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Abstract

In this work we study the demixing of ternary liquid mixtures. Our theo-

retical model follows the standard diffuse interface model, where convection

and diffusion are coupled via a body force, expressing the tendency of the

mixture to minimize its free energy. This driving force induces a material

flux which, in most cases, is much larger than that due to pure molecular

diffusion. Here we model the behavior of a very viscous polymer melt, so

that the Peclet number, expressing the ratio between convective and diffu-

sive mass fluxes, is small. Two examples are presented, describing the phase

separation of ternary mixtures in two and three phases, respectively, follow-

ing an initial quench to an unstable state of their phase diagram. In the

first case, as expected, we see that the growth of the domain size follows the

well known diffusion-driven scaling, R(t) ∝ t1/3. On the other hand, in the

second example, the domain size growth follows the usual t1/3 scaling until

the symmetry among the three phases breaks down and the domain size of
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two of the three phases decrease sharply. After that point, the morphology of

the system becomes more regular, almost crystal-like, and the three phases

start to grow again, with the same growth rate R(t) ∝ tn, with n = 0.11.

Keywords: Phase Separation, Diffuse Interface Model, Ternary Liquid

Mixture

1. Introduction

The diffuse interface model was developed originally to describe near-

critical behavior of single-component fluids and partially miscible binary

mixtures (Cahn and Hilliard, 1958, 1959; Hohenberg and Halperin, 1977;

Lowengrub and Truskinovsky, 1998; Vladimirova et al., 1999), and it has been

widely used to study many kinds of physical phenomena of binary mixtures

such as mixing of viscous liquids (Vladimirova and Mauri, 2004), droplet

dynamics (Yue et al., 2004) and structure development of polymer blends

(Prusty et al., 2007; Keestra et al., 2011).

Despite many industrial and biochemical processes involve mixtures with

three or more components, only a few theoretical and numerical works have

studied these systems. In particular, Huang et al. (1995) analyzed numer-

ically the dynamics of phase separation of ternary alloys (i.e. where con-

vective effects can be neglected) into two and three phases by solving the

nonlinear spinodal decomposition equations in two dimensions. Examining

the dynamical scaling and the growth laws for the late stages of separa-

tion, they saw that the growth law R(t) ∝ t1/3 is always obeyed, despite

the fact that the self-similar regime is achieved very slowly in ternary sys-

tems. Later, Kim et al. (2004); Kim and Lowengrub (2005) developed a full
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Navier-Stokes/Cahn-Hilliard code to model the phase mixing/demixing and

the Rayleigh instability of ternary mixtures using a diffuse interface model in

the low Reynolds number regime. There, applying boundary integral meth-

ods, the effects of surfactants on drop dynamics, tip-streaming and drop de-

formation have been investigated. Phase-field ternary mixture models have

also been of interest for modeling many different physical phenomena, for

exmaple, solidification and microstructure evolution in ternary alloy systems

(Kobayashi et al., 2003), mutual diffusion effects in partially miscible poly-

mer blends (Tufano et al., 2010), and surfactant-induced emulsion coarsening

(Lamorgese and Banerjee, 2011).

In this work, starting from the already existent results for two compo-

nent systems (Lamorgese and Mauri, 2005), we develop a general model of

ternary mixtures, in which the Navier-Stokes equation is coupled to general-

ized Cahn-Hilliard equations for the phase variables. Compared to previous

models, the present one has the advantage of simplicity and thermodynamic

consistency, without employing any ad hoc term that cannot be directly re-

lated to macroscopic, easily measured parameters.

2. The governing equations

2.1. Multi-component mixtures at equilibrium

Consider a homogeneous mixture of N species Ak (k = 1, 2 . . .N), with

molar fractions xk, kept at temperature T and pressure P . For sake of sim-

plicity, in our model we assume that the molecular weights, specific volumes

and viscosities of all species are the same, namely Mk = Mw, V̄k = V̄ and

ηk = η, for all species k, so that molar, volumetric and mass fractions are all
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equal to each other, and the mixture viscosity is composition-independent.

The equilibrium state of this system is described by the “coarse-grained” free

energy functional, that is the molar Gibbs energy of mixing, ∆gth,

∆gth = gth −
N∑

k=1

gkxk, (1)

where gth is the energy of the mixture at equilibrium, while gk is the molar

free energy of pure species Ak at temperature T and pressure P . The free

energy ∆gth is the sum of an ideal part ∆gid and a so-called excess part gex,

with

∆gid = RT
N∑

k=1

xk log xk, (2)

where R is the gas constant, while the excess molar free energy can be ex-

pressed as,

gex =
1

2
RT

N∑

i,k=1

Ψikxixk, (3)

where Ψik are functions of T and P , with Ψik = Ψki and Ψii = 0. This

expression can be generally derived by considering the molecular interactions

between nearest neighbors or summing all pairwise interactions throughout

the whole system (Lifshitz and Pitaevskii, 1984). As shown by Mauri et al.

