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We define and study a new class of regular Boolean functions called D-reducible. A D-reducible
function, depending on all its n input variables, can be studied and synthesized in a space of

dimension strictly smaller than n. We show that the D-reducibility property can be efficiently
tested, in time polynomial in the representation of f , i.e., an initial SOP form of f . A D-reducible
function can be efficiently decomposed, giving rise to a new logic form, that we have called
DredSOP. This form is shown here to be generally smaller than the corresponding minimum SOP

form. Our experiments have also shown that a great number of functions of practical importance
are indeed D-reducible, thus validating the overall interest of our approach.
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1. INTRODUCTION

A function encoding a real life problem often exhibits a regular structure that
should be exploited for logic synthesis [Sasao 1993; Bernasconi et al. 2003]. In
general, it is not always clear whether a Boolean function is “regular”, and which
type of regularity could be exploited for its synthesis [Aloul et al. 2002; Kravets and
Sakallah 2000; 2001; Bernasconi et al. 2002a; 2002b]. Some heuristic attempts have
been developed in this direction [Bernasconi et al. 2008], but the general question
still remains open. Here we study this problem for functions exhibiting a new type
of regularity (Dimension-reducibility based on affine spaces) that, as we will see, is
sufficiently common to make the case interesting, and easy to be tested.

Informally, Dimension-reducible functions based on affine spaces (shortly, D-
reducible functions) are functions whose minterms are contained in a space A strictly
smaller than the whole Boolean space {0, 1}n. The D-reducibility of a function f
can be exploited in the minimization process: the idea is to minimize the projection
fA of f onto A, instead of f . This approach thus requires two steps: (i) deriving
the space A and the projection fA; (ii) minimizing fA in a given logic framework.

In this paper we focus on the standard SOP (Sum of Products) minimization, and
we prove how our approach to the synthesis of D-reducible functions often turns out
to be convenient. Moreover, the algorithm deriving the smallest space containing
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f has time complexity polynomial in the representation of f , i.e., the initial SOP
form of f . Indeed, even if the property of dimension-reducibility depends on the
minterms of a Boolean function, seen as vectors in the Boolean space {0, 1}n, we are
able to determine whether a function is D-reducible working on its products without
generating all the minterms. This result is very important from a computational
point of view, as the number of products in a SOP of a function can be exponentially
smaller than the number of its minterms.

As this study will need non trivial formal tools, we start here by giving an intuitive
presentation of D-reducibility. Consider the function f = {0010, 0100, 0110, 1011,
1101} in the Karnaugh map on the left side of Figure 1. The function f is D-
reducible, i.e., we can project it onto a space of dimension three (the space marked
with circles in the Karnaugh map).

We can therefore study the new function fA that depends only on three variables,
represented in the Karnaugh map on the right side of the figure. Notice that f
and fA have the same number of minterms, but these are now compacted in a
smaller space. If we synthesize f and fA in the classical SOP framework we obtain
f = x1x3x4 + x1x2x4 + x1x2x3x4 + x1x2x3x4 , and fA = x2x3 + x1x2 + x2x3,
respectively. (Note that f depends on all the variables x1, . . . , x4.) The new and
more compact form for f is then f = (x1 ⊕ x4)(x2x3 + x1x2 + x2x3) . The EXOR
(x1 ⊕ x4) represents the Boolean space A where we study fA. Figure 2 shows the
resulting network for the function f .

It is important to notice that, in general, D-reducible functions depend on all
their n input variables, even if we are able to study them in a space of dimension
strictly smaller than n. In other words, D-reducible functions are, in general, not
degenerate.

The key idea of this paper is that if we project a function onto a smaller Boolean
space we have the chance of reducing the Hamming distance between its minterms
in order to merge them in bigger cubes in the final SOP form. For example, consider
the minterm 1101 in the Karnaugh map on the left side of Figure 1, its corresponding
product x1x2x3x4 is prime since no other minterm can be merged with 1101. If
we project the function onto the new space (x1 ⊕ x4), its corresponding minterm
110 can be merged with 010 giving rise to the prime product x2x3. Observe that
simple projections with single literals as xi ·f do not change the Hamming distance
between minterms, while projections with EXORs do.

In this paper we describe a simple test that establishes whether a function is
D-reducible and computes the smallest space that contains it. We then propose
a new three level logic form (DRedSOP) for f , which is an AND of some EXOR
factors (or literals) representing the projection space A, and the SOP expression
for fA. Figure 2 shows a DRedSOP network. The concept of D-reducibility is then
developed for functions with don’t care conditions, and the minimization technique
is duly extended in this context. The advantage of DRedSOP circuits is that their
depth is bounded, since the number of logic levels is equal to three. Moreover,
circuits with a bounded number of levels, three or four ([Perkowski 1995; Sasao
1995; Dubrova and Ellervee 1999; Debnath and Sasao 1999; Luccio and Pagli 1999;
Debnath and Vranesic 2003; Ishikawa et al. 2004]), often result to be much more
compact in area than classical two level logic forms ([McGeer et al. 1993; Coudert
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Fig. 1. Karnaugh maps of a D-reducible function f and its corresponding projection fA.
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Fig. 2. Network for the D-reducible function f of Figure 1, represented by (x1⊕x4)(x2x3 +
x1x2 + x2x3).

1994; Fǐser and Toman 2009]).
We can further observe that any Boolean function can be represented as A · f

where A is a Boolean subspace of {0, 1}n. If f is D-reducible the space A is strictly
contained in {0, 1}n, otherwise f is banally equivalent to the function 1 · f where
1 represents the entire Boolean space {0, 1}n, i.e., A = {0, 1}n. We can view this
synthesis method as a special Boolean factorization where instead of literal terms
we have EXORs. Factorization of literal terms is a widely studied field in multi-level
logic [Caruso 1991; Sasao 1999].

We finally study the relationship between D-reducible functions and another class
of regular Boolean functions, the autosymmetric functions, introduced in [Luccio
and Pagli 1999] and studied in [Bernasconi et al. 2003]. Similarly to D-reducible
functions, autosymmetric functions exhibit a regular structure that can be described
using the EXOR operation. We first observe that D-reducibility and autosymme-
try are different regularities, since autosymmetric functions can be studied in a
new space whose variables are EXOR combinations of the original ones, while D-
reducible functions are studied in a projection space producing an expression where
the EXOR gates are in AND with a SOP form. We then provide examples of au-
tosymmetric functions that are not D-reducible, and D-reducible functions that are
not autosymmetric. However, we also show that D-reducible functions have an in-
teresting connection with autosymmetric functions through their Walsh transform.

Our experimental results show that about 70% of the functions in the classi-
cal Espresso benchmark suite have at least one output that is D-reducible: al-
though D-reducible functions form a subset of all possible Boolean functions, a
great amount of standard functions of practical interest falls in this class.

The paper is organized as follows. In the next section we review some basic def-
inition and properties of affine spaces. In Section 3 we formally define D-reducible
functions. In Section 4 we propose a synthesis algorithm for DRedSOP forms. In
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Section 5 we analyze the relationship among D-reducible, degenerate and autosym-
metric functions [Bernasconi et al. 2003]. Finally, in Section 6 we describe our
experimental results.

2. ALGEBRAIC PRELIMINARIES

In this section we briefly review some basic notions on affine spaces that are useful
in the sequel (for a more detailed introduction on affine spaces see [Cohn 1981;
Ciriani 2003]).

We work in a Boolean space {0, 1}n described by n variables x1, x2, . . . , xn, where
each point is represented by a binary vector of n components. Hereafter, we shall
use the terms vector and point with the same meaning.

In the space {0, 1}n, an EXOR factor is an EXOR (or modulo 2 sum), denoted
by ⊕, of variables, one of which possibly complemented (an EXOR with just one
literal corresponds to the literal itself). Let us now extend the symbol ⊕ to denote
the elementwise EXOR between two vectors. Then, α ⊕ β is the vector obtained
from β complementing in it the elements corresponding to the 1’s of α. For example
1011 ⊕ 0111 = 1100.

