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The Perspective Relaxation (PR) is a general approach for constructing tight approximations to Mixed Inte-

ger Non Linear Programs (MINLP) with semi-continuous variables. The PR of a MINLP can be formulated

either as a Mixed Integer Second Order Cone Program (MI-SOCP), provided that the original objective

function is SOCP-representable, or as a Semi-Infinite MINLP. In this paper, we show that under some further

assumptions (rather restrictive, but satisfied in several practical applications), the PR of a Mixed Integer

Quadratic Program (MIQP) can also be reformulated as a piecewise Quadratic Program (QP), ultimately

yielding a QP relaxation of roughly the same size of the standard continuous relaxation. Furthermore, if the

original problem has some exploitable structure, then this structure is typically preserved in the reformula-

tion, thus allowing the construction of specialized approaches for solving the PR. We report on implementing

these ideas on two MIQPs with appropriate structure: a sensor placement problem and a quadratic-cost

(single-commodity) network design problem.

Key words : Mixed Integer Non Linear Programming Problems, Semi-continuous Variables, Perspective
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History :

1. Introduction

Semi-continuous variables are very often found in models of real-world problems, such as distribu-

tion and production planning problems (see Zamora and Grossmann (1998), Frangioni and Gentile

(2006), Frangioni et al. (2009)), financial trading and planning problems (Frangioni and Gentile

(2007)), and many others (Agnetis et al. (2009), Aktürk et al. (2009), Günlük et al. (2007), Günlük
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and Linderoth (2008)). These are variables which are constrained to either assume the value 0, or

to lie in some given convex compact set P. In our applications P will always be a polytope. Often

0 /∈P, this is, e.g., the case when the variable represents the output of a production process that has

a “non zero minimum producible amount,” but that can be switched off altogether. Alternatively,

0 may belong to P, but one may incur in a fixed cost c to “activate” the process (produce a non

zero amount).

We will consider Mixed Integer Non Linear Programs (MINLP) with n semi-continuous variables

xi ∈R
mi for each i ∈N = {1, . . . , n}. Assuming that each Pi = {xi : Aixi ≤ bi} has the property that

{xi : Aixi ≤ 0}= {0}, each xi can be modeled by using an associated binary variable yi, leading to

problems of the form

min g(z) +
∑

i∈N
(fi(xi) + ciyi) (1)

Aixi ≤ biyi i∈N (2)

(x, y, z) ∈O , y ∈ {0,1}n , x∈R
m , z ∈R

q, (3)

where all fi and g are closed convex functions, fi(0) = 0, z is the vector of all the “other” variables,

and O is any subset of R
m+n+q (with m =

∑

i∈N
mi), representing all the “other” constraints of the

problem.

It is known that the convex hull of the (disconnected) domain {0}∪Pi of each pi can be conve-

niently represented in a higher-dimensional space, which allows to derive disjunctive cuts for the

problem (Stubbs and Mehrotra (1999)). This leads to the definition of the Perspective Reformula-

tion of (1)—(3) (see Ceria and Soares (1999), Frangioni and Gentile (2006))

min
{

g(z) +
∑

i∈N
(yifi(xi/yi) + ciyi) : (2) , (3)

}

, (4)

whose continuous relaxation is significantly stronger than that of (1)—(3), and that therefore is a

more convenient starting point to develop exact and approximate solution algorithms (see Frangioni

and Gentile (2006, 2007), Aktürk et al. (2009), Frangioni et al. (2009), Günlük and Linderoth
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(2008)). We remark that yifi(xi/yi) for yi > 0 is called the perspective function of fi(xi) (a well-

known tool in convex analysis), whence the name came. While the objective function in (4) is

formally undefined when some yi = 0, one can extend it by continuity to allow for null values (we

assume that this is, in fact, done throughout the paper).

However, an issue with (4) is that the objective function is “more non linear” due to the added

fractional term. Two alternative reformulations of (4) have been proposed. One as a Mixed Integer

Second-Order Cone Program (see Tawarmalani and Sahinidis (2002), Aktürk et al. (2009), Günlük

and Linderoth (2008)), provided that the original objective function is SOCP-representable, and

the other as a Semi-Infinite MILP (Frangioni and Gentile (2006)). In several cases, the latter

outperforms the former in the context of exact or approximate enumerative solution approaches

(Frangioni and Gentile (2009)), basically due to the much higher reoptimization efficiency of active-

set (simplex-like) methods for linear and quadratic programs w.r.t. the available Interior Point

methods for conic programs.