(1996), Eq. (3) it can also be derived from first principles, assuming that the

pairwise forces between identical molecules, Fi,i are all equal to each other and

larger than the pairwise forces among unequal molecules, Fi,j (with i 6= j),

i.e. Fi,i = Fj,j > Fi,j, obtaining an expression for Ψij which depends on

(Fi,i − Fi,j). In the following, we shall assume that P is fixed, so that the

physical state of the mixture at equilibrium depends only on T and xi.

Now, it is well-known that any variation of the molar free energy can be
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written as (Prausnitz et al., 1986),

dgth = RT

N∑

i=1

µth
i dxi, (4)

where µth
i denotes the chemical potential of species Ai in solution, i.e.,

µth
i =

1

RT

∂(cgth)

∂ci
, (5)

with ci = cxi denoting the mole densities, that is the number of moles per

unit volume, of species Ai, and c =
∑

ci is the total mole density. In our

case we obtain:

µth
i =

gth

RT
+ log xi +

N∑

k=1

Ψik (1− xi) xk −

N∑

j,k 6=i=1

Ψjkxjxk. (6)

Since free energy is an extensive quantity, it is easy to show that chemical

potentials represent the amount of free energy due to each species, i.e.

gth = RT
N∑

i=1

µth
i xi. (7)

Therefore, comparing Eqs. (4) and (7), we obtain the Gibbs-Duhem relation,

N∑

i=1

xidµ
th
i = 0. (8)

Considering that
∑N

i=1 xi = 1, we see that Eq. (4) can be rewritten as:

dgth = RT

N−1∑

i=1

µth
iNdxi, (9)

where µth
ij ≡ µth

i −µth
j . Accordingly, we see that the quantities xi and RTµth

iN

are thermodynamically conjugated, i.e. RTµth
iN = ∂geq/∂xi. In fact, applying

this expression, we obtain:

µth
ij = ln

xi

xj
+Ψij (xj − xi) +

N∑

k 6=i,j=1

(Ψik −Ψjk)xk, (10)
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where, by definition, µth
ij ≡ µth

ik − µth
jk and µth

ij = −µth
ji . The same result could

be obtained directly from Eq. (6).

2.2. Non-local terms

In order to take into account the effects of spatial inhomogeneities, follow-

ing Cahn and Hilliard (1958, 1959), we assume that the total, or generalized,

free energy g̃ is the sum of an equilibrium part and a non-local part,

g̃ = gth + gnl, (11)

where the latter is given by the following expression:

gnl =
1

4
RTa2

N∑

i=1

(∇xi)
2 . (12)

Here a represents the typical length of spatial inhomogeneities in the compo-

sition which, as shown by van der Waals (1894), is proportional to the surface

tension between the two phases. Note that, considering that
∑N

i=1 xi = 1,

this expression can also be written as:

gnl = −
1

2
RTa2

N∑

i 6=j=1

∇xi∇xj =
1

2
RTa2

N−1∑

i=1

(
∇xi

N−1∑

j≥i

∇xj

)
. (13)

Now, chemical potentials can be generalized as follows:

µ̃i =
1

RT

δ (cg̃)

δci
= µth

i + µnl
i , (14)

where µth
i is defined in Eq. (5), while,

µnl
i = −

1

RT
∇ ·

(
∂(cgnl)

∂∇ci

)
. (15)
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Consequently we obtain:

µnl
i =

a2

2
∇ ·

[
− (1− xi)∇xi +

N∑

j 6=i=1

xj∇xj

]
. (16)

It can be shown that, being gnl a quadratic function of ∇xi, we obtain:

2gnl =

N∑

i=1

µnl
i xi. (17)

In addition,

−∇gnl =

N∑

i=1

µnl
i ∇xi. (18)

Consequently,
N∑

i=1

xi∇µnl
i 6= 0, (19)

showing that the Gibbs-Duhem relation cannot be extended to the non local

part of the free energy.