We recall that, a vector subspace V of the vector space ({0, 1}n,⊕) is a subset
of {0, 1}n containing the zero vector 0 = 00 . . . 0, such that for each v1 and v2 in
V we have that v1 ⊕ v2 is in V . Note that a vector subspace of a vector space is a
vector space itself.

Example 1. The set V = {000, 001, 010, 011} is a vector subspace of ({0, 1}3,⊕).
In fact, 0 = 000 is in V , and 001 ⊕ 010 = 011 ∈ V , 001 ⊕ 011 = 010 ∈ V ,
010 ⊕ 011 = 001 ∈ V , 001 ⊕ 000 = 001 ∈ V , etc.

Each vector subspace V of ({0, 1}n,⊕) contains 2k vectors, where k is a positive
integer. We say that V has dimension k or is k-dimensional (shortly dimV = k).
The subspace of Example 1 has 22 points, and its dimension is 2.

A k-dimensional vector space V is generated by a basis B containing k vectors.
Each vector v in a basis B is linearly independent of all the other vectors in B, i.e.,
v is not generated by any EXOR combination of the other vectors in B. A vector
space, in general, has not a unique basis. In fact, a set of k linearly independent
vectors in a vector space V of dimension k always forms a basis of V . For exam-
ple the vector space V = {000, 001, 010, 011} has three different bases, namely
{010, 011}, {001, 010}, and {001, 011}.

Given a vector subspace V of ({0, 1}n,⊕), and a point α in {0, 1}n, we build an
affine space performing the EXOR between α and each point of V . Formally we
have:

Definition 1. Let V be a vector subspace of ({0, 1}n,⊕), and let α ∈ {0, 1}n be
a Boolean point. The set A = α ⊕ V = {α ⊕ v | v ∈ V } is an affine space over V
with translation point α.

Example 2. Consider the vector space V = {000, 010, 011, 001} and the vector
α = 100 ∈ {0, 1}3. The set A = α⊕V = 100⊕V = {100, 110, 111, 101} is an affine
space over V . Note that if we choose α as any vector of A, we obtain the same
result. In this example A = 100 ⊕ V = 110 ⊕ V = 111 ⊕ V = 101 ⊕ V .
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Fig. 3. An affine space A = a ⊕ V and the corresponding vector space V . The points
v1, v2, v3 form the canonical basis for V , and a = αA is the canonical translation point of
A (note that V = a ⊕ A).

An interesting property of affine spaces is that (α ⊕ V ≡ V ) ⇔ α ∈ V , i.e., if we
choose as α a point of V then the affine space A is the vector space V itself. For
example, let V be the vector space {000, 010, 011, 001}, then A = 010⊕V = {000,
010, 011, 001} = V , because 010 ∈ V . Thus, a vector space is an affine space.

If A is an affine space, there exists a unique vector space V such that for all α in
A, A = α ⊕ V . Such space can be computed as V = α ⊕ A, where α is any point
of A. Moreover, if A and A′ are affine spaces over the same vector space V , then
A and A′ either coincide or are disjoint.

Example 3. Consider the affine space A = {0010, 0011, 0100, 0101}. Our aim
is to find the unique vector space V such that A = α⊕ V . Choosing α = 0010 ∈ A,
we have: V = α ⊕ A = 0010 ⊕ A = {0000, 0001, 0110, 0111}. It is easy to verify
that choosing a different vector in A as translation point we achieve the same result,
i.e., V = 0010 ⊕ A = 0011 ⊕ A = 0100 ⊕ A = 0101 ⊕ A.

Let A = α ⊕ V be an affine space. The dimension of A is the dimension of the
corresponding vector space V . Since the translation point α can be chosen as any
vector of A, and the vector space V can be represented by any of its bases, we need
to define a unique representation of A. To this end we introduce some notation. A
set of k points in {0, 1}n (e.g., an affine or vector space) can be arranged in a k×n
matrix whose rows correspond to the points, and whose columns correspond to the
variables x1, x2, . . . , xn (see for example Figure 3).

A matrix of points in {0, 1}n is in binary order if its rows (points) are sorted as
increasing binary numbers. For example the two matrices in Figure 3 are in binary
order.

Definition 2. Let A be an affine space over a vector space V . The canonical
translation point αA is the minimum point of A in binary order.

For example, 00001 is the translation point of the affine space A in Figure 3.

Definition 3. Let V be a vector space whose matrix is sorted in binary order,
with the rows indexed from 0 to 2k − 1. And let A = α ⊕ V be an affine space over
V . The set of points of V with indices 20, 21, . . . , 2k−1 will be called the canonical
basis BA of V (or, equivalently, of A).
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For example, the vectors {00101, 01010, 10010} in rows 1, 2, 4 form the canonical
basis of the affine space A in Figure 3.

As proved in [Ciriani 2003], the canonical basis BA is indeed a basis of V in the
algebraic sense, i.e., the points of BA are linearly independent.

Definition 4. The canonical representation (αA, BA) of an affine space A is
given by its canonical translation point together with its canonical basis.

For example, the canonical representation of the affine space A in Figure 3 is αA =
00001 and BA = {00101, 01010, 10010}.

We can note that the canonical basis corresponds to the basis derived by a matrix
in reduced row echelon form [Cohn 1981; Liebler 2003]:

Definition 5. A matrix is in reduced row echelon form if all of the following
conditions are met:

(1 ) each leading coefficient (i.e., the first nonzero entry of each row) is equal to 1;

(2 ) rows of all zeros appear last;

(3 ) for each pair of successive rows that are not all zeros, the leading coefficient
of the first row comes in an earlier column than the leading coefficient of the
following row;

(4 ) each pivotal column (i.e., a column that contains the leading coefficient of one
row) has only one nonzero entry.

A matrix is in row echelon form whenever the first three conditions are satisfied.

Note that, because of conditions 2 and 3, all entries below and to the right of a
leading coefficient are zero.

As the reduced row echelon form of a matrix is unique, the canonical represen-
tation uniquely specifies an affine space (see [Ciriani 2003] for more details).

We partition now the Boolean variables of an affine space in two sets as follows.

Definition 6. Let A = αA⊕V be an affine space with canonical basis v1, . . . , vk.
For each vi, let x be the variable corresponding to the first 1-component from left of
vi, i.e., the variable corresponding to the leading coefficient of row vi in the matrix
representing A. The variable x is called canonical variable. The variables that are
not canonical for any vector in the canonical basis are called non-canonical.

For example in Figure 3, the canonical variables are: 1) x3 for vector v1 = 00101,
2) x2 for vector v2 = 01010, and 3) x1 for vector v3 = 10010. The non-canonical
variables are the remaining variables x4 and x5.

Observe that the canonical variables are the truly independent variables in the
space A, in the sense that they can assume all possible combinations of 0-1 values.
On the contrary, on A the non-canonical variables are not independent because they
can be defined as linear combinations (i.e., EXORs) of the canonical ones. This fact
is clearly expressed by the characteristic function of an affine space, represented by
an algebraic expression involving AND and EXOR operators. In fact, as shown
in [Ciriani 2003], an affine space can be represented by a simple expression (called
pseudoproduct) consisting in an AND of EXORs or literals. (For example x2x1(x3⊕
x4 ⊕ x5)(x3 ⊕ x7) is a pseudoproduct.)
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The characteristic function of an affine space can be expressed in various ways as a
pseudoproduct. Among these forms, a canonical (CEX) expression given in [Luccio
and Pagli 1999] is of particular relevance. In the following definition we explain
how to derive the CEX expression of a given affine space A (the direct connection
between the canonical basis of an affine space and its CEX expression is explained
in more details and proved in [Ciriani 2003]).