However, both reformulations of (4) require the solution of substantially more complex contin-

uous relaxations than the original formulation of (1)—(3). In this paper, we show (in Section 2)

that under some further assumptions (rather restrictive, but satisfied in several practical appli-

cations), the PR of a Mixed Integer Quadratic Program (MIQP) can also be reformulated as a

piecewise Quadratic Program (QP), ultimately yielding a QP relaxation of roughly the same size

of the standard continuous relaxation. We remark that the “inherent piecewise nature” of the per-

spective function of non convex functions corresponding to disjunctions has been already noted

in Tawarmalani and Sahinidis (2001), where a projective technique somewhat reminescent of the

one proposed in this paper is also used. However, our results are not directly related to those,

and we prove that the piecewise representation we develop is successful in speeding up the solu-

tion of the continuous relaxation under appropriate circumnstances. Furthermore, if the original

problem has some exploitable structure, then this structure is typically preserved in the reformu-

lation, thus allowing the construction of specialized approaches for solving the PR. We apply this

approach to two MIQPs with appropriate structure: a sensor placement problem (Section 3) and
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a quadratic-cost (single-commodity) network design problem (Section 4), reporting numerical ex-

periments comparing state-of-the-art, off-the-shelf MIQP solvers with the new specialized solution

approach (Section 5).

2. A piecewise description of the convex envelope

Here we refine the analysis of the properties of the Perspective Reformulation under three further

assumptions on the data of the original problem (1)—(3):

A1) each xi is a single variable (i.e., mi = 1), therefore each Pi is a bounded real interval [li, ui]

with 0≤ li < ui;

A2) the variables yi only appear each in the corresponding constraint (2), i.e., the “other”

constraints O do not concern the yi;

A3) all functions are quadratic, i.e., fi(xi) = aix
2
i + bixi (and since they are convex, ai > 0).

While these assumptions are indeed restrictive, they are in fact satisfied by most of the applications

of the PR reported so far (see Frangioni and Gentile (2006, 2007), Aktürk et al. (2009), Günlük

et al. (2007), Günlük and Linderoth (2008)). Since in this paragraph we will only work with one

block at a time, to simplify the notation in the following we will drop the index “i.” We will

therefore consider the following (fragment of a) MIQP

min
{

ax2 + bx+ cy : ly ≤ x≤ uy , y ∈ {0,1}
}

(5)

and its Perspective Relaxation

min
{

f(x, y) = (1/y)ax2 + bx+ cy : ly ≤ x≤ uy , y ∈ [0,1]
}

. (6)

The basic idea behind the approach is to recast (6) as the minimization over x ∈ [0, u] of the

following function:

z(x) = minyf(x, y) = bx+min
{

(1/y)ax2 + cy : ly ≤ x≤ uy , y ∈ [0,1]
}

. (7)

It is well-known that z(x) (partial minimization of a convex function) is convex. Furthermore, due

to the specific structure of the problem z(x) can be algebraically characterized. In particular, due
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to convexity of f(x, y), the optimal solution y∗(x) of the inner optimization problem in (7) is easily

obtained by the solution ỹ (if any) of the first-order optimality conditions of the unconstrained

version of the problem

∂f(x, y)

∂y
= c− 1

y2
ax2 = 0 . (8)

In fact, if ỹ is feasible for the problem, then it is optimal (y∗(x) = ỹ). Otherwise, y∗(x) is the

projection of ỹ over the feasible region, i.e., the extreme of the interval nearer to ỹ (this is where

assumption A1 is used). Thus, by developing the different cases, one can construct an explicit

algebraic description of z(x) = f(x, y∗(x)). To simplify the presentation, in the following we will

treat l as if it were a positive number, i.e., we will assume that x/l is always a well-defined quantity.

It can be easily verified that all the obtained formulae plainly extend to the case l = 0.

2.1. The piecewise description of z(x)

We start by rewriting the constraints in (7) as

(0≤)
x

u
≤ y ≤min

{ x

l
, 1

}

(9)

(since u ≥ x ≥ l ≥ 0 ⇒ x/u ≥ 0). If l = 0 the constraint ly ≤ x is redundant, and one can imagine

x/l = +∞ so that the quantity “never gets in the way of y.” We must now proceed by cases:

1) If c≤ 0, then (8) has no solution for y > 0: the derivative ∂f/∂y is always negative. Of course,

y = 0 is not a solution, either. Thus, there is no global minima of the unconstrained problem, and

therefore y∗(x) = min{ x/l , 1 }, that is the upper bound in (9). This gives two subcases:

1.1) x/l≤ 1 ⇔ x≤ l ⇔ y∗(x) = x/l ⇒

z(x) =
(

b+ al + c/l
)

x ; (10)

1.2) x/l≥ 1 ⇔ x≥ l ⇔ y∗(x) = 1 ⇒

z(x) = ax2 + bx+ c . (11)
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In other words, z(x) is the piecewise quadratic function

z(x) =

{(

b+ al + c/l
)

x if 0≤ x≤ l,

ax2 + bx+ c if l ≤ x≤ u.
(12)

Note that z(x) is continuous in the (potential) breakpoint x = l. Also, we have z′

−
(l) = b+al+c/l≤

2al + b = z′

+(l) (as a > 0, l > 0 and c≤ 0; the case l = 0 is obvious), confirming that z(x) is convex,

as expected.

