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A BENAMOU-BRENIER APPROACH TO BRANCHED
TRANSPORT*
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Abstract. The problem of branched transportation aims to describe the movement of masses
when, due to concavity effects, they have the impulse to travel together as much as possible, because
the cost for a path of length ¢ covered by a mass m is proportional to m®¢ with 0 < a < 1. The
optimization of this criterion let branched structures appear and is suitable to applications like road
systems, blood vessels, river networks, etc. Several models have been employed in the literature
to present this transport problem, and the present paper looks at a dynamical model similar to
the celebrated Benamou—Brenier formulation of Kantorovich optimal transport. The movement is
represented by a path p; of probabilities connecting an initial state po to a final state p1 and
satisfying the continuity equation 9:p + divy ¢ = 0 together with a velocity field v (with ¢ = pv
being the momentum). The transportation cost to be minimized is nonconvex and finite on atomic

measures: fol (Jq P> gl d#t(x)) dt.
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1. Introduction. The optimal mass transportation theory corresponds to the
study of transporting a given mass distribution pg on  (that we assume to be a
compact and convex subset of RY) into a final configuration p;, by minimizing the
total transportation cost, the latter being suitably defined: clearly, po and pq are
required to satisfy the mass balance condition fQ duy = fQ dpy. From now on, we will
assume that they are normalized to be probability measures. The cost for moving a
unit mass from a position z to a position y is taken equal to ¢(x, y), a function a priori
given, which determines the nature of the problem and provides the total minimal
cost

(L1) Clpos ) = mm{ | deiran) e wo,m)},

where I'(uo, 1) is the class of admissible transport plans, i.e., probabilities on the
product space 2 x €2 having first and second marginals given by ug and u, respectively.
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The cases c¢(z,y) = |z — y|P with p > 1 in particular have been studied, and the cost
C(po, 1) in (1.1) provides, through the relation

W (kos 1) = (C(ﬂ@aul))l/pa

the so-called Wasserstein distance W, which metrizes the weak* convergence on the
space of probabilities P(€2). A very extensive literature on the subject is available; we
simply mention the books [2, 26, 25] where one can find a complete list of references.

Thanks to the fact that the space W,(2) of probability measures endowed with
these distances turns out to be a geodesic space, dynamical models for optimal trans-
portation are of particular interest. Being a geodesic space means that the distance
between two points is always equal to the infimum of the lengths of the curves con-
necting these points, and that this infimum is actually a minimum:

1
W (o, 1) = min {/ lpilw, dt = p € Lip([0,1]; W,()), po = po, p1 = ul} ,
0

where |p’|w, is the metric derivative of the measure-valued Lipschitz curve p, defined
as

. Wp(ptin, pt)
/ -1 14 )

(we refer the reader to [2] for more details).

Since the curves connecting two points of this space are actually curves of mea-
sures, they can be described through the so-called continuity equation: it is well known
(see [2, Theorem 8.3.1]) that for every Lipschitz or absolutely continuous curve p; in
the space W, (€2) (p > 1 for simplicity), there exists a map ¢ from [0, 1] into the space
of vector-valued measures, such that ¢ < p; (hence ¢ = v; - py, with v being the
velocity vector), which represents the flux ¢ = pv and satisfies

(1.2) Orp+dive g =0 and |lvellLo(p) = lptlw,-

(The degenerate case p = 1 is a little bit more involved since ¢; < p; is no longer
guaranteed and the L!-norm has to be replaced by the mass of the measure g;; see [1].)

On the other hand, every time that we have a pair (p, q) satisfying 9;p+div, ¢ =0
with ¢ < p, so that ¢; = v - py, we can infer that |pj|w, < |lv¢]lzr(p,)- This means
that one can minimize the functional

fol (fRd |vg [P dpt) dt if ¢ < pand ¢ = v - py,

400 otherwise,

(1.3) Ap(p,q) = {

which is nothing but the integral in time of the kinetic energy when p = 2, and the
cost in (1.1) can be recovered through the equality

C(Moaul)zmin{/ol (/Rd

The problem above is the one that was proposed by Benamou and Brenier in [3] as
a dynamical version of optimal transportation. It has the advantage that it is the
minimization of a convex functional of p and ¢, under linear constraints.

()

dip+ divy g =0, }
dpt '

p
d dt :
pt(x)) po = po, p1= i
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Other variants of mass transportation problems have been studied and can be
expressed in this way by considering in (1.3) other convezr functions of the pair (p, q).
Recently, Dolbeault, Nazaret, and Savaré introduced in [18] new classes of distances
over P(R%) based on the minimization of the following functional (where \ is a given
reference measure on R, and p and ¢ are identified with their densities w.r.t. \):

/01 (/Rd@(p, q) dA) dt, where ®(p,q) = h(|;1)|:1 _ (h|(q/|)))ph(p)’ P31,

which are connected to the nonlinear mobility continuity equation

dp + div, (h(p)v) = 0.