Definition 7. Let A = αA ⊕ V be an affine space. The CEX(A) expression of
A is given by a product of EXOR factors such that:

(1 ) each non-canonical variable appears in exactly one EXOR factor, and each
EXOR factor is composed by one non-canonical variable and possibly some
canonical variables;

(2 ) the canonical variables that appear in the EXOR factor corresponding to the
non-canonical variable x are the canonical variables (if any) appearing with
value 1 in the vectors of BA where x is equal to 1;

(3 ) all the canonical variables are not complemented; a non-canonical variable is
complemented in its EXOR factor if and only if its corresponding component
in αA is 0.

Example 4. Let A = αA ⊕ V be an affine space with canonical basis BA =
{001010, 010110, 100000} and translation point αA = 000100. The canonical vari-
ables are x1, x2 and x3, and x4, x5 and x6 are the non-canonical ones. The first
vector in BA shows that the canonical variable x3 is in the EXOR factor corre-
sponding to the non-canonical variable x5. Vector 010110 shows that the canonical
variable x2 is in the two EXOR factors corresponding to the non-canonical variables
x4 and x5. Vector 100000 shows that the canonical variable x1 does not appear in
any EXOR factor. By point (1) of Definition 7, we have three EXOR factors (one
for each non-canonical variable):

- x2⊕x4, corresponding to the non-canonical variable x4 and containing the canon-
ical variable x2, which is the canonical variable with value 1 in the vector of BA

where x4 is 1;

- x2 ⊕ x3 ⊕ x5, corresponding to the non-canonical variable x5 and containing the
canonical variables x2 and x3, that are equal to 1 in the two vectors of BA where
x5 is 1;

- and x6, corresponding to the non-canonical variable x6 and not containing any
canonical variable, as x6 is always 0 in the vectors of BA.

Note that, by point (3) of Definition 7, the vector αA = 000100 shows that the
non-canonical variable x4 is not complemented while x5 and x6 are complemented.
Therefore the CEX expression is (x2 ⊕ x4)(x2 ⊕ x3 ⊕ x5)x6.

By the definitions of CEX expressions and canonical variables, the non-canonical
ones are the variables with the higher index in each EXOR factor of the CEX
expression. For example CEX(A) = (x1 ⊕ x2) · x5 · (x1 ⊕ x3 ⊕ x6) · (x4 ⊕ x7) ·
(x3 ⊕ x4 ⊕ x9) is the CEX expressions of an affine space in {0, 1}9 with canonical
variables x1, x3, x4, x8, and non-canonical variables x2, x5, x6, x7, x9. Note that,
x8 is a canonical variable of A but does not appear in its CEX expression.
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8 ·

3. D-REDUCIBLE FUNCTIONS BASED ON AFFINE SPACES

In this section we define the class of D-reducible Boolean functions based on affine
spaces (shortly, D-reducible functions), and analyze their properties. Informally, D-
reducible functions are functions whose minterms are contained in an affine space
strictly smaller than the whole Boolean space {0, 1}n.

Definition 8. The Boolean function f : {0, 1}n → {0, 1} is D-reducible on an
affine space if f ⊆ A, where A ⊂ {0, 1}n is an affine space of dimension strictly
smaller than n.

Definition 9. Let f be a D-reducible function. The smallest affine space con-
taining f is called its associated affine space.

For example, consider the function f = {00010, 01000, 10010, 10110, 11000} that
is D-reducible since is entirely contained in the affine space A = {00010, 00110,
01000, 01100, 10010, 10110, 11000, 11100}. The vector space corresponding to A
(i.e., V = 00010⊕A) is V = {00000, 00100, 01010, 01110, 10000, 10100, 11010, 11110}
and its canonical basis is B = {00100, 01010, 10000}. We note that A is the smaller
affine space containing f and its CEX expression is (x2 ⊕ x4)x5.

Observe that A can be a vector space. The reason why we consider affine spaces,
instead of vector spaces, is that the smallest affine space containing a function f
can have dimension a unit smaller than the dimension of the smallest vector space
containing f . For instance, the smallest vector space containing the parity function
is {0, 1}n, while the smallest affine space is the set of binary vectors corresponding
to the parity itself, i.e., the set of vectors with odd Hamming weight, which has
dimension n − 1.

We now prove some properties of D-reducible functions. We first show that there
exists a unique minimal affine space A containing a given function f .

Proposition 1. The smallest affine space containing a Boolean function f is
unique.

Proof. Let us suppose that f ⊆ A1 and f ⊆ A2. We first observe that A1 and
A2 must be affine spaces over the same vector space (this can be verified by some
algebraic manipulation). Thus the thesis easily follows since two affine spaces over
the same vector space either coincide or are disjoint, and in our case A1 ∩ A2 6= ∅
since both contain f .

The following proposition makes explicit the relation between f and its projection
fA onto the affine space A.

Proposition 2. Let f be a D-reducible function and A its associated affine
space. Then

f = χA · fA

where χA is the characteristic function of A and fA is the projection of f onto A,
i.e., fA ⊆ {0, 1}dim A is the characteristic function of the set f ∩ A.

Proof. For any Boolean function f and any subset A ⊆ {0, 1}n, we can decom-
pose f as f = χA · fA + χA · fA , where fA and fA are the projections of f onto A
and A, respectively: fA = χf∩A, fA = χf∩A. Let f be D-reducible, and let A be
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its associated affine space. Since f ⊆ A, fA is the constant zero function, and the
thesis immediately follows.

The reduced function fA contains less variables than the original function f , as
proved in the following corollary.

Corollary 1. Let f be a D-reducible function, and A its associated affine space.
The function fA depends on the d = dim A (< n) canonical variables of the affine
space A.

Proof. As observed in Section 2, the d canonical variables are the truly inde-
pendent variables on the affine space A, while the non-canonical variables can be
defined on A as EXOR combinations of the canonical ones. Thus, we can replace
each occurrence of a non canonical variable in fA, with the corresponding EXOR
combination of canonical variables. In this way, we derive an algebraic expression
defining fA that contains only the d canonical variables.

Since A is an affine space, we finally have

Proposition 3. The function χA can be expressed as a pseudoproduct.

Proof. The thesis immediately follows from the fact that, as shown in [Ciriani
2003] and recalled in Definition 7, an affine space can be represented by a pseudo-
product.

Example 5. Consider the function f = {0010, 0100, 0110, 1011, 1101} whose
Karnaugh map is shown on the left side of Figure 1. f is D-reducible, and its as-
sociated affine space is described by the CEX expression (x1 ⊕ x4). If we project f
onto the Boolean space of dimension 3, represented in the Karnaugh map on the left
side of Figure 1 with circles, we obtain the function fA = {001, 010, 011, 101, 110},
represented in the Karnaugh map on the right side of the figure, which depends only
on the canonical variables of A, i.e., x1, x2, and x3.

In summary, a D-reducible function f can be written as f = χA · fA, where fA

depends only on dimA variables (see Corollary 1). Moreover χA, the characteristic
function of the affine space A covering f , is a pseudoproduct with (n−dim A) EXOR
factors, each containing a different non-canonical variable. The dimA variables on
which fA depends are exactly the canonical variables of A. Indeed the non-canonical
variables depend, through the EXOR factors of χA, on the canonical ones.

Notice that a function depending on n variables can be D-reducible only if the
number of its minterms is less or equal to 2n−1, i.e., if the number of minterms is
less than 50% of all input combinations. Indeed, an affine space of dimension at
most n− 1 can contain no more than 2n−1 points. In particular, in order to reduce
the number of variables from n to dimA, the number of minterms of f must be
less or equal to 2dim A. In other words, the ratio of minterms of f gives a bound
on its D-reducibility. This fact suggests a possible refinement of our technique:
whenever the number of minterms is too high, one could study and try to reduce
the complement of the function f , i.e., the function f .

Finally, we observe that a similar approach has been proposed in [Czajkowski
and Brown 2008], where Gaussian elimination is used to decompose the truth table
of a logic function, represented in matrix form, into linearly independent set of
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subfunctions. The basic idea is to find subfunctions that can be reused in a logic
expression in order to reduce the size of the logic implementation. This method
depends heavily on the variable partitioning, as varying the assignment of variables
to rows and columns, the decomposition of the resulting truth table changes. Our
technique is different as we work on the products covering the function, and the
affine space associated to a function is unique and independent on the variable
ordering.

