of FASTQR.

Example 5.4 Given a positive integer n, define P (x) =
∑n

k=0 ckx
k, where ck

is a random number uniformly distributed in [−1, 1].

As in Example 5.1, we use these polynomials to compare running times and
check that the growth of the running time is indeed quadratic. In this case
we are also able to introduce a comparison with the structured implicit QR
method proposed in [6], denoted as SSS-QR, a Fortran 95 implementation of
which is available on-line for the case of real polynomials. Figure 3 shows on the
left the running times for FASTQR, LAPACK and SSS-QR for polynomials
of degrees ranging between 50 and 400 and on the right the corresponding
logarithmic plot. FASTQR becomes faster than LAPACK for polynomials of
degrees between 150 and 200.

Figure 4 shows a log-log plot of the running times of FASTQR for polynomials
of degrees ranging between 50 and 2000, with a linear fit; the slope here is
about 2.02. The number of double shift iterations is generally less than 1.5
per eigenvalue. The logarithms of the absolute forward errors computed for
these same polynomials are plotted in Figure 5. It is interesting to notice that,
while for degrees up to 1000 there is a growth of the forward errors (which is
however expected), for degrees higher than 1000 the errors stay roughly the
same. This is also the case for experiments made for degrees 3000 and 5000.
This suggests that FASTQR reliably computes eigenvalues even for very high
degrees.

Example 5.5 (Roots of 1) Given a positive integer n, define P (x) = xn−1.

33

4.5 5 5.5 6 6.5 7 7.5 8
−5

−4

−3

−2

−1

0

1

2

3

log(deg)

lo
g(

tim
e)

y = 2.02*x − 13.3

FASTQR
linear fit

Fig. 4. Experimental estimate of time growth (Example 5.4).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−13.5

−13

−12.5

−12

−11.5

−11

deg

lo
g1

0(
fo

rw
ar

d
er

ro
r)

Fig. 5. Absolute forward errors (Example 5.4).

34

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

deg

tim
e

LAPACK
SSS−QR
FASTQR

50 100 150 200 250 300 350 400
10

−3

10
−2

10
−1

10
0

10
1

deg

tim
e

LAPACK
SSS−QR
FASTQR

Fig. 6. Comparison of running times (Example 5.5).

We use these polynomials to compare the running times of FASTQR to the
running times of LAPACK and SSS-QR; the regular and logarithmic plot for
polynomials of degrees ranging from 50 to 400 are found in Figure 6. Here
FASTQR becomes faster than LAPACK for n ≥ 50. The computation of the
roots of unity with FASTQR is generally very accurate (forward errors are
about 10−15 for the polynomials used in this experiment).

Example 5.6 (Multiple roots) Given a positive integer n, define P (x) =
(
∑20

k=0 ckx
k) · (x− 1)n, where ck is a random number in [−1, 1].

In this case, the computation of roots with multiplicity 1 is very accurate,
whereas the multiple root 1 suffers from ill conditioning. The following table
shows forward and backward errors for several values of n. For the coefficient
backward error we give an interval containing all entries of the error vector.

n a.f.e. c.b.e. δ

1 2.81× 10−15 (0, 8× 10−13) 3.23× 10−15

2 1.61× 10−7 (0, 5× 10−13) 8.15× 10−7

3 9.33× 10−7 (0, 10−11) 1.04× 10−4

4 3.91× 10−5 (0, 3× 10−11) 1.34× 10−2

Example 5.7 Define P (x) = x20 + x19 + . . . + x + 1.

We obtain here a.f.e.= 3.58 × 10−15; the entries in the coefficient backward

35

error are in the range (0, 8× 1013), which is roughly the same result given in
[6] and the same as one would obtain using the Matlab function roots.

Example 5.8 Define P (x) as the monic polynomial whose roots are, in Mat-
lab notation, [−2.1 : 0.2 : 1.7].