(A treatment of the limiting case h(p) = 1, corresponding to consider ®(p, q) = |q|?,
can also be found in [13].) If the function h is concave (for example, h(p) = p”, with
B € ]0,1]), then this problem turns out to be convex as well. The main interest that
motivated Dolbeault et al. to study these distances lies in the possible applications
to diffusion equations of the type of the nonlinear mobility continuity equation dp +
div, (h(p)v) = 0 above, where the vector field v depends on p in such a way that the
equation can be interpreted as a gradient flow of a given functional w.r.t. this new
family of dynamical distances. Moreover, the equations of the geodesics are similar
to a mean-field game system; see [20].

In connection to congestion effects and crowd motion, other models include pe-
nalizations on high densities: in [15] the case

gl

(I)(p7 q) - pp_l +Cp27 p 2 17 c 2 07

has been considered as a model for crowd motion in a congested situation (for instance,
in case of panic). This problem as well is convex.

A completely different situation occurs in the opposite case of congestion, when
concentration effects are present and the mass has the impulse to travel together as
much as possible, in order to save part of the cost. This happens very often in many
applications, as discovered by Gilbert, who in [19] formulated a mathematical model
for the transportation of signals along telephone cables. More recently, Gilbert’s
model has been refined and considered in the framework of mass transportation,
under the name of branched transport, to emphasize the fact that transport rays
may bifurcate. All of these models have in common the fact that the cost for a
mass m moving on a path of length ¢ is proportional to m®¢ (0 < a < 1, so that
(m1 +ma)® < m§+m3). In[4, 5,6, 7, 22], for every 0 < v < 1 a transportation
cost from py to p; is considered through the suitable use of probabilities defined on
spaces of curves in 2, with [22] (the so-called irrigation patterns model) dealing with
the case of a single source py = J5,. See section 4 for a glance at the details of these
models and their formulations. On the other hand, the model of [28] can be seen as
the natural extension of the original Gilbert model and uses vector measures having
prescribed divergence pg — p1 (see also [27]): these vector measures are the continuous
generalization of the finite weighted and oriented graphs that were present in Gilbert’s
original formulation.

A first attempt to obtain a dynamical formulation of branched transportation
through curves of measures was made in [10] and later refined in [11, 12]: in these
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papers the starting point is the geodesic formulation of the Wasserstein distance,
where the length functional is modified to consider an energy of the type

1
Ammmmw

The weight function ¢ is a local term of the moving mass, forcing the mass to con-
centrate and thus giving rise to branching phenomena.

These models are not satisfactory yet, because they are in general not equivalent
to those by Gilbert [19], Xia [27, 28], Maddalena and colleagues [22, 23], or Bernot and
colleagues [4, 5, 6, 7]. An attempt to perform some modifications in the functionals
defined on curves of measures so as to obtain equivalence with the other models has
been made in [11, 12], where on the other hand some quite involved distinction between
moving mass and still mass has been done. In all of these models, the branched
transportation is studied avoiding the Benamou—Brenier approach consisting of the
minimization of a suitable cost F(p, ¢) under the constraint of the continuity equation
Orp+div, g = 0, which we believe is the most natural for these kinds of problems. The
only approach to dynamical branched transportation using the continuity equation is,
as far as we know, that of [9]. Yet, to prove semicontinuity and hence existence, even
in this model, the problem is reduced to the minimization of a functional of the form

/ea dH* (x,t)

(which is the motivation of Xia in [28]), and the dynamical features are not completely
exploited.

In the present paper we follow a more direct approach: for all pairs (p, ¢) verifying
the continuity equation, with pg = po and p1 = p1, we define a functional F(p, ¢) and
show that this functional is both lower semicontinuous and coercive w.r.t. a suitable
convergence on (p, q), and this directly provides the existence of an optimal dynamical
path. The paper is organized as follows:

(i) in section 2 we give the precise setting and state the main results;

(ii) section 3 is devoted to the proofs giving the existence of an optimal path py;

(iii) in section 4 we show that our model is equivalent to the other models of
branched transportation available in the literature, comparing it to the traffic plan
model of [4], which is one of the most flexible (and anyway equivalent to the others,
as shown in [6, Chapter 9]);

(iv) in the appendix we deal with some inequalities involving Wasserstein dis-
tances and branched distances, that is, distances over the space of probabilities given
by the minima of some branched transportation problems. These inequalities have
already been studied in [24] and [17], but some very precise issues concerning d,, and
W1, are very close to the topics of this paper and deserve to be examined here. New
and simpler proofs are provided.

2. Problem setting and main results. In this section we fix the notation and
state the main results of the paper. In what follows, £ will denote a given subset of R?,
where all the mass dynamics will take place; for the sake of simplicity we assume that
Q is convex and compact. The space P(2) of all Borel probabilities on €2 can then be
endowed with the weak™ convergence, which is metrized by the Wasserstein distances
(see the introduction). In the following, we will also use the notation M (;R%) to
indicate the space of R%valued Radon measures over 2, while .#* will indicate the
k-dimensional Lebesgue measure.
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The main objects to consider will be the pairs (p, ¢) with
(2.1) peC([0,1;P()),  gqe L'([0,1]; M(Q4RY))
satisfying the continuity equation formally written as follows (here v stands for the

outer normal versor to J2):

(2.2)

Op+divyg=0 in [0,1] x ©,
q-v=20 on [0,1] x 9.