4. SYNTHESIS OF D-REDUCIBLE FUNCTIONS

We now show how the property of D-reducibility can be exploited to perform the
synthesis of a Boolean function. Remember that a D-reducible function f can be
written as f = χA · fA, where χA is the characteristic function of A and fA is the
projection of f onto A (see Proposition 2). Intuitively, the idea is that of reducing
the minimization of f to the minimization of fA, which depends on a reduced
number of variables.

The synthesis strategy is depicted in Figure 4. The output function f is first
tested for D-reducibility. If f is not D-reducible a classical SOP synthesis is per-
formed. Meanwhile, if the function exhibits the D-reducible property, the reduced
function fA is synthesized in SOP form (SOP (fA)), and the corresponding DRed-
SOP circuit is computed by performing a product between the characteristic func-
tion of the affine space A (i.e., χA) and SOP (fA). Observe that the D-reducibility
test, besides deciding whether a function f is D-reducible or not, derives the re-
duced function fA and the characteristic function of A. As already observed, the
proposed synthesis strategy could be improved in the following way: whenever f is
not D-reducible, the test for D-reducibility should be performed on its complement
f . If f is D-reducible, then one could compute a DRedSOP for f and obtain a
network for f adding a final NOT gate.

Let us start by showing how to efficiently test whether a function is D-reducible,
and derive its associated affine space. We then describe the overall synthesis algo-
rithm for completely and incompletely specified Boolean functions.

4.1 D-reducibility Test from Minterms

Recall that a completely defined Boolean function f : {0, 1}n → {0, 1} can be simply
represented by the subset of {0, 1}n containing the points p such that f(p) = 1,
i.e., the on set of f .

Given a completely defined Boolean function, we can perform the D-reducibility
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D-reducibility Test from minterms

INPUT: Function f represented by a set of minterms in {0, 1}n

OUTPUT: The D-reducibility of f and, if f is D-reducible, the functions fA and the
affine space A

NOTATION: 0 is the zero vector

if (0 ∈ f) then v = 0 else v = any minterm of f

g = v ⊕ f

VA = GaussJordanElimination(g) // the smallest vector space containing g

if (dim VA == n) then return (“no”, ∅, ∅) // f is not D-reducible
else // f is D-reducible

A = v ⊕ VA

V arc = canonical variables of A

fA = Project(f , V arc) // deletes the non canonical variables
return (“yes”, fA, A)

Fig. 5. D-reducibility test from a set of minterms.

test by applying a classical linear algebra tool on its minterms: the Gaussian elim-
ination.

Recall that the Gaussian elimination algorithm performs elementary row opera-
tions on a given matrix in order to obtain an equivalent matrix in row echelon form.
Therefore, the whole procedure for reducing a matrix in reduced row echelon form
is to first reduce it to row echelon form applying Gaussian elimination, and then
work from right to left forcing zeros above each leading coefficient. The complete
process is called Gauss-Jordan elimination [Liebler 2003].

Let m = |f |. If we execute the Gauss-Jordan elimination on the m × n matrix
whose rows are the minterms of the function, we then obtain an equivalent matrix in
row echelon form, from which we can easily get a basis for the smallest vector space
containing f . As already noted we are interested in getting the smallest affine space
containing f , since its dimension can be smaller. To this aim, we first note that if
the zero vector is a minterm of f , then A is a vector space (indeed, whenever an
affine space contains the zero vector, then it is actually a vector space). Otherwise,
f can be contained in an affine space that is not a vector space.

We derive A performing the algorithm shown in Figure 5. We first pick any
minterm of f , say v, and compute the set v ⊕ f . If the zero vector belongs to f ,
we choose v = 0. We then compute the smallest vector space VA containing v ⊕ f
by Gauss-Jordan elimination. We finally derive A ⊃ f from VA as A = v ⊕ VA,
where v is the same vector chosen in the first step. Note that, whenever f does not
contain the zero vector, we can choose any minterm v ∈ f in the first step without
changing the result, i.e., the affine space A. This is a consequence of Proposition 1.

The time complexity of this D-reducibility test is polynomial in n and |f |. More
precisely the computational cost of the Gauss-Jordan elimination is O(n|f |2). Since
|f | is often exponential in the number of variables n, the complexity of the test can
be exponential in n. In Section 4.2 we discuss a more efficient test that computes
the associated affine space of a function f in time polynomial in the original SOP
representation of f , and not in the number of its minterms.
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D-reducibility Test from SOP

INPUT: The set of products P (in PLA form) representing the function f in {0, 1}n

OUTPUT: The D-reducibility of f and, if f is D-reducible, the functions fA and the
affine space A

NOTATION: 0 is the zero vector.
When one of the operands is “-”, the bitwise ⊕ operator returns “-”.
The vector ei is the zero vector with a unique 1 at position i.

if (0 ∈ f) then v = 0 else v = any minterm of f

g = v ⊕ P

GE = ∅ // set of points that are in input to the GaussJordan elimination
for each p ∈ g

for i = 1, . . . , n

if (p[i] == “-”) then

GE = {ei} ∪ GE

p[i] = “0”
GE = {p} ∪ GE

// note that GE contains points without don’t cares
VA = GaussJordanElimination(GE) // the smallest vector space containing GE

if (dim VA == n) then return (“no”, ∅, ∅) // f is not D-reducible
else // f is D-reducible

A = v ⊕ VA

V arc = canonical variables of A

fA = Project(f , V arc) // deletes the non canonical variables
return (“yes”, fA, A)

Fig. 6. D-reducibility test from a SOP expression.

Theorem 1 Correctness. If a Boolean function f , represented by its on set,
is D-reducible, the algorithm shown in Figure 5 computes the smallest affine space
A containing f (i.e., A is the associated affine space of f).

Proof. Suppose, by contradiction, that there exists an affine space A′ smaller
than A that contains f . Let v be the minterm of f computed by the algorithm.
Note that v ∈ A′, since v ∈ f and A′ contains f . Thus, we have that V ′ = v ⊕ A′

is the vector space of A′ and it contains v⊕ f . Moreover, V ′ has dimension smaller
than VA = v ⊕A, by hypothesis. This contradicts the fact that VA is computed by
the algorithm, using the Gauss-Jordan elimination method, as the smallest vector
space containing v ⊕ f .

4.2 D-reducibility Test from SOP

The test algorithm described in Section 4.1 considers functions represented by their
minterms. Generally Boolean functions are represented by SOP expressions con-
taining cubes and not only minterms (e.g., PLAs). In this section we explain how
to perform the D-reducibility test starting from a SOP of a function, without gen-
erating all its minterms. The complexity of this new version of the test becomes
O(nP 2), where P is the number of products in the given SOP for f . Observe that
in practical cases, we often have P << |f |.

We describe the idea starting with an example. Let f = {000000, 001000, 010001,
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010011, 011001, 011011} be represented with the SOP: x1x2x4x5x6+x1x2x4x6. The
product x1x2x4x6 is represented in PLA form by the row 01-0-1. For each don’t
care in the product, we can generate a vector composed by all zeros but a 1 in the
position corresponding to the don’t care. For instance, in our example we generate
the vectors 001000 and 000010. These vectors would be surely generated during
the Gauss-Jordan elimination step. In fact we have: 001000 = 010001 ⊕ 011001
and 000010 = 010001 ⊕ 010011. The matrix to be processed by the Gauss-Jordan
elimination algorithm will then contain: the original vector with 0 instead of the
don’t cares (010001) and the new generated vectors (001000 and 000010).