2) Instead, if c > 0 the only solution to (8) is

ỹ = x
√

a/c (13)

(note that we have used x≥ (l ≥) 0, c > 0, a > 0). Actually, this gives ỹ = 0 for x = 0, which leaves

(8) ill-defined. However, this is the only solution in (9) if l > 0, while if l = 0 one could choose any

y ∈ [0,1], but this again gives ỹ = y∗(x) = 0 as c > 0. In general, three cases can arise:

2.1) ỹ ≤ x/u ⇔ u≤
√

c/a ⇔ y∗(x) = x/u ⇒

z(x) =
(

b+ au+ c/u
)

x . (14)

2.2) x/l≥ ỹ ≥ x/u ⇔ u≥
√

c/a≥ l, and two further subcases arise:

2.2.1) (u ≥) x ≥
√

c/a (≥ l), which implies both ỹ ≥ 1 and x/l ≥ 1, so that y∗(x) = 1 and

therefore (11) holds.

2.2.2) 0 ≤ x ≤
√

c/a (≤ u), which gives ỹ ≤ 1. Now, if l ≤ x then x/l ≥ 1, and therefore

y∗(x) = ỹ. Moreover, if 0 ≤ x≤ l, we also have x/l ≥ x
√

a/c = ỹ, because l ≤
√

c/a, and therefore

y∗(x) = ỹ, which finally implies

z(x) =
(

b+2
√

ac
)

x . (15)

Thus, z(x) is the piecewise quadratic function

z(x) =

{(

b+2
√

ac
)

x if 0≤ x≤
√

c/a ,

ax2 + bx+ c if
√

c/a≤ x≤ u .
(16)

Note that (16) is continuous and differentiable even at the (potential) breakpoint x =
√

c/a, and

therefore convex (as expected). The derivative is constant—hence non decreasing—in the linear

part and increasing in the quadratic one.
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2.3) ỹ ≥ x/l ⇔ (u≥) l≥
√

c/a ⇔ y∗(x) = min{x/l,1} ⇒ (12) (cf. 1).

In all the cases, z(x) is a convex piecewise-quadratic function with at most 2 pieces, except in

case (12) it is also differentiable, and even (12) is differentiable if l = 0 (in which case the function

actually has only one piece).

2.2. A convex reformulation

Hence, we are confronted with the problem of minimizing a convex function with the generic

k-piecewise form

z(x) = zh(x) if αh ≤ x≤αh+1 h = 1, . . . , k ,

where each zh(x) is, obviously, convex. For the convexity of the function z, one has

z(x) = min











z1(χ1 +α1) +
∑k

h=2(zh(χh +αh)− zh(αh))

χh ∈ [0, αh+1 −αh] h = 1, . . . , k

α1 +
∑k

h=1 χh = x ,

(17)

for all x ∈ [α1, αk+1]. This equivalence is well-known (being related to the fact that the infimal

convolution of convex functions is convex), but we briefly sketch a proof for illustratory purposes

assuming for simplicity that all the zh are continuously differentiable. It is easy to check that for

each value of x∈ [α1, αk+1], the following “canonical representation” of x

χh = max{ αh ,min{ αh+1 , x } }−αh h = 1, . . . , k

is equivalent to x in the sense that

z(x) = z1(χ1 +α1) +
∑k

h=2(zh(χh +αh)− zh(αh))

(by convexity ⇒ continuity of z, zh(αh+1) = zh+1(αh+1)). Thus, (17) provides a lower bound on z(x).

However, it is easy to see that there exists an optimal solution to (17) representing the “canonical

form” of x, that is, for which there exists an index q ∈ {1, . . . , k} such that χh = αh+1−αh for h < q,

χq ∈ [0, αq+1 −αq], and χh = 0 for h > q. Indeed, take an optimal solution [χ∗

h] of (17) and assume

that there exist two indices 1≤ q < j ≤ k such that χ∗

q < αq+1 −αq and χ∗

j > 0. Because z is overall

convex, its derivative must be non decreasing, and therefore

z′

q(χ
∗

q +αq)≤ z′

j(χ
∗

j +αj)
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(as q < j, αj ≥αq+1). Hence, for some small ǫ > 0 the feasible solution to (17) obtained from [χ∗

h] by

increasing χ∗

q of ǫ and decreasing χ∗

j of ǫ must not be worse than [χ∗

h]. Since the latter is optimal,

the former must be optimal too. Hence, by increasing χq and decreasing χj we can construct an

optimal solution in which either the qth interval is “full” (χq = αq+1 − αq) or the j-th interval is

“empty” (χj = 0). Repeating this we show that an optimal solution to (17) is the canonical form

of x.

