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Università degli Studi di Pisa

Pisa, I-56126, ITALY

Abstract. We make a review of some recent results concerning special solu-
tions and behavior at infinity for 2D dissipative Euler equations. In particu-

lar, we give a simplified proof –in the space-periodic setting– of the uniform

space/time boundedness of the first derivatives of the velocity, under suitable
assumptions on the external force and on the dissipation (damping) coefficient.

This is used to sketch the proof of existence of almost-periodic solutions.

1. Introduction. In this paper we summarize some results related with the long-
time behavior of the Euler equations for incompressible fluids in two space dimen-
sions. It is well-known that in the 2D case it is possible to prove, for smooth enough
data, existence and uniqueness of smooth solution, for all positive times (see also
the discussion in the next section for certain less-standard results). It is also clear
that without any smoothing or dissipation, one cannot expect to have uniform
boundedness of the energy and of other interesting quantities as the enstrophy or
higher norms of the velocity. To this end we consider the so-called dissipative Euler
equations

∂tu+ χu+ (u · ∇)u+∇p = f in ]0,+∞[×T,

∇ · u = 0 in ]0,+∞[×T,
(1)

where u = (u1, u2) is the velocity of the fluid with the initial condition u(0) = u0, p
is the kinematic pressure, f = f(t, x) is the external force field, T := (R/2πZ)2 is a
two dimensional torus and all quantities are 2π-space periodic and with vanishing
mean value. The damping term χu (with χ > 0) models the bottom friction in some
2D oceanic models (when the system is considered in a bounded domain; in that
case, the system is called the viscous Charney-Stommel barotropic ocean circulation
model of the gulf stream) or the Rayleigh friction in the planetary boundary layer
(with space-periodic boundary conditions). The positive constant χ is the Rayleigh
friction coefficient (or the Ekman pumping/dissipation constant) or also the sticky
viscosity, when the model is used to study motion in presence of rough boundaries,
see for instance Gallavotti [10]. Early existence results can be found in Barcilon,
Constantin, and Titi [2], while links between the driven and damped 2D Navier-
Stokes, attractors, and statistical solutions are proved in Ilyin, Miranville, and
Titi [12] and Constantin and Ramos [8]. The model (1) represents (probably)
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the “weakest” dissipative modification of the Euler equations and results on the
long-time behavior of the damped/driven Navier-Stokes do not directly pass to
the limit as the “viscosity goes to zero,” hence a completely different treatment is
required to study the problem without viscosity. This paper is aimed at sketching
the fundamental steps needed to show existence of almost-periodic solutions and one
key-result is that of showing a sort of asymptotic stability, cf. [15]. In order to use
standard tools based on dissipation to construct almost-periodic solutions we need a
control on the difference of two solutions. The presence of the nonlinear convection
term seems to require an estimate on ‖∇u‖L∞ . To this end we analyze the equation
for the vorticity. Taking the curl of (1) (define ξ := curlu := ∂2u1 − ∂1u2 and
φ := curl f) one obtains

∂tξ + χ ξ + (u · ∇) ξ = φ in ]0,∞[×T, (2)

which is a non-local scalar transport equation (with damping), which plays a fun-
damental role in the sequel.

Moreover, it is well-known that (by the Biot-Savart formula) the velocity can be
reconstructed from the vorticity by recalling that −∆u = ∇⊥ξ. Basic Calderon-
Zygmund or Schauder estimates for the Poisson equations allow us to state that
∇u and ξ are at the same level of regularity in Lp spaces (1 < p <∞) or in Hölder
spaces C0,α. Roughly speaking (full details are given in [5, 6]) the Lp-setting, with
p < +∞ is too weak, while the C0,α setting seems too strong in order to obtain
uniform estimates. This suggest to use a more precise functional framework and in
particular to employ the following well-known potential theoretic result:

∃C0 = C0(T) > 0 : ‖∇u‖L∞(T) ≤ C0‖ξ‖CD(T), (3)

to show boundedness of the gradient of u. We recall that the set of Dini-continuous
functions CD(T) ⊂ C(T) is the subset of continuous functions f : T→ R such that

‖f‖CD(T) := ‖f‖L∞(T) + [f ]CD := ‖f‖L∞(T) +

∫ √22π

0

ω(f, σ)
dσ

σ
< +∞,

where

ω(f, σ) := sup
{
|f(x)− f(y)| : x, y ∈ T, 0 < |x− y| < σ,

}
.