The D-reducibility test from a SOP expression is shown in Figure 6. Notice that
a product is a particular pseudoproduct and represents an affine space A = α⊕VA

of 2d points, where d is the number of don’t cares. Moreover the basis of VA is
a subset of the standard basis of {0, 1}n, i.e., e1 = 100 . . . 00, e2 = 010 . . . 00, . . .,
en = 000 . . . 01. Therefore our idea is to represent a product only with d+1 vectors
instead of 2d minterms. These d + 1 vectors are the basis of VA, together with α.
Moreover, we add a vector of the basis of VA if and only if it has not been already
used for representing another product. In conclusion the P products in the given
SOP of f are transformed into at most P + n vectors in input to the Gauss-Jordan
elimination algorithm.

In the former example, the first product can be represented by 000000 and 001000,
and the second by 010001, 001000 and 000010. Thus, the input to the Gauss-Jordan
elimination step is given by the set of vectors: {000000, 001000, 010001, 000010}.
Note that the vector e3 = 001000 has been written only once.

We finally observe that the contraction of the set GE is necessary since we cannot
set generic products as input of the Gauss-Jordan elimination. Indeed, the Gauss-
Jordan elimination procedure needs as inputs completely specified points.

Theorem 2 Correctness. If a Boolean function f , represented by a SOP form,
is D-reducible, the algorithm shown in Figure 6 computes the smallest affine space
A containing f (i.e., A is the associated affine space of f).

Proof. By the proof of Theorem 1 we only need to prove that also this algorithm
inserts in VA the smallest vector space containing v ⊕ f . Recall that the Gauss-
Jordan elimination of a generic set of points Q computes the smallest vector space
covering Q. We have to show that the smallest vector space containing v⊕f and the
smallest vector space containing GE are equivalent. For this purpose it is sufficient
to prove that 1) any minterm of v⊕f can be generated from the points of GE, and
that 2) any point of GE can be generated from the minterms of v ⊕ f .

1) let q be a minterm of v⊕f , and let p a product in the PLA v⊕P that covers q.
Observe that p always exists since P covers f . Let E be the subset of the standard
basis generated by the algorithm starting from p (i.e., ei is in E if and only if p
contains a don’t care “-” in position i); and let p0 be the point generated from
the product p setting all the don’t cares “-” to 0 (as generated by the algorithm).
The point q can be easily generated by the EXOR of p0 with the points of E that
correspond to the “-”s of p, which are in turns 1s in q. Note that {p0} and E are
subsets of GE.

2) let q be a point of GE, we have two cases i) q is a point of the standard basis,
i.e., q = ei. In this case, the algorithm inserts q in GE since there exists a product p
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Synthesis Algorithm

INPUT: Function f in {0, 1}n

OUTPUT: A DRedSOP for f , if f is D-reducible. A SOP for f , otherwise

(DRed, fA, A) = D-reducibility Test(f)
if (DRed == “no”)
then // f is not D-reducible

return SOP(f)
else // f is D-reducible

χA = CEX (A) // CEX expression of the affine space A

return χA· SOP(fA)

Fig. 7. Synthesis Algorithm for completely specified functions.

in g containing a don’t care in position i. Let p′ be the point derived from p setting
all the don’t cares of p to 0, and let p′′ be the point derived from p setting all the
don’t cares of p to 0, but the one corresponding to i that is set to 1. First, note
that both p′ and p′′ are covered by p and therefore are in v ⊕ f . Second, note that
p′ and p′′ differ only for the bit i, thus their EXOR is the point ei. ii) q corresponds
to a product p of g where all the don’t cares are set to 0. In this case q is a point
of p and thus is in v ⊕ f .

4.3 Synthesis Algorithm

The synthesis strategy of a D-reducible function f = χA ·fA is described in Figure 7.
After the testing phase, we represent χA using its CEX, getting an EXOR-AND
network, and we then minimize fA in SOP form [Brayton et al. 1984; Coudert
1995]. (Observe that fA can be synthesized in any logical framework, e.g., in three-
level-logic form [Debnath and Sasao 1997a; 1997b; 1998; Dubrova et al. 1995; 1999;
Perkowski 1995; Sasao 1995].) The synthesis of fA could be easier than the synthesis
of f , since fA depends on dimA < n variables. Moreover, the size of the network
for fA can be smaller than the size of the corresponding network for f . Indeed f
and fA have the same number of minterms, but fA is defined in a smaller space
and its minterms are less sparse.

For example consider the function f = {0010, 0100, 0110, 1011, 1101}, whose Kar-
naugh map is shown on the left side of Figure 1. f is D-reducible, and its associated
affine space is described by the CEX expression (x1 ⊕ x4). We can project f onto
the Boolean space of dimension 3, represented with circles in the Karnaugh map on
the left side of Figure 1. We can therefore study the function fA, represented in the
Karnaugh map on the right side of the figure. fA depends only on the canonical
variables of A, i.e., x1, x2, and x3.

Notice that we have the same number of minterms, but these are now compacted
in a smaller space, i.e., the minterms of the function are more adjacent and we have
more chance to merge them into cubes. Suppose we want to synthesize f and fA in
the classical SOP framework. We have f = x1x3x4+x1x2x4+x1x2x3x4+x1x2x3x4 ,
and fA = x2x3 + x1x2 + x2x3 . The new form for f is then f = (x1 ⊕ x4)(x2x3 +
x1x2 + x2x3) . Figure 2 shows the resulting network for the function f .
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Synthesis Algorithm for incompletely specified functions

INPUT: Function f = (fon, fdc) in {0, 1}n

OUTPUT: A DRedSOP for f , if f is D-reducible. A SOP for f , otherwise

NOTATION: fon is the on set of f and fdc is the don’t care set of f

(DRed, fon

A , A) = D-reducibility Test(fon)
if (DRed == “no”)
then // fon is not D-reducible

return SOP(f)
else // fon is D-reducible

χA = CEX (A) // CEX expression of the affine space A

V arc = canonical variables of A

fdc

A = Project(A ∩ fdc, V arc) // deletes the non canonical variables

fA = (fon

A , fdc

A )
return χA· SOP(fA)

Fig. 8. Synthesis Algorithm for incompletely specified functions.

4.4 Synthesis of Incompletely Specified D-reducible Functions

Let us now consider f as a incompletely specified function, i.e., f is a Boolean
function such that f : {0, 1}n → {0, 1,−}. A point p of the Boolean space {0, 1}n

such that f(p) = − is called don’t care. Thus, the don’t care set (or DC set)
of f contains all the don’t cares for f , while the on set contains all the points p
of f such that f(p) = 1. Let us now briefly discuss how to extend the notion of
D-reducibility to functions with don’t care points. The extension to incompletely
specified functions is important because synthesis techniques usually benefit from
the presence of don’t cares.

Our current approach to the synthesis of completely specified D-reducible func-
tions projects onto the affine space A only the on set of the function. However,
we think that the synthesis of D-reducible functions would be greatly improved
by projecting onto A also the don’t care set. Therefore, we propose the following
approach.

In order to keep the dimension of A as small as possible, we still define A as the
smallest affine space covering only the on set of a function:

Definition 10. An incompletely specified function f : {0, 1}n → {0, 1,−} is
D-reducible on an affine space if its on set can be covered by an affine space of
dimension strictly smaller than n.

Once A has been derived, we project onto A not only the ones of f , but also its
don’t care set. The points of the don’t care set that are not covered by A are not
considered (see the algorithm in Figure 8).

For example, consider the incompletely specified function f = (fon, fdc), with on
set fon = {0011, 0100, 0101, 1000, 1110} and don’t care set fdc = {0010, 0111, 1001,
1101}. The affine space is derived exclusively from fon, and is A = {0011, 0010, 0100,
0101, 1000, 1001, 1110, 1111}. We then project onto A both fon ∩ A (= fon) and
fdc∩A = {0010, 1001}. The CEX expression of the affine space A is (x1⊕x2⊕x3),
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thus its canonical variables are x1, x2 and x4, while the non canonical variable
(which will be deleted in the projection phase) is x3. The projected function
fA = (fon

A , fdc
A ) is thus composed by the on set fon

A = {001, 010, 011, 100, 110}
and the don’t care set fdc

A = {000, 101}.
Also for incompletely specified functions, we can improve the synthesis strategy.