The reason this procedure is interesting is that if we have a minimization problem in which

z(x) is a part of the objective function and x is constrained to lie in [α1, αk+1], we can obtain an

equivalent problem by:

• replacing z(x) in the objective function with z1(χ1 +α1) +
∑k

h=2(zh(χh +αh)− zh(αh));

• replacing x everywhere in the constraints with α1 +
∑k

h=1 χh, where each χh is constrained to

lie in [0, αh+1 −αh].

Because these changes are quite simple, we can transform a problem with a “complex” convex

objective function into a problem with more variables but “simpler” convex objective functions

without interfering too much with the structure of the constraints. This may allow us to use

specialized solution algorithms that exploit the structure of the constraints without the need to

explicitly take into account the piecewise nature of the original objective functions. Two examples

of application of this procedure are shown below.

3. A sensor placement problem

Consider the problem of optimally placing a set N = {1, . . . , n} of sensors to cover a given area,

where deploying one sensor has a fixed cost plus a cost that is quadratic in the radius of the surface

covered (see Agnetis et al. (2009)). The problem, which is shown to be NP-hard in Agnetis et al.

(2010), can be written as

min
∑

i∈N
ciyi +

∑

i∈N
aix

2
i

0≤ xi ≤ yi i∈N
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∑

i∈N xi = 1

yi ∈ {0,1} i∈N .

Since we can assume ci > 0 (for otherwise yi can surely be fixed to 1), in the continuous relaxation of

this problem, the “design” variables yi can be “projected” onto the xi; that is, since at optimality,

we must have that yi = xi, the yi variables can be eliminated and their linear cost term is shifted

onto the xi. Such a problem can be solved in O(n logn). However, the bound provided by the

continuous relaxation can be weak, leading to a large number of nodes in the enumeration tree and

therefore to a large solution time.

We want to improve the bound by using the convex envelope of the single blocks of the objective

function. As outlined in Section 2, we can compute this bound by means of a single minimization

involving the piecewise quadratic function. Moreover, according to the reformulation technique of

Subsection 2.2, we rewrite the problem in the form

min
∑m

j=1 bjχj +
∑m

i=1 djχ
2
j

∑m

j=1 χj = 1

χj ∈ [0, αj] j = 1, . . . ,m ,

(18)

where m≤ 2n and the coefficients bj and dj are as follows:

• if
√

ci/ai ≥ 1, then only one new variable χj is generated with coefficients bj = aiui + ci/ui,

dj = 0, and αj = ui;

• if
√

ci/ai < 1, then two new variables χj1 and χj2 are generated such that xi = χj1 +χj2 with

bj1 = 2
√

aici, dj1 = 0, αj1 =
√

ci/ai for the first variable and bj2 = 2
√

aici, dj2 = ai, αj2 = 1−
√

ci/ai

for the second variable.

This problem can be easily solved in O(m logm) = O(n logn) as follows. Consider its Lagrangian

relaxation w.r.t. the “linking” constraint
∑m

j=1 χj = 1 with Lagrangian multiplier µ:

φ(µ) = µ+min
∑m

j=1(bj −µ)χj +
∑m

j=1 djχ
2
j

χj ∈ [0, αj] j = 1, . . . ,m .

Computation of φ(µ) decomposes into the m independent quadratic programs

min { (bj −µ)χi + djχ
2
j : χj ∈ [0, αj] } , (19)
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that can solved in O(1). By convexity, the Lagrangian dual problem, maxµ∈R φ(µ), is equivalent

to (18). To solve the dual efficiently, consider the solution to (19) parametrized in µ. Temporarily

assuming, for simplicity, that dj > 0 for all j = 1, . . . ,m, the unconstrained minimum is

χ̃j(µ) =
µ− bj

2dj

and therefore the optimal solution χ∗

j(µ) of (19) is:

• 0 if (µ− bj)/2dj ≤ 0 ⇒ µ≤ bj;

• αj if (µ− bj)/2dj ≥αj ⇒ µ≥ 2αjdj + bj (note that αjdj > 0);

• (µ− bj)/2dj if 0≤ (µ− bj)/2dj ≤ αj ⇒ µ∈ [bj,2αjdj + bj ].