Its precise meaning is given in the sense of distributions; that is,

(2.3) /O 1 { /Q 0,6(t, 2) dpu () + /Q Dad(a,t) - dgy(2)| dt = 0

for every smooth function ¢ with ¢(0,z) = ¢(1,x) = 0.

DEFINITION 2.1. We denote by ® the set of all pairs (p,q) satisfying (2.1)
and (2.3). Moreover, given ug, p1 € P(Q), we define the set D(uo, 1) of admissible
configurations connecting fio to 1 as

D(po, 1) = {(p,q9) €D = po = po, p1=qu}.

The velocity vector v can be defined as the Radon—Nikodym derivative of the
vector measure ¢ w.r.t. p:

,_ o
_a

Among all pairs (p,q) € D satisfying the continuity equation above, we consider a
cost function F(p, q) of the form

1
(24) Flo.o) = [ Flona)t
0
where F' is defined through

Gal[o]*-p) ifg=v-p,
+00 if ¢ is not absolutely continuous w.r.t. p,

F(p,q) ;:{

and Go (0 < a < 1) is a functional defined on measures of the kind studied by
Bouchitté and Buttazzo in [8]: G4 ()\) = +o0 if A is not purely atomic, while

Go) = [ NahI" dfa) = NI it A=
€N €N

(# stands for the counting measure). In this way our functional F becomes

o) = | 1 [ @t d) e | 1 [Z |vt,z-|p;’§i] i (pa)eo,

i€N
and the dynamical model for branched transport that we consider is

2.5 Ba (o, = min F(p,q).
(2.5) (ko, p1) pyin (p:q)
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Our main goal is to show that the minimization problem (2.5) above admits a solution.
This will be obtained through the direct methods of the calculus of variations, consist-
ing of proving lower semicontinuity and coercivity of the problem under consideration,
w.r.t. a suitable convergence.

Remark 2.2. Tt is easy to see that the weak™ convergence of the pairs (p, ¢) does
not directly imply the lower semicontinuity in (2.5), since the functional is not jointly
convex. On the other hand, if (p™,¢"™) € ® and we assume

(Pt ai) = (pe, @) for L* ae., t €0,1],

then a simple application of Fatou’s lemma would lead to the desired semicontinuity
property of F (because one could prove that F' is a lower semicontinuous functional
on measures, as a consequence of the semicontinuity of G, and of the convexity of
(@, y) = [P /yP~ ).

In order to prove a semicontinuity result in the easiest possible way, we will in-
troduce a convergence that is stronger than the weak convergence of measures on
[0,1] x €, but weaker than the weak convergence for every fixed time ¢. This con-
vergence will be compatible with the compactness we can infer from our variational
problem.

DEFINITION 2.3. A sequence (p™, q™) T-converges to (p,q) if (p"™,q") — (p,q) in
the sense of measures and

(2.6) the maps tw— F(py,q) are equi-integrable.

THEOREM 2.4 (coercivity). Let (p",q") be a sequence such that F(p™,q") < C;
then, up to a time reparametrization, (p™,q") is T-compact.

THEOREM 2.5 (lower semicontinuity). Let (p",q") € D be a sequence which
T-converges to (p,q). Then

F(p,q) < liminf F(p", ¢").

As a consequence we obtain the following existence result.

THEOREM 2.6 (existence). For every po, 1 € P(Q), the minimization problem
(2.5) admits a solution.

Remark 2.7. We point out that, for some choices of the data g, 1 and the
exponent «, the statement of Theorem 2.6 could be empty, because the functional
F could be constantly +o0o0 on every admissible path (p,q) joining po to wq. This
issue will be solved in section 4, where the equivalence to other variational models
for branched transportation will be proved. Since for these models finiteness of the
minima has been widely investigated, we can infer, for instance, that if & > 1 —1/d,
then every pair po and pp can be joined by a path of finite energy. On the other hand,
if « <1-1/d, po = 6z,, and p; is absolutely continuous w.r.t. .#%, then there are no
finite energy paths connecting them.

3. Proofs. A preliminary inequality to all the proofs is the following: if ¢ < p,
then ¢ = vy - py, and

Floea) = Y pel{a)) (el = 3 (el fosta) V)

K2

(3.1) “
> (Zpt({%}ﬂvt(miﬂl/a) = llvellLrrapn)
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due to the subadditivity of the function x — x®. This inequality and its consequences
will be discussed in the appendix as well. In particular it also follows that

1 1 1
62 [ Flonaar= [ lulodt= [ lal@)d = ld (0.1 x ).