For this example we have a forward error of 1.21× 10−11, which is consistent
with the estimate given by δ = 1.76 × 10−8. The entries in the coefficient
backward error are in the range (0, 4 × 1012), which is again comparable to
the result given in [6].

6 Conclusion

The analysis and development of efficient numerical methods for eigenvalue
computation of rank structured matrices constitutes one of the major chal-
lenges in the field of numerical linear algebra. In this paper we have presented
an implicit version of the QR algorithm for companion matrices designed in [4].
The novel method is conceptually simple, computationally fast and numeri-
cally stable. The complexity is an order of magnitude less than the customary
implementation of the QR algorithm for Hessenberg matrices in LAPACK.
Experimental results are also reported to compare the performances of our
method with other existing fast eigensolvers for companion matrices.

References

[1] G. S. Ammar, W. B. Gragg, and C. He. An efficient QR algorithm for a
Hessenberg submatrix of a unitary matrix. In New directions and applications
in control theory, volume 321 of Lecture Notes in Control and Inform. Sci.,
pages 1–14. Springer, Berlin, 2005.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.
Templates for the solution of algebraic eigenvalue problems, volume 11 of
Software, Environments, and Tools. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. A practical guide.

[3] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg. The unitary completion
and QR iterations for a class of structured matrices. Math. Comp., 77(261):353–
378, 2008.

[4] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg. Fast QR eigenvalue
algorithms for Hessenberg matrices which are rank-one perturbations of unitary
matrices. SIAM J. Matrix Anal. Appl., 29(2):566–585, 2007.

36

[5] D. A. Bini, L. Gemignani, and V. Y. Pan. Fast and stable QR eigenvalue
algorithms for generalized companion matrices and secular equations. Numer.
Math., 100(3):373–408, 2005.

[6] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu. A fast QR algorithm for
companion matrices. In Recent advances in matrix and operator theory, volume
179 of Oper. Theory Adv. Appl., pages 111–143. Birkhäuser, Basel, 2008.

[7] Y. Eidelman, L. Gemignani, and I. Gohberg. On the fast reduction of a
quasiseparable matrix to Hessenberg and tridiagonal forms. Linear Algebra
Appl., 420:86–101, 2007.

[8] Y. Eidelman, L. Gemignani, and I. Gohberg. Efficient eigenvalue computation
for quasiseparable Hermitian matrices under low rank perturbations. Numer.
Algorithms, 47(1):253–273, 2008.

[9] Y. Eidelman, I. Gohberg, and V. Olshevsky. The QR iteration method for
Hermitian quasiseparable matrices of an arbitrary order. Linear Algebra Appl.,
404:305–324, 2005.

[10] J. G. F. Francis. The QR transformation: a unitary analogue to the LR
transformation. I. Comput. J., 4:265–271, 1961/1962.

[11] J. G. F. Francis. The QR transformation. II. Comput. J., 4:332–345, 1961/1962.

[12] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD,
third edition, 1996.

[13] M. A. Jenkins and J. F. Traub. Principles for testing polynomial zerofinding
programs. ACM Trans. Math. Software, 1:26–34, 1975.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes. Cambridge University Press, Cambridge, third edition, 2007. The art
of scientific computing.

[15] F. Tisseur. Backward stability of the QR algorithm. Technical Report 239,
UMR 5585 Lyon Saint-Etienne, 1996.

[16] M. Van Barel, P. Van Dooren and R. Vandebril. Computing the eigenvalues of a
companion matrix. Slides of the talk on the conference Structured Linear Algebra
Problems: Analysis, Algorithms, and Applications, Cortona, Italy, September
15-19, 2008. http://bezout.dm.unipi.it//Cortona08/slides/Van Barel.pdf.

[17] D. S. Watkins. Fundamentals of matrix computations. Pure and Applied
Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York,
2002. Second editon.

[18] J. H. Wilkinson. The Algebraic Eigenvalue Problem. The Oxford University
Press, 1965.

37