The main reason for the use of this functional space to study the vorticity stems in
the uniform estimate proved in Proposition 1, which –together with (3)– gives the
requested bound. We emphasize that the first use of these spaces for the vorticity
of Euler equations dates back to Beirão da Veiga [4] in the context of global well-
posedness of the 2D problem. In questions of stability the role of Dini-continuous
vorticity has been first recognised by Koch [14], while recent results on global at-
tractors are those proved in [5]. Close relationship between Dini and critical Besov
spaces is analyzed in [11]. We consider Stepanov almost-periodic solutions (see [1]
for further details), which seems the most natural setting for problems related with
the Euler equations. If X is a Banach space we define L2

uloc(X) as the space of
uniformly locally square integrable X-valued functions

L2
uloc(X) :=

{
v ∈ L2

loc(R;X) : sup
t∈R

∫ t+1

t

‖v(s)‖2X ds <∞
}
.

Next, we say that v ∈ L2
uloc(X) belongs to S2(X) or is Stepanov almost-periodic

(with values in X) if and only if the set of the time-translates of v is relatively
compact with respect to the L2

uloc(X)-topology.
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The main result of this paper is then the following

Theorem 1.1. Let be given a divergence-free external force f ∈ S2(L2(T)) with
curl f ∈ L∞(R;CD(T)). There exists χ0 = χ0(f) > 0 such that if χ > χ0, then
there exists an almost-periodic solution u ∈ S2(L2(T)) to the dissipative Euler equa-
tions (1).

Remark 1. The condition on χ can be also read as a smallness condition on f .
Moreover, by standard results due to Dafermos [9], obtained by compact embedding
and interpolation, the solution u will belong also to S2(H1(T)).

Remark 2. Appropriate modifications of the calculations from the next sections
can be used to handle also the more general case of a bounded smooth domain
Ω ⊂ R2 for the problem endowed with the boundary condition u · n = 0 on ∂Ω, see
[6] for full details.

The same approach can be also used (with some additional technical steps) to
prove, in the case of a time-independent force, the following result concerning the
existence of a global attractor, see [5] for full details.

Theorem 1.2. Let be given f ∈ H1(T) such that φ = curl f ∈ CD(T). There
exists χ0(f) > 0 such that if χ > χ0, then, there exists a global attractor A ⊂ C(T),
for the dissipative 2D Euler equations (1).

Remark 3. Also Thm. 1.2 holds true in a bounded smooth domain Ω ⊂ R2 and
moreover the Hausdorff dimension of A turns out to be finite, cf. [5]

2. Existence of weak solutions. In this section we recall some basic results on
existence and uniqueness of weak solutions, proved in Bessaih and Flandoli [7], by
adapting classical results by Yudovich [16] and Bardos [3]. Let V be the space
of infinitely differentiable, periodic, divergence-free, and with vanishing mean value
vector-fields on T. We introduce the usual Hilbert space H defined as the closure of
V with respect to the norm |·| of L2(T)2, with the inner product of L2(T)2, denoted
in the sequel by 〈·, ·〉. As usual, V is the closure of V with respect to the norm ‖ · ‖
of H1(T)2. Identifying H with its dual H ′, and H ′ with the corresponding natural
subspace of V ′, we have the standard Gelfand triple V ⊂ H ⊂ V ′ with continuous
and dense injections. (For simplicity we denote the dual pairing between V and V ′

by the same symbol as for the inner product of H.)

Definition 2.1. We say that the vector field u ∈ C(0,∞;H) ∩ L∞loc(0,∞;V ), with
∂tu ∈ L2

loc(0,∞;V ′), is a weak solution to (1) on [0,∞[ if the following properties
hold ∀ v ∈ V and all t ≥ t0 ≥ 0:

‖u(t)‖2 ≤ ‖u(t0)‖2e−χ(t−t0) + χ−1
∫ t

t0

‖f(s)‖2e−χ(t−s) ds,

|u(t)|2 + 2χ

∫ t

t0

|u(s)|2 ds ≤ |u(t0)|2 +

∫ t

t0

〈f(s), u(s)〉 ds,

〈u(t)− u(t0), v〉+ χ

∫ t

t0

〈u(s), v〉 ds+

∫ t

t0

〈(u(s) · ∇)u(s), v〉 ds =

∫ t

t0

〈f(s), v〉 ds.