3.1. Proof of Theorem 2.4. Due to the fact that the functional F is 1-
homogeneous in the velocity, it is clear that reparametrizations in time do not change
the values of F. By reparametrization, we mean replacing a pair (p,q) with a new
pair (g, q) of the form gy = py(r), G¢ = @' (t)qpr) (Which equivalently means that § is
the image measure of ¢ through the inverse of the map (¢,x) — (¢(t),z)). Thanks to
this invariance, if (p™, ¢™) is such that F(p™,¢") < C, then one can define a new pair

(7", q"), with
F(pi,q) = F(p",q") = F(p",q") < C for every t,

which in particular implies that this new sequence (p",§") satisfies condition (2.6).
After that, we need to prove compactness for the weak convergence of measures on
[0,1] x , a fact that requires only bounds on the total variation of ™ and ¢". The
bound on p" is straightforward, since for every ¢ the measure py is a probability, while
for ¢", which is absolutely continuous w.r.t. g, it is enough to use (3.2) in order to
bound the total variation of ¢ by C.

This allows us to extract a subsequence (p;*, ¢;'*) that converges weakly to a pair
(p,q). The only nontrivial point is that we a priori restricted our attention to pairs
(p,q), where p € C([0,1];P(R2)) and ¢ € L*([0,1]; M(Q;R?)), so that we need to
prove that p is continuous and that ¢ is of the form [ ¢;dt. Yet, the inequality (3.1)
applied to the pairs (57, §") proves a uniform bound on the L'/® norm of the velocities,
which implies that the curves p™ are uniformly Lipschitz continuous according to the
distance Wy ., and this property is inherited by the limit measure p.

For the decomposition of ¢, just use the inequality (3.1), thus obtaining a uniform
bound on [[v3 | L1/ (ppy, Which a fortiori gives a uniform bound on the Benamou-
Brenier functional

nnl/a
Ay/alp" 4" / o 1 .

This functional being lower semicontinuous, we can deduce the same bound at the
limit: this in particular implies that ¢ is absolutely continuous w.r.t. p, with an L/
density. Since p is a measure on [0,1] x Q, which is of the form [ p;dt, the same
disintegration will be true for g.

This means that we have actually found an admissible pair (p, ¢), which is the

7-limit of (p}*, g "), and the proof is complete.

3.2. Proof of Theorem 2.5. We consider here a sequence (p", ¢"), where ¢ =
v™-p™ (otherwise the functional F would not be finite-valued), satisfying the continuity
equation and such that (p”, ¢") T-converges to (p, q).

First, we define a sequence of measures m™ on [0, 1] x 2 through

"= / <Z pr ({zie})® Iv?(xi,t)léwi,t> dt,

where the points z; ; are the atoms of ¢ (i.e., the atoms of p}’, where the velocity v}
does not vanish). We notice that F(p", ¢") = m"([0, 1] x ).
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In order to prove lower semicontinuity of F, we first observe that thanks to
condition (2.6) in the definition of 7-convergence, the energies F(p", ¢") are equi-
bounded. This uniform bound implies the convergence m™ — m, up to the extraction
of a subsequence (not relabeled). It is clear that, on this subsequence, we have

Jim F(p",¢") = Tim m"™([0,1] x Q) = m([0, 1] x Q);

then, in order to prove the desired semicontinuity property, it is enough to get some
proper lower bounds on m.

Notice that we have m" = [ m} dt, with m}" = F(p',¢f*) - £*[0,1]; that is, the
marginal of m™ on the time variable is a measure with an equi-integrable L' density.
This implies that the same disintegration holds true for the limit measure m; i.e., we
have m = [ m, dt.

Let us fix M > 0 and a closed set (). Take the function

XM(:E) = (1 - MdlSt(ﬂI, Q))+7 YIS Qa

where (- )4 stands for the positive part: observe that xs is positive, takes the value
1 on @, is M-Lipschitz, and vanishes outside a 1/M-neighborhood of Q). We also fix
€ > 0. Then, thanks to the equi-integrability of the maps ¢t — F(p}, ¢}*), we have that
there exists § > 0 such that for every A C [0,1] with £*(A) < §, there results

sup [ Flofap)dt <=
neNJ A

Correspondingly, we choose a time interval [a,b], with (b — a) < §. Indicating by
1g the characteristic function of a generic set E (i.e., the function that takes the
value 1 on £ and 0 elsewhere), we consider ¢(t,z) = xar(2)*1[4,5(t), which is upper
semicontinuous on [0, 1] x €. Then we have

/ 6(t, 2) dm(t, ) > lim sup / 6(t, 2) dm™ (¢, 2)

n—oo

n— 00

b
= 1imSUP/ <Z p?({%})o‘|U?(xi)|XM(9Ci)°‘> dt,

where the points z; are, as before, the atoms of ¢" (and we omitted the dependence
on n and t).

We then decompose the product p?({z;})%xar(z:)® as (p?({xi})XM(a:i))a_l :

(P ({xi})xa (@) (where pfxar > 0). Notice that pf ({zi})xar (i) < [ xu dp}-
Then we can estimate the right-hand side in the previous inequality as

b
/a <;p?({wi})“Iv?(xi)IxM(xi)“> dt
> /ab l(/xM dp?) o x (Z p?({xi}ﬂvf(meM(xi))] dt
:/ab (/dep?)al (/XMcuqm) d.