It is easy to check that χ∗

j (µ) is non decreasing in µ. This is expected, because

φ′(µ) = 1−∑m

j=1 χ∗

j(µ)

must be non increasing since φ is concave. Each variable χj = χ∗

j(µ) gives a fixed contribution to

the derivative outside the given interval [bj ,2αjdj + bj], while the contribution is linear inside the

interval. It is then easy to find the unique value of µ such that φ′(µ) = 0 (the dual must have an

optimal solution, since the primal is surely non empty and bounded). First, all the 2m extremes

of the m intervals bj and 2αjdj + bj are all inserted in a unique list that is then ordered in non

decreasing order. Let us denote by µ̄1, µ̄2, . . . , µ̄2m the elements in the list after the ordering. For

sufficiently small values of µ—smaller than µ̄1—χ∗

j(µ) = 0 for all j and therefore φ′(µ) = 1, which

implies that φ is increasing. Then, µ is initialized to µ̄1, which must be the left endpoint bh for

some variable χh, the current value β of φ′(µ) is initialized to 1, and the rate of change γ of φ′(µ)

is initialized to 1/dh. Then, the next element µ̄ in the list is considered. It corresponds either to

the left endpoint or to the right endpoint of the interval corresponding to some variable χk. If

β−γ(µ̄−µ)≤ 0, then µ∗ = µ+β/γ is an optimal solution to the Lagrangian dual (φ′(µ∗) = 0) and

an optimal solution to (18) can be derived from µ∗ in O(m). Otherwise, µ is updated to µ̄ (that

surely has a better φ value) and β = φ′(µ̄) is updated by subtracting it γ(µ̄ − µ). Then, if µ̄ is

the left endpoint of variable χk, this also becomes “active,” and therefore 1/(2dk) is added to γ.
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Instead, if µ̄ is the right endpoint, then χk becomes “inactive” and 1/(2dk) is subtracted from γ.

By iterating this procedure, µ∗ is identified within O(m) steps, each costing O(1). Therefore, (18)

is solved in O(m logm) = O(n logn) overall, owing to the cost of ordering the list.

This sketch of the solution procedure has to be slightly complicated to take into account all

possibilities. First, note that γ can become zero if there are no “active” variables. In this case,

µ is immediately advanced to the next element in the list, since nothing happens to φ′(µ) in the

interval. Furthermore, if di = 0, the optimal solution to (19) is not unique. Indeed, we have

χ∗

j(µ)∈







{0} µ < bj

[0, αj] µ = bj

{αj} µ > bj

.

Thus, in this case the interval where χ∗

j(µ) varies is reduced to a single point, and any χj ∈ [0, αj ]

is an optimal solution there. It is not difficult to extend the above procedure to handle also this

case.

4. Quadratic-cost network design

Consider a directed graph G = (N,A). For each node i∈N a deficit di ∈ R is given, indicating the

amount of flow that the node demands (negative deficits indicate source nodes). Each arc (i, j)∈A

can be used up to a given maximum capacity uij , paying a fixed cost cij. Otherwise, if (i, j) is not

installed, no cost is due, but flow cannot pass through the arc. Additionally, if xij units of flow

are sent through an installed arc (i, j), a quadratic flow cost bijxij + aijx
2
ij is also incurred. The

problem is to decide which arcs to install and how to route the flow in such a way that demands

are satisfied and the total (installing + routing) cost is minimized. The problem can be written as

min
∑

(i,j)∈A
(cijyij + bijxij + aijx

2
ij)

∑

(j,i)∈A
xji −

∑

(i,j)∈A
xij = di i∈N

lijyij ≤ xij ≤ uijyij , yij ∈ {0,1} (i, j)∈A .

(20)

This network design problem is NP-hard, since it is a generalization of the sensor placement

problem described in Section 3. A recent application of this general model in a Facility Location

setting is given in Günlük et al. (2007), Günlük and Linderoth (2008).

Again, since cij > 0 (for otherwise yij can surely be fixed to 1), in the continuous relaxation of

(20), the design variables yij can be projected onto the xij , that is, at optimality yij = xij/uij .
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The resulting problem can be efficiently solved by means of (convex) Quadratic Min-Cost Flow

(QMCF) algorithms. However, the bound provided by the continuous relaxation is usually weak.

Applying the results of Section 2 to (20), a separable convex-cost non linear MCF problem is

obtained, where the flow cost function on each arc is a piecewise quadratic convex cost function.

In turn, this can be rewritten as a QMCF problem

min
∑

(i,j)∈A′(b′ijχij + a′

ijχ
2
ij)

∑

(j,i)∈A′ χji −
∑

(i,j)∈A′ χij = di i∈N

0≤ χij ≤ u′

ij (i, j)∈A′

(21)

on a graph G′ = (N,A′) with the same node set and at most 2 times the number of arcs. For each

of the original arcs (i, j), at most two “parallel” copies are constructed. If uij ≤
√

cij/aij (case 2.1),

then only one representative of (i, j) is constructed in G′, with b′ij = bij +aijuij +cij/uij, a′

ij = 0 and

u′

ij = uij . Instead, if uij ≥
√

cij/aij ≥ lij (case 2.2) then two parallel copies of the arc (i, j) have to

be constructed in G′: the first has b′ij = bij +2
√

aijcij, a′

ij = 0, and u′

ij =
√

cij/aij, while the second

has b′ij = bij + 2
√

aijcij, a′

ij = aij, and u′

ij = uij −
√

cij/aij. Finally, if lij ≥
√

cij/aij (case 2.3) then

two parallel copies of the arc (i, j) have to be constructed in G′: the first has b′ij = bij +aij lij +cij/lij ,

a′

ij = 0, and u′

ij = lij , while the second has b′ij = bij + 2aijlij , a′

ij = aij , and u′

ij = uij − lij . For this

kind of “partitioned” non linear MCF problems—where some of the arcs have strictly convex cost

functions, while the other have linear cost functions—specialized algorithms have been proposed in

De Leone et al. (1999). In general, any algorithm for convex (quadratic) MCF problems (see, e.g.,

Castro and Nabona (1996)) can be used. While codes implementing these algorithms are either

not available or not very efficient in practice, the off-the-shelf solver Cplex turns out to be quite

efficient in solving these convex QMCFs.