We have the following result:

Theorem 2.2. Let be given u0 ∈ V and f ∈ L1
loc(0,+∞;V ). Then, there ex-

ists at least a weak solution to (1). Moreover, if curlu0 ∈ L∞(T) and curl f ∈
L1
loc(0,+∞;L∞(T)), such a solution is unique.
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Proof. The proof of this result is classically based on a vanishing-viscosity approx-
imation. The Navier-Stokes equations are considered for ν > 0

∂tu
ν + χuν + (uν · ∇)uν − ν∆uν +∇pν = f in ]0, T [×T,

∇ · uν = 0 in ]0, T [×T,

for which existence of Leray-Hopf weak solutions in [0, T ] for any positive T is well-
known. Next, by using the vorticity equation for ξν = curluν it is easy to prove
(along Galerkin approximation) that

d

dt
|ξν(t)|2 + χ|ξν(t)|2 + ν|∇ξν(t)|2 ≤ 1

χ
|φ|2,

which can be used to show an uniform bound for the vorticity in L2(T). Then, with
this it is possible to show that the limit u := limν→0+ uν is a weak solution to the
dissipative Euler equations.

The uniqueness in the case of a bounded vorticity for the Euler equations is more
delicate, and it is based on the inequality proved in [16].

∃C > 0, independent of p : ‖u‖Lp(T) ≤ C
√
p‖u‖W 1,2(T) ∀ p ≥ 2.

Since we have a unique solution of (1) we can prove better regularity on it simply
by using representation formulas. It is well-known that if ξ ∈ L∞(T), then this
is not enough to have ∇u ∈ L∞(T) (being the endpoint estimate) hence Lipschitz
characteristics. The boundedness of the vorticity implies that the velocity is Lip-Log
(called also quasi-Lipschitz) and then that the characteristics are unique and Hölder
continuous. In particular, the following result is well-known, see for instance [13].

Lemma 2.3. Let |||ξ||| := sup(s,y)∈[0,T ]×T |ξ(s, y)|, then there exists a constant

c > 0 such that, for all x, x1 ∈ T such that |x− x1| < 1

|u(t, x)− u(t, x1)| ≤ c |||ξ||| |x− x1|[1− log(|x− x1|)].

If U(s, t, x) denotes the solution of the Cauchy problem
dU(t, s, x)

dt
= u(t, U(t, s, x)),

U(s, s, x) = x,
(4)

then, defining δ as follows δ := e−c|||ξ|||T , it holds

|U(s, t, x)− U(s1, t1, x1)| ≤ c|||ξ||| |t− t1|+ e(1 + e c|||ξ|||)(|x− x1|δ + |s− s1|δ).

In order to have Lipschitz characteristics, it would be enough, to have bounded
gradient of the velocity, which will follow from Dini-continuous vorticity.

Moreover, remaining in the setting of Hölder functions it follows (by direct com-
putation) that the composition of Dini and of an Hölder continuous functions is
again a Dini-continuous function.

Lemma 2.4. Let be given f ∈ CD(T) and U ∈ C0,δ(T), then the following estimate
for the Dini’s semi-norm holds true:

[f ◦ U ]CD ≤
1

δ
[f ]CD +

2

δ
log[U ]δ(

√
22π)δ−1.
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Since the Hölder exponent of the characteristics decreases with time, we first fix
an interval [0, T ] and the previous lemma allows to control the Dini-norm of the vor-
ticity, by using the representation formula obtained by following the characteristics
in the equation for the vorticity

ξ(t, x) = ξ0(U(0, t, x)) e−χt +

∫ t

0

φ(s, U(s, t, x)) e−χ(t−s) ds, t ∈ [0, T ]. (5)

By using Lemma 2.4, formula (5), and by reasoning as in [4, 14] one can easily show
that if ξ0 ∈ CD(T) and φ ∈ L1

loc(0,+∞;CD(T)), then ξ ∈ L∞(0, T ;CD(T)), for all
positive T .

Remark 4. By using the Schauder’s fixed point theorem (employed in two slightly
different manners in Ref. [4, 14]) it is possible also to show that ξ ∈ C([0, T ];CD(T)),
for all T > 0, but this is not needed here.