We go on by estimating from above [ xa dp}: we have

/mmwwws/mmwxw+meww
Q Q



A BENAMOU-BRENIER APPROACH 1031

which is a consequence of the definition of W; by duality with 1-Lipschitz functions
(see [26, Theorem 1.14]). To estimate the W distance we use Wy < Wy, and the
following fact:

t t
Wi o (01 o) < / 10 .. dz < / 102 aap,) dz-

Then, applying inequality (3.1), we have

b
[ xun@)dol @) < [ xarle)doli@) + 0 [ Plota2)dz for every ¢ € [a. )
Q Q a

The equi-integrability of t — F(p},¢") finally gives

/ xm(z) dpy (x) < / Xy (x) dpyy (x) + Me for every t € [a,b].
Q Q

In this way we have

b a—1 a—1 sp
/ </XMdP?> </XMd|Qf|dt> dt > </XMdPZ+M€> / (/XMd|qf|> dt

a—1
- </XM dp? —|—M5) /¢1/a di"].
Hence, we may go on with

a—1
/q&dmzlimsup l(/XMde—FMa) /¢1/ad|q”|1
n—oo
a—1
> (/XM dpa+ Ma) /¢1/a d|ql.

In the last inequality, the second factor has been dealt with in the following way:
suppose |¢"| — o; then we have ¢ > |q|. Moreover, ¢ > ¢, where ¢(t,x) :=
X (2)1(q,5)(t), and this last function is lower semicontinuous and positive, so that

lim in / 6"/ d|q"| > lim nf / G dign) > / 5% do > / FH djg| = / 61/ dlgl,

n—oo

since the boundaries t = a and t = b are negligible for |q|.
After that, we can divide by (b—a) (keeping M fixed for a while) and pass to the
limit as b — a. This gives, for £ a.e., a € [0,1],

[ (o) dma (o) = < [ xaste)dpa(a) + M) [ o) digz).

Observe that, by choosing € = 1/M? from the beginning, if we let M — co now and
use that xas monotonically converges to 1¢g, by dominated convergence w.r.t. mq, pq,
and |q,|, we end up with

(3.3) me(Q) > pa(Q)aillanQ)'
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In the last term the convention 0 - co = 0 is used (if |¢,|(Q) = 0). This inequality is
proved for closed sets, but by regularity of the measures it is not difficult to prove it
for arbitrary sets. Actually, if S C €2 is an arbitrary Borel set, then we can write

ma(S) = ma(Q) = pa(@Q)*0al(Q) = pa(S)* ' aal (@)

for every @ C S closed and take a sequence of closed sets Qj such that |g,|(Qr) —
|qa|(S), since |qq] is, for £1 a.e., a € [0,1], a finite (and hence regular) measure on
the compact set 2. We now want to prove the following:
(i) ¢ < p;
(ii) go = va - pa is atomic for £* a.e., a € [0,1] (i.e., p, is atomic on {v, # 0});
(iii) me(Q) > F(pa,qa) for £t ae., a €0,1].
This would conclude the proof.

The first statement follows from the inequality (3.1): first observe that the curves
p™ are equicontinuous, thanks to (2.6), so that they converge uniformly in time. This
gives the following decomposition for the limit measure p = [ p; dt. Then we observe
that the equi-integrability of t — F(p}, q}') is equivalent (see [14]) to the existence of
a convex nondecreasing superlinear map 1 such that

1
sup [ O(F (ol qp) e < +ox.
neNJo

Observing that the map (z,y) — 9(y/x)x is convex and positively 1-homogeneous,
the functional

_ Joaa? (8 de ifa<p,
Aol = { +00 otherwise,

is well defined and lower semicontinuous. Then we proceed exactly as in the proof
of Theorem 2.4, using the functional Ay in place of the Benamou—Brenier one A /4:
this guarantees that ¢ have an L' density w.r.t. p. As a consequence, since p is a
measure on [0,1] x €, which disintegrates w.r.t. the Lebesgue measure on [0, 1], the
same will be true for ¢ and we can write ¢ = vy - p¢.

For the second statement, take the inequality my(S) > pa(S)* !qa|(S), which is
valid for any Borel set S, and apply it to sets which are contained in the Borel set
Ve i={x € Q : |v,(x)] > e}. For those sets, we have easily that m,(S) > €p,(5)“.
This means that the measure X := £'/%p, V. satisfies the inequality A\(S)® < m(S)
for every Borel set S C V.. Since m is a finite measure, this implies that A is atomic
(see Lemma 3.1 below). If the same is performed for every e = 1/k, this proves that
pa is purely atomic on the set {x : |va(z)| # 0}; that is, g, = v, - pa 18 purely atomic.

Once we know that ¢, is atomic, we can infer that

F(paa qa) = Zpa({xi})a_ll(ﬁzl({xi})a

and we need only consider @ = {;} in (3.3) and add up:

ma () > Zma({xi}) > F(pa; qa),

2

which finally concludes the proof.
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LeEmMMA 3.1. Take two finite positive measures \ and p on a domain €2, and
a € (0,1). Suppose that the inequality A\(S)® < w(S) is satisfied for every Borel set
S C Q. Then X is purely atomic.