5. Computational Results

In order to assess the behaviour of the Projected Perspective Reformulation technique, we imple-

mented it on the two problems discussed in sections 3 and 4 within a specialized B&B where the

perspective relaxation is solved by computing the projection z(x) as in (14)-(16). We considered the

reformulations (18) and (21) and, for their solution, we applied the specialized O(n logn) algorithm
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for the Sensor Placement problem and the Cplex quadratic solver, respectively. We compared the

new approach (denoted as P2/R) against the following ones:

• a B&C on the PR (6) using the Semi-Infinite MILP formulation (denoted as P/C for Perspec-

tive Cut method);

• a B&C on the PR (6) using the MI-SOCP formulation (denoted as CPLEX-SOCP);

• a standard B&C on the continuous relaxation (5) (denoted as CPLEX).

These three alternative methods have all been implemented by means of Cplex B&C solver. In

particular, the P/C method has been coded with a cut-callback function. We point out that the

P2/R method cannot be implemented within the Cplex B&C solver because it is not allowed by a

Cplex solve-callback function. We thus used a simple implementation of a B&B method that

can be certainly improved by adding new features (e.g., strong branching or more sophisticated

primal heuristics). We also note that the solution of the relaxation is to be completed with the

values for binary variables yi, that can be derived by computing y∗

i (xi) as described in Subsec-

tion 2.1 substituing the values of xi obtained by solving the convex quadratic reformulation. All

the algorithms have been coded in C++, compiled with GNU g++ 4.0.1 (with -O3 optimization

option) and ran on an Opteron 246 (2 GHz) computer with 2 GB of RAM, under Linux Fedora

Core 3.

We generated 180 random instances of the Sensor Placement problem, grouped in 6 classes with

30 instances each. The first 4 classes contain instances with either 2000 or 3000 sensors and have

either high or low quadratic costs. In the former (“h”), fixed costs are uniformly chosen in the

interval [1, n] while quadratic costs are uniformly chosen in the interval [n,Cmax], where Cmax ∈

{10n,20n,30n}. In the latter (“l”), fixed costs are randomly generated in the interval [n,Bmax],

where Bmax ∈ {10n,20n,30n}, while quadratic costs are randomly generated in the interval [1, n].

The last two classes are generated starting from random instances of the Partition problem,

according to the NP-hardness proof for the Sensor Placement problem in Agnetis et al. (2010).

We considered 2000 and 3000 Partition items ranging in the intervals [100,1000], [500,1000],

[1,100000]. Table 1 reports the obtained results.
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name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

2000-h 0.39 1 0.39 1020.51 223293 0.01 4.03

2000-l 0.09 1 0.09 101.58 3713 0.03 0.00

3000-h 0.92 1 0.92 1057.09 144406 0.01 7.18

3000-l 0.21 1 0.21 270.49 5724 0.05 0.00

PTN-2000 0.43 1 0.43 1018.13 4149 0.25 2.98

PTN-3000 1.02 1 1.02 1008.42 568 1.79 3.14

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

2000-h 47.74 924 30.43 1066.02 507 2.11 207.04

2000-l 17.02 1 17.02 49.32 38 7.60 0.00

3000-h 91.24 88 74.09 1069.73 332 3.24 412.54

3000-l 40.27 1 40.27 135.95 72 12.08 0.00

PTN-2000 94.30 6 56.93 23.79 1 23.80 0.00

PTN-3000 202.63 6 114.72 53.74 1 53.74 0.00

Table 1 Results for the Sensor Placement problem

For the Network Design Problem we generated 360 problems, grouped into 12 classes with 30

instances each, as follows:

- the underlying flow networks with 1000, 2000, or 3000 nodes have been generated by

netgen (Klingman et al. (1974)), where: (i) the minimum arc cost is 1 and the maximum is ran-

domly generated between 10 and 100, (ii) the total supply ds is randomly generated between 100

and 1000, and (iii) the minimum arc capacity is 0.05ds and the maximum arc capacity is randomly

generated in the interval [0.2ds,0.4ds];

- the fixed costs which are either low or high with respect to the linear costs generated by

netgen, i.e., cij is uniformly generated either in [0.5bij , bij ] (“l”) or in [3bij ,10bij] (“h”);

- the quadratic costs which are either low or high with respect to the linear costs generated by

netgen, i.e., aij is uniformly generated either in [3bij ,10bij] (“l”) or in [100bij,1000bij] (“h”).