For our purposes the continuity is not so important, but what will be relevant is
the following result.

Proposition 1. Let u0 ∈ V such that ξ0 ∈ CD(T) and φ ∈ L∞(0,+∞;CD(T)).
Then, for large enough χ > 0, the Dini-norm of ξ is uniformly bounded over [0,+∞[.

Proof. We are assuming that we have a unique solution ξ ∈ L∞(0, T ;CD(T)) of
the transport equation (2), for any given T > 0. Then for a.e. t ∈ [0, T ] it follows
∇u(t, ·) ∈ L∞ and U is Lipschitz continuous (especially in the space variable) and
the Lip-norm depends on the Dini-norm of ξ. More precisely, we have the estimate

|∇U(s, t, x)| ≤ e

∫ t
s

sup
y∈T
|∇u(τ, y)| dτ

for (s, t, x) ∈ [0, T ]2 ×T, (6)

but, since the bound on ‖∇u‖L∞ depends on ‖ξ(t)‖CD , it may depend on T > 0.
To show an uniform bound we first observe that the L∞ bound for the vorticity
(shown also in [7]) follows directly from (5) and it is independent of T :

‖ξ(t)‖L∞ ≤ ‖ξ0‖L∞e−χt + sup
t≥0
‖φ(t)‖L∞

1− e−χt

χ
.

We estimate the Dini-continuity of η = ξ eχt on [0, T ]. Observe that, for η we have

the representation formula η(t, x) = ξ0(U(0, t, x)) +
∫ t
0
φ(s, U(s, t, x)) eχs ds, and

‖η(t)‖L∞ ≤ ‖ξ0‖L∞ + sup
t≥0
‖φ(t)‖L∞

eχt − 1

χ
.

Moreover, we observe that [η(t)]CD = [ξ(t)]CDeχt, and we split it as follows:

[η(t)]CD :=

∫ 1

0

sup
|x−y|≤ρ

|η(t, x)− η(t, y)|dρ
ρ

≤
∫ 1

0

sup
|x−y|≤ρ

|ξ0(U(0, t, x))− ξ0(U(0, t, y))|dρ
ρ

+

∫ t

0

∫ 1

0

sup
|x−y|≤ρ

|φ(s, U(s, t, x))− φ(s, U(s, t, y))| eχs dρ
ρ
ds

=: B1 +B2.

(7)
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By making a change of variable by means of the unitary diffeomorphism U(0, t, x)
we have that

B1 ≤
∫ 1

0

sup
|x−y|≤ρ‖∇U(0,t,·)‖L∞

|ξ0(x)− ξ0(y)|dρ
ρ

≤
∫ 1

0

sup
|x−y|≤ρ

|ξ0(x)− ξ0(y)|dρ
ρ

+ 2‖ξ0‖L∞

∫ ‖∇U(0,t,·)‖L∞

1

dρ

ρ

≤ [ξ0]CD + 2‖ξ0‖L∞ log ‖∇U(0, t, ·)‖L∞ ,

and, by appealing to (6), we get

B1 ≤ [ξ0]CD + 2‖ξ0‖L∞

∫ t

0

‖∇u(s)‖L∞ds ≤ [ξ0]CD + 2C0‖ξ0‖L∞

∫ t

0

‖η(s)‖CD ds.

Concerning B2, by making the change of variables by means of U(s, t, x), we have

B2 ≤
∫ t

0

∫ 1

0

sup
|x−y|≤ρ‖∇U(s,t,·)‖L∞

|φ(s, x)− φ(s, y)|dρ
ρ

eχs ds

≤
∫ t

0

[φ(s)]CDeχsds+ 2‖φ(s)‖L∞

∫ t

0

∫ ‖∇U(s,t,·)‖L∞

1

dρ

ρ
eχsds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

log ‖∇U(s, t, ·)‖L∞eχsds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

log ‖∇U(s, t, ·)‖L∞eχsds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

∫ t

s

‖∇u(τ)‖L∞)eχsdτds.

Changing the order of integration in the last integral we have

B2 ≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

∫ τ

0

‖∇u(τ)‖L∞eχsdsdτ

≤ sup
t≥0

[φ(t)]CD
eχt

χ
+

2C0

χ
sup
t≥0
‖φ(t)‖L∞

∫ t

0

‖η(τ)‖CDdτ.