Proof. Consider a regular grid on Q of step 1/k, for k € N, and build a measure
Ar by putting, in every cell of the grid, all the mass of A in a single point of the cell.
This measure \; is atomic, and we have

GJMJZE:M&VSE:M&%HMD<+w,

where the S; are the cells of the grid. If we let k go to oo, then the step of the grid goes
to zero, and we obviously have A\, — A. On the other hand, the functional G, is lower
semicontinuous (see [8]), and this implies G, (A) < liminfg o0 Ga(Ar) < u() < +oo.
In particular, A is atomic, thus proving the assertion. O

3.3. Proof of Theorem 2.6. In order to prove existence, one need only take a
minimizing sequence and apply Theorem 2.4 to get a new minimizing sequence that is
T-converging: this new sequence is obtained through reparametrization (which does
not change the value of F) and by extracting a subsequence. Since the constraints
in the problem are linear (i.e., p; = p; for ¢ = 0,1 and the continuity equation), the
limit (p,q) will satisfy the same constraints as well. The semicontinuity proved in
Theorem 2.5 allows us to obtain the existence of a solution.

4. Equivalence with previous models. In this section we prove the equiv-
alence of problem (2.5) to the other previous formulations of branched transport
problems existing in literature. In particular, as a reference model we will take the
one presented in [6], in which the energy is defined as

Ea(Q) = /C / 015 o' (1) dt dQ (o),

where C = C(]0, 1]; ), @ is a probability measure over C and concentrated on the set
Lip([0,1]; Q) (traffic plan), and for every z € €2, the quantity |z|g is the multiplicity
of z w.r.t. @, defined by

[zl =Q{oceC : zeo([0,1))}).

Given pg, p1 € P(R), the corresponding minimum problem is then given by

d , = min E ,
a(ko, 1) QET Py 1) o(Q)
where TP (o, pt1) is the set of traffic plans with prescribed time marginals at ¢t = 0, 1;
that is,

TP(po, 1) ={Q € C : Q concentrated on Lip([0,1]; ), (e;)4Q = s, i = 0,1},

and e; : C — ) is the evaluation map at time ¢, given by e;(0) = o(t) for every o € C.

Remark 4.1. We recall that this model is completely equivalent to that developed
by Xia (see [28] for the presentation of the model and [6, Chapter 9] for the equiva-
lence), which is based on a relaxation procedure, starting from an energy defined on
finitely atomic probability measures pg and pq. In particular, thanks to this relaxed
formulation, we get that for every po and p;, there exist two sequences pg and pf
of finitely atomic probability measures, weakly converging to o and 1, respectively,
such that
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(4.1) da(pg, 17) = da(po, 1)

We also need to consider a slight modification of the functional E, above, intro-
duced in [7]:

1
Cu(@ = [ [ o005 17 0] Qo)
where now the synchronized multiplicity |(x,t)|q is

[(z,D)le =Q({o €C : ot) = z}).

This second multiplicity accounts for the quantity of curves passing at the same time
through the same point, while the one used in the definition of E,, considered all the
curves passing eventually through the point: in this sense, the model corresponding
to the energy C, is more dynamical in spirit. As a straightforward consequence of
the definition of the two multiplicities, we get

(4.2) lo()le = |(a(t), t)la

so that Eo(Q) < Co(Q). Concerning the comparison between the minimization of
E, and C,, we recall the following result (see [7, Theorem 5.1]).

THEOREM 4.2. Let pg, p1 € P(Q), with po a finite sum of Dirac masses. Then

for every a € [0, 1] we get
min E = min C .
aerPim ) P = gerBll ) O

We are now in a position to state and prove a result giving the equivalence between
our model and the one relative to the energy F,.

THEOREM 4.3. For every a € (0,1) and po, 1 € P(Q) we get
4.3 B = i E =d .

(4.3) (o, 1) perbin o(Q) = da(po, 1)

Proof. We start proving the inequality B (uo, 1) > da(po,p1). Clearly, if
Bo(po, 1) = +o00, then there is nothing to prove; otherwise, take (p,q) optimal,
which implies, by the way, that ¢ = v - p and that ¢ is atomic. Thanks to the su-
perposition principle (see [2, Theorem 8.2.1]) we can construct a probability measure
@ € C such that p; = (e)4Q and Q is concentrated on absolutely continuous integral
curves of v, in the sense that

| lrtw-o0- | u(o(s)) ds

Using this information, together with the fact that £, < C, and exchanging the order
of integration, we get

dQ(c) =0 for every t € [0, 1].