Table 2 reports the obtained results.

For our experiments, we fixed a time limit of 1000 seconds. All problems where solved at opti-

mality within this time limit with the P2/R and the P/C methods, therefore we do not report the

gap at termination for them. For all methods, we report the running time in seconds, the number

of B&B nodes and the average time for node. As expected from previous results (see Frangioni and

Gentile (2006, 2009)), the P/C method overcomes CPLEX B&C algorithm both with standard

and SOCP formulations. However, the newly proposed P2/R approach significantly overcomes the
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name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

1000-h-h 0.05 1 0.05 108.80 35630 0.28 0.00
1000-h-l 0.31 5 0.05 1037.63 324447 0.01 0.02
1000-l-h 0.05 1 0.05 163.67 46685 0.18 0.00
1000-l-l 0.32 5 0.05 1046.89 304305 0.01 0.01
2000-h-h 0.10 1 0.10 690.09 101868 0.11 0.00
2000-h-l 45.42 278 1.10 1031.75 141485 0.01 0.06
2000-l-h 0.09 1 0.09 858.22 131954 0.03 0.00
2000-l-l 8.78 63 0.10 1036.79 140877 0.01 0.04
3000-h-h 0.15 1 0.15 1041.96 88541 0.01 0.00
3000-h-l 71.02 269 0.17 1051.93 73591 0.01 0.12
3000-l-h 0.15 1 0.15 988.74 89209 0.12 0.00
3000-l-l 19.05 79 0.16 1062.45 85878 0.01 0.04

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

1000-h-h 17.03 3 10.14 967.30 26 62.86 0.01
1000-h-l 5.89 25 0.38 79.17 46 16.98 0.00
1000-l-h 8.89 4 4.60 620.77 21 38.62 0.00
1000-l-l 4.68 22 0.33 30.46 63 17.37 0.00
2000-h-h 57.09 7 13.84 895.70 8 207.60 0.01
2000-h-l 51.60 348 0.72 252.98 36 27.65 0.00
2000-l-h 42.3 6 16.57 525.35 9 63.35 0.00
2000-l-l 20.60 131 0.51 252.82 193 40.02 0.00
3000-h-h 117.30 11 18.90 564.41 2 407.97 0.01
3000-h-l 140.47 584 1.39 366.95 27 36.76 0.00
3000-l-h 101.18 12 12.01 372.16 4 89.53 0.01
3000-l-l 45.43 153 0.89 292.41 83 62.39 0.00

Table 2 Results for Network Design problems

P/C method. This is mainly because of the much faster specialized solution methods used for the

relaxations, which significantly reduces the effort required at each node. Furthermore, P/C ap-

proximates the true perspective relaxations by means of a finite number of cutting planes, thereby

introducing some (small) approximation errors. These seem to cause the generation of more B&C

nodes w.r.t. the “exact” solutions provided by P2/R.

6. Conclusions

In this paper, we describe a new method, called Projected Perspective Relaxation (P2/R), to solve

the Perspective Relaxation of Mixed Integer Non Linear Programming problems with convex ob-

jective function and semi-continuous variables. The new method is based on a reformulation which

projects the problem onto the subspace of the continuous variables only. The P2/R method requires

three simplifying hypotheses: each semi-continuous variable xi is univariate, the corresponding bi-
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nary variable yi is not involved in other constraints, and the objective functions fi(xi) are convex

quadratic. The Perspective Relaxation is reformulated as a piecewise convex quadratic program-

ming problem with at most two pieces for each semi-continuous variable in the original model.

The resulting model is further reformulated by defining a new variable associated with each convex

quadratic piece, thus obtaining a new convex quadratic programming problem with at most twice

the number of continuous variables. This in turn means that the resulting relaxation has at most

the same number of variables of the original Perspective Relaxation. Moreover, P2/R contains only

convex quadratic functions, as opposed to rational convex functions (the perspective functions),

and the structure of the constraints is now simplified by the elimination of the relaxed binary

variables.

We applied the P2/R method to two cases in which we can exploit the structure of the resulting

relaxations to speed up the overall solution method: a Sensor Placement problem and a (single-

commodity) Network Design problem. In the Sensor Placement problem we obtained a simple

continuous knapsack problem with a number of variables that is at most twice the number of pos-

sible sensors. In the Network Design problem we obtained a Min Cost Network Flow Problem with

at most two copies of the arcs of the original graph. For both problems we carried on an extensive

computational experience showing that the new method overcomes the Cplex B&C method on

both the original continuous quadratic relaxation and the Second Order Cone Programming im-

plementation of the Perspective Relaxation, as well as the Perspective Cuts method implemented

by a cut-callback function within the Cplex B&C solver. We point out that the P2/R method

is the first non linear technique that improves on the linearization technique of Perspective Cuts

in the two applications here presented.