Collecting all the estimates and by defining Φ := sup
t≥0
‖φ(t)‖CD we arrive at

‖η(t)‖CD ≤ ‖ξ0‖CD +
2Φ

χ
eχt + 2C0

[
‖ξ0‖CD +

Φ

χ

] ∫ t

0

‖η(s)‖CD ds.

By using Gronwall lemma and by coming back to the variable ξ we get

‖ξ(t)‖CD ≤
[
‖ξ0‖CD +

2Φ

χ
− 2Φχ

χ2 − 2C0(Φ + ‖ξ0‖CDχ)

]
e
t

[
2C0(Φ+‖ξ0‖CDχ)

χ −χ
]

+
2Φχ

χ2 − 2C0(Φ + ‖ξ0‖CDχ)

which is uniformly bounded on [0 +∞[ if 2C0Φ + 2C0‖ξ0‖CDχ− χ2 < 0, that is if

χ > χ0 := C0‖ξ0‖CD +
√
C2

0‖ξ0‖2CD + 2C0Φ, ending the proof.
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We are now ready to proceed to the proof of the main result. The first step
consists in proving existence of weak solution defined for all t ∈ R. This is classically
obtained by constructing solutions of the following problems

∂tun + χun + (un · ∇)un +∇pn = f in ]− n,+∞[×T,

∇ · un = 0 in ]− n,+∞[×T,

un(−n) = 0 in T.

(8)

The results of the previous section show the following result.

Proposition 2. Under the hypotheses of Thm. 1.1, for χ >
√

2C0Φ the unique weak
solution of (8) satisfies un ∈ L∞(−n,+∞;V ) and curlun ∈ L∞(−n,+∞;CD(T)).

By extending un to zero for t < n and by standard compactness tools it follows

that un
∗
⇀ u in L∞(R;V ) where u is a weak solution to the dissipative Euler

equations on the whole line. The uniform bounds on ‖∇un‖L∞ imply also that, for
χ large enough

∃C2 = C2(f, χ) : sup
t∈R
‖∇u(t)‖L∞(T) ≤ C2 < +∞, (9)

With the above estimate at hand we can give an outline of an existence result for
almost-periodic solutions.

Sketch of the Proof of Thm. 1.1. The condition that f is S2(H)-almost-periodic
reads: for any sequence {rm} there exists a sub-sequence {rmk} and a function

f̃(t, x) such that

sup
t∈R

∫ t+1

t

|f(τ + rmk)− f̃(τ)|2dτ → 0.

As in [15, §4], we proceed by contradiction. Therefore, there is a weak solution u
to (1) and a sequence {hm} such that

sup
t∈R

∫ t+1

t

|f(τ + hm)− f̃(τ)|2dτ → 0,

and there exist three sequences {tk}, {hmk}, {hnk} and a positive constant δ0 > 0
such that ∫ tk+1

tk

|u(s+ hmk)− u(s+ hnk)|2 ds ≥ δ0, ∀k ∈ N. (10)

Since f is S2(H)-almost-periodic, there exist f∗(x, t) such that

sup
t∈R

∫ t+1

t

|f(τ + tk + hmk)− f∗(τ)|2dτ → 0,

sup
t∈R

∫ t+1

t

|f(τ + tk + hnk)− f∗(τ)|2dτ → 0.

By defining the maps uk1(s) := u(s + tk + hmk) and uk2(s) := u(s + tk + hnk),
inequality (10) can be rewritten as follows

δ0 ≤
∫ tk+1

tk

|uk1(s− tk)−uk2(s− tk)|2ds =

∫ 1

0

|uk1(s)− uk2(s)|2 ds. (11)
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Using the a priori bounds on u we can extract a sub-sequence {ukli } of {uki }, i = 1, 2,
strongly convergent to ui in L2

loc(R;H), for i = 1, 2, respectively. Hence, we can
pass to the limit in (11) to get

δ0 ≤ C
∫ 1

0

|u1(s)− u2(s)|2ds. (12)

By studying the difference u1 − u2 on the interval [t0, 1], with t0 < 0, one can show

(by using (9)) that
∫ 1

0
|u1(s) − u2(s)|2 ds can be made smaller than any positive

constant, by taking t0 sufficiently small. This shows a contradiction and ends the
proof.
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