En(Q) < Ca(Q) = /C / (o (t), /371 10" (8) dt dQ(o)
1
= [ [ 1005 o' 0)] Qo) d
0 JC
- / / (o (6), )12 [ou(o () dQ(0) d
0 JC

= ' 2, )57 oy (2 () dt.
—/O/QI( 1% ou(@) dpi () dt
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Then we observe that, by virtue of the fact that p, = (e:)3@, there holds

[(z,t)lq = Q{o € C : a(t) = x}) = pr({z}),
so that we can rewrite the last integral as
1 1 1
| [ etiap @l dm@de= [ [ pitah) dial@rde = |3 ouilof dt
0 Ja 0 0 ien
which then gives

deo (o, = min E, < F(p,q) = Ba(po, p1)-
(10, p1) oerpin (Q) (P q) (0, 1)

In order to prove the reverse inequality, we first prove that

4.4 Ba (o, < min Ca .
(4.4) (t0, p1) perpin (Q)

Take € T P(uo, 1) optimal for C,. Then we know that there exists a pair (p, q),
which is a solution of the continuity equation, with p: = (e;)4@ and g = v - ps. The
velocity v may be chosen as

w(z) = / o' (1) dQ" (o),

where Q%" is the disintegration of Q w.r.t. the evaluation function e; (see [21] for this
representation formula of the velocity field v). This means that each Q%* is a prob-
ability measure concentrated on the set {o € C : o(t) = z} and Q = [ Q" dpi(x).
Therefore, arguing as before,

1
CalQ) = / /C ((8), )31 10 (1) dQ(o) d

-/ 1 [t ([ 100100 (0)) douta) a

! a—1
> [ @it @) do) @
= [ [ ooz ot dpu(e)
0 JQ

which gives the desired inequality (4.4) since, even if we do not know that g, or p; are
atomic, we can restrict the last integral to the set of atoms of p.
To summarize, up to now we have shown

d , <B ) < min C ,
a(NO Ml) a(MO Nl) QET Pl ) a(Q)
and the equality holds whenever pg is a finite sum of Dirac masses, thanks to Theorem
4.2. In order to conclude, it is enough to notice that thanks to Remark 4.1, we
may take two sequences pg and pf of finitely atomic probability measures such that
po — pos pi — w1 and

do(pgs 1Y) = da(pos 1),



1036 L. BRASCO, G. BUTTAZZO, AND F. SANTAMBROGIO

thus getting
da(po, 1) < Ba(po, p1) < liminf By (pg, py) < 1l do(pgs p17) = da (o, 1),

and hence concluding the proof. O

Remark 4.4. Observe that in Theorem 4.3, we not only proved the equality
of the minima, but we also provided a natural way to pass from a minimizer of our
formulation a la Benamou—Brenier to a minimizer of the traffic plans model and back.
The two problems are thus equivalent in the sense that they describe the same kind
of energy and the same optimal structures of branched transport: the simple equality
of the minima (4.3) is just a consequence of this more important fact.

Remark 4.5. In the previous proof, we used the equivalence between the models
corresponding to E, and C, which was the content of Theorem 4.2: as we said, this
result has been established in [7] under the assumption that the starting measure pg
is finitely atomic. It is based on the fact that, under this assumption, an optimal
traffic plan @ for E, can be synchronized (see [7, Proposition 4.10]); i.e., a time
reparametrization leads to a @ such that

lo®lg = 10(0). D],

and thanks to the reparametrization invariance of E,, we have Eo(Q) = Eo(Q) =
Ca(@). The synchronization result in [7] is likely to be extendable to more general
situations, without any restriction on pg and p;; yet, we decided to use Theorem 4.2
in the form proved in [7] since it was sufficient for our scope. Observe that in any
case the proof of Theorem 4.3 gives at least the equality of the minima

min E, = min Ca
QETP(po,p1) (Q) QETP(10,411) (Q)

for every po, p1 € P(Q).

Appendix. The distances d, and Wy . This last section is devoted to esti-
mates between the distance d,, induced by the branched transport and the Wasserstein
distances W,. In particular, in [24] the following estimate is proved for o > 1 —1/d:

do < C WD

As far as lower bounds on d, are concerned, the most trivial is d, > Wj but [17,
Theorem 8.1] also proves d,, > Wy /,, which is slightly better. Moreover, for scaling
reasons (w.r.t. the mass) it is not possible to replace W;,, by W), with p > 1/« in
this last inequality.

In this paper we already needed to estimate some branched transport cost in terms
of Wy, distances and metric derivatives. In this section we prove the inequalities

Wija < do <CWHED Vae (1-1/d,1].

These inequalities are just particular cases of the aforementioned ones, but the proofs
we will provide are different and somehow simpler.

The first inequality will be approached through the formulation of branched trans-
port that we gave in this paper, but the main tool (i.e., inequality (3.1)) is essentially
the same as that in [17] and [23]. What is different is the way to extend this idea to
generic measures, i.e., nonatomic ones.
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THEOREM A.1l. For every po, 1 € P(Q) we get

(A1) Wi (o, 1) < da(po, p1)-

Proof. We first observe that thanks to the results of the previous section, for
every [, 11 € P(Q) we get

%wwm=ATAMWWM@w#mﬂﬁ

for a suitable (p, ¢) admissible in the formulation (2.5), with ¢ = pv. Moreover, using
inequality (3.1) once more, the right-hand side in the previous expression can be
estimated as

ATLM@WH@V@@ﬂﬁzéwmmwmﬁ

and, finally, using the fact that (p, ¢) is a solution of the continuity equation, we can
infer (see [2, Theorem 8.3.1]) that

Iptlw, 0 < Nvtllp1ra,,) for ZLtae., tel0,1],

so that

1
do(po, 1) > / Ipt|w, o dt > Wi (1o, 1),
0

where in the last inequality we just estimated the length of a curve by the distance
between its endpoints. Thus we have obtained (A.1), concluding the proof. 0

In order to prove the other inequality, we first have to introduce some notation:
we set Q = [0,1)¢ and Qp = [0, L)¢, and for every j € N we consider the following
subset of multi-indexes:

Bj={ze N : |z]|c <29 —1}.