Observe that, when a function f = (fon, fdc) is not D-reducible, the test must be
performed on the new function f ′ = (f

on
\ fdc, fdc).

5. RELATIONS WITH DEGENERATE AND AUTOSYMMETRIC FUNCTIONS

Let us now discuss the relationship among the class of D-reducible functions, and
two other classes of Boolean functions: degenerate functions and autosymmetric
functions.

Recall that a Boolean function is said to be degenerate if it does not depend on
all its input variables. D-reducible functions depend in general on all their n input
variables, even if we can study them in a space of dimension strictly smaller than n.
Thus, in general D-reducible functions are not degenerate. Moreover, degenerate
functions are not in general D-reducible. For instance, the function f(x1, x2, x3) =
x2∨x3 is degenerate, but not D-reducible; while the function f(x1, . . . , xn) = x1⊕x2

⊕ . . .⊕xn is D-reducible since it is contained in the n−1 dimensional space of vectors
with even Hamming weight, and it is not degenerate.

Autosymmetric functions, introduced in [Luccio and Pagli 1999] and studied
in [Bernasconi et al. 2003], exhibit a regular structure that can be exploited by
synthesis algorithms. We recall here their definition.

Definition 11. A Boolean function f in {0, 1}n is closed under α, with α

∈ {0, 1}n, if for each w ∈ {0, 1}n, f(w ⊕ α) = f(w).

Each function is obviously closed under the zero vector 0. As proved in [Luccio and
Pagli 1999], if a function f is closed under two different vectors α1, α2 ∈ {0, 1}n,
it is also closed under α1⊕α2. Therefore the set Lf of all the vectors β such that
f is closed under β is a vector subspace of {0, 1}n. Lf is called the linear space of
f , and k is its dimension.

Definition 12. A Boolean function f is k-autosymmetric, or equivalently f has
autosymmetry degree k, 0 ≤ k ≤ n, if its linear space Lf has dimension k.

For k ≥ 1 the synthesis of f can be reduced to the synthesis of a smaller function fk,
which can be identified in polynomial time. The function fk is called a restriction
of f ; indeed fk is “equivalent” to, but smaller than f , it depends only on n − k
variables, and has |f |/2k minterms only, where |f | denotes the number of minterms
of f . The new n−k variables are EXOR combinations of some of the original ones.

These results imply that k-autosymmetric functions can be studied in a smaller
space whose n − k variables are EXOR combinations of the original ones. How-
ever, this fact does not mean that an autosymmetric function is necessarily D-
reducible. In fact, there exist D-reducible functions that are not autosymmetric,
and autosymmetric functions that are not D-reducible. For instance, the Boolean
function f(x1, x2, x3) = (x1 ⊕ x2) ∨ x3 is autosymmetric but not D-reducible, and
the Boolean functionf(x1, x2, x3) = x1x2x3 is D-reducible but non autosymmetric.
However, the intersection between the two sets of autosymmetric and D-reducible
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functions is not empty: for instance the parity function is both autosymmetric and
D-reducible.

As we have seen, D-reducibility and autosymmetry represent different, though
similar, regularities. Nevertheless, D-reducible functions have an interesting con-
nection with autosymmetric functions, which can be understood by looking at their
Walsh Transform.

The Walsh transform4 of a Boolean function f is the rational valued function f̂

that defines the coordinates of f with respect to the basis {Qw(x) = (−1)wT x |w ∈
{0, 1}n}, where

wT x =
n∑

i=1

wixi mod 2

denotes the inner product between the two vectors w, x ∈ {0, 1}n. More precisely,
for any w ∈ {0, 1}n we have

f̂(w) = 2−n
∑

x∈{0,1}n

Qw(x)f(x) = 2−n
∑

x∈{0,1}n

(−1)wT xf(x) .

Then

f(x) =
∑

w∈{0,1}n

Qw(x)f̂(w) =
∑

w∈{0,1}n

(−1)wT xf̂(w)

is the Walsh expansion of f .

The connection between autosymmetric and D-reducible functions is expressed
by the following theorems.

Theorem 3. Let f be a D-reducible function, and let A be its associated affine
space. The function defined by the absolute value of the Walsh transform of f ,
|f̂ |, is a k-autosymmetric function, with k = n − dim A, and its linear space is
L|f̂ | = V ⊥

A , where VA denotes the vector space corresponding to A.

Proof. Let α ∈ A and VA = α ⊕ A. Recall that V ⊥
A is defined as follows

V ⊥
A = {u ∈ {0, 1}n | ∀ v ∈ VA, uT v = 0} ,

and its dimension k is given by k = n−dimVA = n−dimA. To prove the theorem,
we must show that for any u ∈ V ⊥

A and for any w ∈ {0, 1}n, |f̂(w ⊕ u)| = |f̂(w)|.
By the definition of Walsh transform, we have

f̂(w) = 2−n
∑

v∈{0,1}n

(−1)wT vf(v) = 2−n
∑

v∈{0,1}n

(−1)wT (v⊕α)f(v ⊕ α) .

Since α ∈ A and f is D-reducible with associate affine space A, we have that for
any v ∈ {0, 1}n

f(v ⊕ α) = 1 ⇐⇒ v ⊕ α ∈ A ⇐⇒ v ∈ α ⊕ A ⇐⇒ v ∈ VA .

4This transform is also called Abstract Fourier Transform of a Boolean function.
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Moreover, for any u ∈ V ⊥
A and any v ∈ VA, uT v = 0. Thus we get

f̂(w) = 2−n
∑

v∈VA

(−1)wT (v⊕α)f(v ⊕ α)

= 2−n
∑

v∈VA

(−1)uT v(−1)uT α(−1)uT α(−1)wT (v⊕α)f(v ⊕ α)

= 2−n
∑

v∈VA

(−1)uT (v⊕α)(−1)uT α(−1)wT (v⊕α)f(v ⊕ α)

= (−1)uT α 2−n
∑

v∈VA

(−1)(w⊕u)T (v⊕α)f(v ⊕ α)

= (−1)uT αf̂(w ⊕ u) ,

and the thesis immediately follows.

Theorem 4. Let f be a k-autosymmetric function. Then the characteristic
function χf̂ of the support of its Walsh transform f̂ is a D-reducible function,

whose associated affine space is L⊥
f .

Proof. We must show that for any w 6∈ L⊥
f , f̂(w) = 0, where

L⊥
f = {u ∈ {0, 1}n | ∀ w ∈ Lf , uT w = 0} .

Let w 6∈ L⊥
f . Thus, there exists u ∈ Lf such that uT w = 1. By the definition of

Walsh transform, we have

f̂(w) = 2−n
∑

v∈{0,1}n

(−1)vT wf(v) = 2−n
∑

v∈{0,1}n

(−1)(v⊕u)T wf(v ⊕ u) .

Since f is autosymmetric, and u ∈ Lf , f(v ⊕ u) = f(v) and we get

f̂(w) = 2−n
∑

v∈{0,1}n

(−1)vT w(−1)uT wf(v) = −2−n
∑

v∈{0,1}n

(−1)vT wf(v) ,

that implies f̂(w) = 0.

As these two theorems show, a D-reducible Boolean function has an autosymmetric
Walsh transform, and vice versa, an autosymmetric function has a D-reducible
Walsh transform. In other words, D-reducibility is the spectral counterpart of
autosymmetry.