Finally we outline two directions for future research. On the one hand, the P2/R approach is likely

to be applicable to several other problems. In a nutshell, the two applications of the present paper

show respectively knapsack and flow structures, which are found in many other problems. A relevant

one is Multicommodity Network Design (Crainic et al. (1999)) which, especially when approached

through decomposition techniques (Frangioni (2005)), actually displays both (Crainic et al. (2001),
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Frangioni and Gendron (2009)). Another example are portfolio optimization problems (Frangioni

and Gentile (2006)), which typically display very few (e.g., two) knapsack-like constraints. While

they also typically sport a non separable function, the PR idea can still be applied, e.g., by means of

appropriate diagonalization tricks (Frangioni and Gentile (2007)). However, several combinatorial

structures such as paths, cuts, assignments, and many others for which specialized algorithms exist

are found in applications. Each of them is a potential candidate for successfull application of the

P2/R idea.

On the other hand, it would be interesting to relax some or all of the three basic hypotheses of

Section 2. While assumptions A1) and A3) do not look to be particularly restrictive, in that they

are satisfied by most of the applications of the semi-continuous variables described in the literature

so far (e.g., see Aktürk et al. (2009), Frangioni and Gentile (2007), Günlük and Linderoth (2008),

Günlük et al. (2007)), assumption A2) is clearly rather binding, in that it only allows “pure” semi-

continuous variables. In some other applications (e.g., Unit Commitment, see Frangioni and Gentile

(2006)), the design variables that are used to express the semi-continuous constraint are also re-

used to express other, more complex combinatorial constraints, thus binding the semi-continuous

variables together. This is not directly possible in the P2/R approach, since the yi variables are

“projected away” from the formulation. A negative side-effect of this choice is that valid inequalities

concerning the yi variables cannot be added to the formulation, even if they could potentially be

useful to improve the lower bound. Thus, application of the approach to general “unstructured”

MINLP is not currently possible. Overcoming these limitations does not look to be straightforward,

although it should definitely be possible. For instance, approaches based on Lagrangian relaxation

of the extra constraints on the yi variables prior to reformulation may be considered, although

they would pose some non trivial challenges which would likely rule out direct application of off-

the-shelf MILP/MINLP solvers. Given the promising computational results obtained for the very

special classes of problems we tested, we believe that investigating the possibility to extend the

P2/R approach to more general classes of problems may lead to interesting results.
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Aktürk, S., A. Atamtürk, S. Gürel. 2009. A strong conic quadratic reformulation for machine-job assignment

with controllable processing times. Operations Research Letters 37(3) 187–191.

Castro, J., N. Nabona. 1996. An Implementation of Linear and Nonlinear Multicommodity Network Flows.

European J. of Operational Research 92 37–53.

Ceria, S., J. Soares. 1999. Convex programming for disjunctive convex optimization. Mathematical Program-

ming 86 595–614.

Crainic, T.G., A. Frangioni, B. Gendron. 1999. Multicommodity Capacitated Network Design. Soriano, P.,

Sanso, B., eds., Telecommunications Network Planning. Kluwer Academics Publisher, 1–19.

Crainic, T.G., A. Frangioni, B. Gendron. 2001. Bundle-based Relaxation Methods for Multicommodity

Capacitated Fixed Charge Network Design Problems. Discrete Applied Mathematics 112 73–99.

De Leone, R., R.R. Meyer, A. Zakarian. 1999. A Partitioned ε-Relaxation Algorithm for Separable Convex

Network Flow Problems. Computational Optimization and Applications 12 107–126.

Frangioni, A. 2005. About Lagrangian Methods in Integer Optimization. Annals of Operations Research

139 163–193.

Frangioni, A., B. Gendron. 2009. 0-1 Reformulations of the Multicommodity Capacitated Network Design

Problem. Discrete Applied Mathematics 157(6) 1229–1241.

Frangioni, A., C. Gentile. 2006. Perspective Cuts for 0-1 Mixed Integer Programs. Mathematical Programming

106(2) 225–236.

Frangioni, A., C. Gentile. 2007. SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable

MIQP. Operations Research Letters 35(2) 181 – 185.

Frangioni, A., C. Gentile. 2009. A Computational Comparison of Reformulations of the Perspective Relax-

ation: SOCP vs. Cutting Planes. Operations Research Letters 37(3) 206–210.



Author: Projected Perspective Reformulations with applications in design problems

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 19

Frangioni, A., C. Gentile, F. Lacalandra. 2009. Tighter Approximated MILP Formulations for Unit Com-

mitment Problems. IEEE Transactions on Power Systems 24(1) 105–113.
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