We observe that #(B;) = 274; then we make a partition of the cube Q, by dyadic
cubes having edge length L/27, i.e.,

294
i LQ+L
a=Ue=U 55—
i=1 2€B;

For every p € P(£2) such that Q C Qy, its dyadic approximation is given by

274

i=1

where p = p(Q%) and % is the center of Q. We shall always assume that Q C Qr
for a suitable L; then the following estimate is well known (see [6, Proposition 6.6]).
PROPOSITION A.2. Let a € (1 —1/d,1]. Then for every u € P(2) we have

2(d(1—-a)=1)i 1./d
(A.2) da(a;(p), p) < 91-d(1-a) _ 1 2
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The main tool (if one wants to estimate d, from above by a power of Wy ,) is
to show that the distance d, between two dyadic approximations can be estimated in
terms of their 1/a-Wasserstein distance: this is the content of the next result.

LEMMA A.3. Let o € (1 —1/d,1]. Then for every po,u1 € P(2) we get

(A?)) dOt (aj (NO), aj (Ul)) < C W]_/a(aj (‘LLO)7 a; (‘ul)) 2jd(1_0¢),

with C depending only on d and «.
Proof. Let us consider an optimal transport v; between a; (o) and a;(u;) for the
cost c(z,y) = |z — y|/*. That is, 7; € P(Q x Q), and it is of the form

274

V=) M0 k), @ by,

i k=1
with the 279 x 299 matrix {M, (i, k)}; r belonging to the convex set 9 given by

27d 27d

M= A{aiktir : air >0, Zai,k = (Q?), Zai,k = Mo(Qi—)
im1 =1

We know by optimality that {M; (i, k)}ir can be taken to belong to Ext (9), the set
of extremal points of 9, which consists of the so-called acyclic matrices (see [16]).
They are those matrices belonging to 2t such that the following property holds:

s
H Qi ko Qi kpyy = 0
r=1

for every 2 <'s < 27% and every set of indices iy < --- < iy € {1,...,29%} k1 <--- <
k;j € {1,...,299} (the convention igjai, = iy and kyjai = k; is used). This implies
in particular that

(A4) #L,K) © My(i,k) # 0} <2297,

that is, {M;(i,k)}; x has at most 2 - 2/¢ nonzero entries: in other terms, this optimal
transport plan v; does not move more than 2 - 274 atoms. Setting |x; — xf| =4k, we
then get

294
Wisal(a;(mo),a;(m)) = | S MyG k)€ |
i,k=1
and using (A.4) and Jensen’s inequality,
274 274 L\ a
doaj(u0),as() < 0 Myl k) g = > (M0, k) €5
i k=1 i k=1
27d «
. é . . 11—«
< DD MG R 6| (#G, k) - MG k) # 0))
i k=1

< CWija(a;(po), aj(per)) 2740 =),

which concludes the proof. O
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THEOREM A.4. Let a € (1 —1/d,1]. Then we get

(A.5) do(p0y p11) < C Wy (po, pr ) @D

with a constant C depending only on d, «, and the diameter of .
Proof. Using the triangular inequality, (A.2), and (A.3), we get for every j € N

do(po, 1) < do(po,aj(po)) + dalaj(po), aj(p1)) + da(aj(p1), p1)
< C2W =)= 4 4, (a;(po), aj(pa))
< O 2170 L CWy 0 (ay (o), aj () 27407,

and

Wi ala;(po), a;(p1)) < Wijalaj(po), o) + Wija(po, 1) + Wisa(aj(po), p1)
S 027‘7 + Wl/a(,uO; ,ul)a

which finally gives

da(po, p1) < C200=970T 4 OWy g (1o, prr) 2790~
= €200 (1 4 W, o (10, j11) 27)

It is now sufficient to choose the index j in such a way that

diam(€?) diam(Q2)

Y S Wl/a(ﬂOaﬂl) S 9j—1 3

which in turn yields
g(dl—e)=1)5(q 4 Wi /a(po, 11)27) < C W (o, pug )@ DHL

thus giving the thesis. O

Remark A.5. Notice that the very same po and pq of Example 6.19 in [6] show
that the exponent d(a — 1) + 1 in inequality (A.5) cannot be improved.

Remark A.6. As we briefly mentioned previously, observe that the distances d,
and Wy, have exactly the same scaling w.r.t. the mass. Moreover, the Wasserstein
distances and the d, can both be extended to positive measures of mass m, not
necessarily equal to 1. Using the scaling properties of Wy, and d,, in conjunction
with the previous inequalities, it is easy to see that the dependence on m and the
diameter of  of the constant C' appearing in (A.5) is

C(m, Q) =~ mI=ON=D gjam ()40,
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