6. EXPERIMENTAL RESULTS

In this section we compare the size of the networks described in Section 4.3 (in
short DRedSOPs) with the size of the corresponding minimum SOPs. To this end
we count the number of literals and the number of gates (OR, AND and EXOR) of
an expression. In the multi-level context the cost function is the number of literals
in each different gate (see [Eggerstedt et al. 1993; Hachtel and Somenzi 1996]). We
observe that in many technologies EXOR and OR (or AND) gates have different
costs. In [Hachtel and Somenzi 1996] the authors consider a 2-input EXOR gate
as x ⊕ y = xy + xy. Thus the cost of a 2-input EXOR gate is 4, while the cost
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of the 2-input OR and AND gates is 2. Generally, by the associative property of
the EXOR operator, we can always see a k-input EXOR gate as the composition
of (k − 1) 2-input EXOR gates. (The realization is a tree of EXOR gates. Note
that an EXOR tree for a k-input EXOR can always be balanced, thus its height
is ⌈log2 k⌉.) Therefore, we can use a cost function µ where a k-input EXOR gate
costs 4(k−1), and k-input OR/AND gates cost k. With these measures we compare
DRedSOP and SOP expressions. Note that, for SOP expressions the cost µ (that
we call µSOP ) corresponds to the sum of the number of literals (L) and different
AND gates (A) in the SOP expression, i.e., µSOP = L+A. For the DRedSOP form
of a function f , the cost is µDRedSOP = µSOP ′ + AD + E, where E is the total
cost of the EXOR gates, µSOP ′ is the cost of the SOP of the projected function fA,
and AD is the cost of the final AND gate. In fact AD = nE + 1, where nE is the
number of EXORs, and 1 is the output of the SOP. For example for the DRedSOP:
(x1 ⊕ x2)(x1 ⊕ x3)(x1x4 + x6) we have AD = 2 + 1 and µDRedSOP = 5 + 3 + 2 ∗ 4.

Our minimization method has been tested on a range of functions taken from the
Espresso benchmark suite [Yang 1991]. CPU times are reported in seconds on a
Pentium III 800MHz machine with 512MB of RAM. The Gauss-Jordan elimina-
tion is computed with Mathematica 5.0.

In our experiments, we have first computed the number of functions that have at
least one D-reducible output in the benchmark suite. The number of such functions
is about 70% of the total. The overall number of outputs that are reduceble is 48%.
We have then synthesized these functions in order to evaluate whether their DRed-
SOP network is indeed more compact than the classical minimum SOP form. We
have minimized both SOP and DRedSOP forms using Espresso Exact [Brayton
et al. 1984]. The size of the resulting networks has been compared using the cost
function µ.

Table I reports a cost-oriented comparison among the original optimal SOP forms
determined by Espresso exact and the DRedSOP forms for a significant subset
of our results. The first column reports the name of the instance, the second
column reports the number of inputs and output of the benchmark, the third column
shows the number of D-reducible outputs (OD) and the average number of variables
reduced in the D-reducible outputs (AD). The forth column reports the number of
products in each benchmark. The following columns report the cost of the networks
together with the computational time in seconds. The cost of the PLA for the SOP
form is reported in the fifth column (µSOP ) of the table, while the overall cost of
the DRedSOP network is in the eighth column (µDRed).

We can note that the DRedSOP is not always smaller than the minimum SOP
form. This is due to different reasons. First, the EXOR part of the network can
be expensive in the CMOS technology. In other technologies where EXOR, AND
and OR have the same cost, DRedSOPs are clearly more convenient. Moreover,
the EXOR gates considered can have an unbounded number of inputs that give rise
to a tree of EXORs with fan in 2. Finally, some functions benefit from the multi-
output minimization; after the projection of some outputs, it can happen that the
common products are reduced in number. Nevertheless, some benchmarks deeply
benefit from the decomposition, see for example rd84 and sao2.

To evaluate the obtained circuits, we ran our benchmarks using the SIS system
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Table I. Synthesis times and network costs of DRedSOPs, and exact SOP forms

Benchmark Network Cost Synthesis time
Name I/O OD/AD |P | µSOP µ

SOP′ AD+E µDRed gain SOP DRed

addm4 9/8 4/1.5 189 1407 1380 27 1407 0.00 0.49 0.41
adr4 8/5 1/1.0 255 415 410 13 423 -1.93 0.07 0.05
alu1 12/8 4/1.5 19 60 51 15 66 -10.00 0.23 0.34
b12 15/9 3/1.3 431 233 200 14 214 8.15 1.85 16.90
b2 16/17 1/1.0 104 1970 1998 19 2017 -2.36 0.81 0.79
chkn 29/7 6/2.0 153 1744 1544 27 1571 9.92 0.33 0.40
co14 14/1 1/1.0 14 210 169 81 250 -19.05 0.01 0.01
f51m 8/8 2/1.0 76 402 396 17 413 -2.74 0.11 0.12
in7 26/10 4/2.8 54 427 500 22 522 -22.25 2.38 7.04
intb 15/7 1/1.0 629 5911 5259 9 5268 10.88 11.76 9.13
m181 15/9 3/1.3 430 235 202 14 216 8.06 2.17 21.40
misex2 25/18 17/5.3 29 213 89 140 239 -12.21 0.01 0.01
mlp4 8/8 2/2.0 121 869 846 14 860 1.04 0.95 0.30
mp2d 14/14 6/5.2 123 201 173 64 237 -17.91 1.00 4.97
newtpla 15/5 5/4.6 23 199 112 36 148 25.63 0.01 0.01
rd84 8/4 1/1.0 255 2070 1104 48 1152 44.35 0.16 0.14
sao2 10/4 4/2.0 58 495 289 55 344 30.51 0.05 0.06
t3 12/8 6/1.5 33 251 207 29 236 5.98 0.01 0.03
table3 14/14 1/1.0 175 2643 2737 28 2765 -4.62 0.24 0.23
table5 1715/ 4/4.0 158 2503 2588 92 2680 -7.07 0.25 0.30
vg2 25/8 4/7.8 110 914 586 118 704 22.98 0.79 0.86
vtx1 27/6 4/7.8 110 1074 670 116 786 26.82 0.62 2.71
x6dn 39/5 5/1.0 121 818 737 11 748 8.56 0.57 0.60
x9dn 27/7 5/8.8 120 1258 704 130 834 33.70 0.69 2.23
xor5 5/1 1/1.0 16 96 1 26 27 71.88 0.01 0.01

with the MCNC library for technology mapping and the SIS command map -W -f

3 -s. Moreover, we have run the rugged script of SIS in order to compare the
results with a multi-level minimizer. In Table II we compare mapped area and
delay of DRedSOPs, the two-level SOPs, and the multi-level networks obtained
with the rugged script of SIS, for a significant subset of the benchmarks. The
first column reports the name of the benchmarks, and the following ones report,
by groups of two, the areas and delays estimated by SIS. The first group, labeled
DRedSOP, concerns the DRedSOP circuits, the next group refers to two level SOP
forms generated by Espresso exact. The last group of two columns refers to the
multilevel networks generated by SIS.

Consistently with the classical results of multi-level minimization, we can observe
that the multi-level always gains in area with respect to bounded-level forms (SOP
and DRedSOP), paying with an unbounded number of levels in the resulting circuits
that is reflected in the higher delay results.

We can note that the gain measured by our metric is not always consistent with
the area measured by SIS, this is meanly due to the technology mapping phase
performed by SIS before the measure. Clearly, the technology mapping algorithm
can substantially modify the algebraic form.

As we can observe from Table I, a significant number of benchmark functions
have a reduced size for their DRedSOP form (the functions that have a positive
value in the gain column of the table). Therefore we propose our algorithm as a
preprocessing step before the logic synthesis process.
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Table II. Area/delay costs of DRedSOPs, and exact SOP forms
Benchmark DRedSOP Two-level SOP Multi-level SIS

Name n |P | area delay area delay area delay

addm4 9 189 1276 42.90 1363 47.90 529 93.70

adr4 8 255 115 12.20 267 19.20 81 25.70

alcom 15 47 217 11.20 220 10.80 160 11.70

alu1 12 19 81 6.80 81 6.80 81 6.80

b12 15 431 226 19.10 206 18.40 133 21.00

chkn 29 153 866 47.10 819 43.60 561 42.90

f51m 8 76 310 20.70 563 31.60 143 51.30

m181 15 430 232 19.70 205 18.40 141 18.90

mlp4 8 121 901 38.00 902 36.40 421 58.60

mp2d 14 123 313 19.70 417 26.00 115 25.10

newapla 12 17 103 16.40 111 16.80 56 20.50

newtpla 15 23 130 19.70 111 19.70 107 16.30

sao2 10 58 344 27.60 332 27.10 202 40.40

t3 12 33 191 16.90 198 21.50 118 35.20

vg2 25 110 395 22.40 354 18.60 149 18.70

vtx1 27 110 384 25.90 344 21.30 156 20.10

x6dn 39 121 899 34.40 1217 36.80 543 37.40

x9dn 27 120 439 26.90 404 23.00 178 20.10

xor5 5 16 16 9.10 16 9.10 16 12.20

7. CONCLUSION

In this paper we have introduced the notion of D-reducibility of a Boolean function
f . For a D-reducible function f , depending on n variables, a new function fA,
depending on less than n variables, can be defined and built in polynomial time.
This approach supplies a new tool for efficient minimization, based on the idea of
exploiting a Boolean function regularity to get more compact expressions.

Our experiments have confirmed the foreseen size reduction, and have also shown
that a great number of functions of practical importance are indeed D-reducible,
thus validating the overall interest of our approach.

To further increase the size reduction, it would be very interesting to study affine
spaces that are represented by a product of 2-EXORs only (a 2-EXOR is an EXOR
with two inputs, or a single literal). In this way, in fact, we could partially overcome
the unbounded fan in EXORs cost of the CMOS technology.

Future work also includes the study of functions whose minterms can be projected
onto subsets of the Boolean space that are not necessarily affine spaces, but whose
characteristic functions have compact algebraic expressions.

Finally, it would be interesting to generalize our approach designing an algorithm
that computes the smallest affine space A, of dimension strictly smaller than n,
containing the majority of minterms of a non reducible function f . In this way, we
could represent the regular part of f as a DredSOP form, and the other minterms
of f as a SOP form.
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Responses to Reviewers

Title: Dimension-reducible Boolean Functions based on Affine Spaces
Authors: Anna Bernasconi, Valentina Ciriani

The comments of the reviewers have been incorporated in the paper. Below we give
detailed answers to the reviewers comments.

Review Number 1.

The paper is generally well-written, but should replace all instances of ”Gauss elimi-
nation” with ”Gaussian elimination”, as http://en.wikipedia.org/wiki/Gaussian elimination

As suggested, we have replaced all instances of ”Gauss elimination” with ”Gaussian
elimination”. We have also introduced and used the term ”Gauss-Jordan elimina-
tion” to refer to the complete procedure to reduce a matrix in reduced row echelon
form. Indeed, this procedure consists in first reducing the matrix to row echelon
form, applying ”Gaussian elimination”, and then working from right to left forcing
zeros above each leading coefficient. The complete process is called ”Gauss-Jordan
elimination”.
We have also added a definition to better explain the procedure.

The following proposition explicits the relation.
The following proposition makes explicit the relation
At the end of Section 5 As these two theorems show, a D-reducible Boolean function
as an auto-symmetric Walsh transform ”as” should probably be ”has”

We have corrected the typos.

Please replace the jargon ”points” with the more common word ”minterm” (I am
assuming that they mean the same thing).

We have replaced ”point” with ”minterm” whenever we refer to a function, we still
use the term ”point” as a synonymous of ”vector” when we refer to vector and
affine spaces, as indicated in the notation of the paper.

Also, what about functions whose maxterms are contained in a subspace ? Is it
possible to build some kind of duality theory for the notion D-reducibility ?

Of course, whenever a function f is not D-reducible we could study and try to
reduce the complement of the function f , i.e., we could compute the smallest affine
spaces covering the zeros of f . If the complement f of f is D-reducible, then we
could compute a DRedSOP for f and obtain a network for f adding a final NOT
gate. We have mentioned this possibility in the paper.
Applying the concept of D-reducibility to maxterms appears less simple, as a max-
term denotes not a single vector of the Boolean space {0, 1}n, but a set of vectors.

Empirical comparisons are interesting, they show some wins and some losses. I am
not concerned about seeing some losses — modern multicore synthesis tools may
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have the resources to run several different algorithms in parallel and either stop
when the first reasonable solution is produced, or let all threads finish and choose
the best result. However, I am concerned that all comparisons are to SOPs (Table
II which is claimed to compare to SIS does not seem to show multilevel circuits
produced by SIS).

We have added a column in Table II containing the multi-level SIS results for
comparison. As explained in the paper:
“Consistently with the classical results of multi-level minimization, we can observe
that the multi-level always gains in area with respect to bounded-level forms (SOP
and DRedSOP), paying with an unbounded number of levels in the resulting circuits
that is reflected in the higher delay results.”
Moreover, we have explained that Table II contains the results of the technology
mapping performed with the command “map -W -f 3 -s” of SIS.

The following paper seems closely related to the reviewed work, but not discussed.
Czajkowski, T.S. Brown, S.D. Functionally linear decomposition and synthesis of
logic circuits for FPGAs DAC 2008

We have discussed the suggested paper at the end of Section 3.

Review Number 2.

One major concern is the title of this paper and the definition of “D-reducible func-
tion.” Maybe the author creates this terminology, but it is too general for the concept
which is discussed in the paper. This paper only deals with “D-reducible function
based on affine space,” but we might have more general (and possibly strong) method
to obtain D-reduced sub-functions using non-linear Boolean functions. The author
mentions it in the conclusion section as future work, but it is not sufficient. The
author should append the words “based on affine space” to the title and appropriate
points in the paper, e.g. Definition 7.

We have followed your suggestion, and appended the words “based on affine space”
in the title, in Definition 8 (the previous Definition 7) and in some more points in
the paper.

Experimental part of this paper may have some problems. The author should clarify
the following points.
The author reports that 70% of benchmark circuits have at least one D-reducible
outputs. How many outputs out of all outputs were reducible? and how many
variables were reducible in such D- reducible outputs? It is important information
to compare the network cost uSOP and uSOP’, so the author had better show it in
the table.

We have inserted the required information in the text of the experimental results
Section and in Table I.

The proposed method is based on AND-EXOR decomposition as shown in Fig.2, so,
if one variable is reducible, the number of minterms in f should be less than 50%
of all input combinations. If two variables is reducible, the number of minterms
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should be less than 25%. Is it correct? If so, the ratio of minterms gives a bound
of D- reducibility in this method. So, the author had better show the such data of
each benchmark circuit.

Yes, it is correct. We have added a paragraph explaining this fact at the end of
Section 3 instead of Section 6, since it a structural property of the D-reducible
functions. Moreover, since the benchmarks are multi-output functions, is not very
clear how to show this property in the experimental results.

In table II, area and delay of the functions done by SIS tool. The experimental
setting is not clear. The synthesis result SOPs are factorized by SIS and then
technology mapped? Or, the SOPs are not factorized and just technology mapped?
If SOP factorization is applied before technology mapping, SIS may find similar
decompositions which may be done by DRedSOP, so the experimental setting of SIS
command script should be written correctly in detail.

We have added a column in Table II containing the multi-level SIS results for
comparison. As explained in the paper:
“Consistently with the classical results of multi-level minimization, we can observe
that the multi-level always gains in area with respect to bounded-level forms (SOP
and DRedSOP), paying with an unbounded number of levels in the resulting circuits
that is reflected in the higher delay results.”
Moreover, we have explained that Table II contains the results of the technology
mapping performed with the command “map -W -f 3 -s of SIS”.

Minor typo: p.2, l.13 from the bottom, We than propose − > We then propose

We have corrected the typo.

Review Number 3.

Comments to the Author The sentence from the beginning of Definition 6 to the end
of Example 4. is a dead-copy of the cited paper [Ciriani 2003] (Definition 10 and
Example 12). Furthermore, This definition is no well written. Without reading the
following example, readers does not understand how to derive the CEX expression.
For example, there is no definition of ’connected variable’, which is described in
Definition 9 of [Ciriani 2003].

We have changed the definition, and we have added more details in the example.
The procedure is now better explained and it should be easier to understand.
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