Finally, since we are mostly interested in the chemical potential differ-

ences, we have:

µnl
ij = −

a2

2
∇2 (xi − xj) . (20)

In particular, for ternary mixtures, we obtain:

µ̃12 = ln
x1

x2

+Ψ12 (x2 − x1) + (Ψ13 −Ψ23) x3 −
a2

2
∇2 (x1 − x2) , (21)

µ̃23 = ln
x2

x3

+Ψ23 (x3 − x2) + (Ψ21 −Ψ31) x1 −
a2

2
∇2 (x2 − x3) , (22)

µ̃31 = ln
x3

x1

+Ψ31 (x1 − x3) + (Ψ32 −Ψ12) x2 −
a2

2
∇2 (x3 − x1) . (23)

Note that, by definition, µ̃12 ≡ µ̃13 + µ̃32 and µ̃ij = −µ̃ji.
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2.3. The equations of motion

Consider a mixture of N components, where the k-th species has density

ρk, volume fraction φk and velocity vk. The mass balance equation for each

component can be written as:

∂(ρkφk)

∂t
+∇ · (ρkφkvk) = 0. (24)

Now, define the mixture density and the mixture velocity as the following

mass-average quantities,

ρ =
N∑

k=1

ρkφk. (25)

and

v =
1

ρ

N∑

k=1

φkρkvk =

N∑

k=1

ckvk, (26)

where ck = φkρk/ρ is the mass fraction of the k-th component. Summing

equation (24) for all k’s, we trivially obtain the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (27)

In the following, we assume that all components have the same density ρ

and molecular weight Mw, so that ck = φk = xk represent the mass, volume

and molar fractions of the k-th component. Accordingly, the mixture is

incompressible, i.e. Eq. (27) reduces to

∇ · v = 0, (28)

while the mass concentration equations becomes:

ẋk =
∂xk

∂t
+ v · ∇xk = −∇ · Jk, (29)
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where the dot indicates the advection derivative with respect to the mixture

velocity v and

Jk = xk (vk − v) (30)

is the volumetric diffusive flux, depending on the the velocity of the k-th

component with respect to the mean, with
∑

Jk = 0. Obviously, since
∑

ck = 1, only N − 1 of these equations are independent.

Equations (28) and (29) must be couple with the Navier-Stokes equation,

ρv̇ +∇p = ∇ · τ + fφ, (31)

where τ is the viscous stress tensor, while fφ is the Korteweg reversible force,

fφ =
ρRT

Mw

δg̃

δr
=

ρRT

Mw

N∑

i=1

(µ̃i∇xi) . (32)

Note that, since µ̃i = µth
i + µnl

i and considering that

∑
µth
i ∇xi = ∇gth, (33)

after redefining the pressure as p−ρRTgth, the above equation can be rewrit-

ten replacing µ̃i with µnl
i . Now, considering that

∑
xi = 1, we finally obtain:

fφ =
ρRT

Mw

N−1∑

i=1

(
µnl
iN∇xi

)
. (34)

2.4. The constitutive equations for the diffusive fluxes

Here, for sake of simplicity, we assume that the viscosities of all compo-

nents are the same, so that the viscous stress in Eq. (31) can be written:

τ = η
(
∇v + (∇v)†

)
, (35)

where η is the uniform viscosity of the mixture.
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As for the material diffusive fluxes, generalizing the two component case,

we use the following constitutive relations,

Ji = −

N∑

j=1

Dijxixj∇µ̃ij, (36)

here Dij = Dji and µij = µi − µj, so that
∑

Ji = 0 identically, as it should.

Note that, had we assumed the following constitutive relation,

Ji = −Dxi∇µi, (37)

the sum of the diffusive fluxes Ji would not be zero, as the Gibbs-Duhem

relation is not satisfied by the non-local part of the chemical potential.

In particular, for ternary mixtures, assuming that the diffusion coefficients

are all equal, we obtain:

J1 = −Dx1x2∇µ̃23 −Dx1 (1− x1)∇µ̃13, (38)

J2 = −Dx1x2∇µ̃13 −Dx2 (1− x2)∇µ̃23. (39)

Note that this makes the concentration equation a fourth-order nonlinear

advection diffusion equation, which is a generalization of the classical Cahn-

Hilliard equation, used to describe the phase separation of binary mixtures.

The above equations can be re-scaled defining:

r̂ =
r

a
; t̂ =

t

(a2/D)
; v̂ =

v

V
; p̂ =

p

ηV/a
, (40)

where V is a characteristic velocity, which can be estimated through Eqs.

(31) as V ≈ fφa
2/η, with fφ ≈ ρRT/(aMw). At the end, we obtain the

following non-dimensional system of equations, which is the ternary version

of the model H, in the nomenclature of Hohenberg and Halperin (1977),
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N−1
Sc

∂v

∂t
+NRev · ∇v = −∇p +∇2v + (µ̃13∇x1 + µ̃23∇x2) ; (41)

∇ · v = 0; (42)

∂x1

∂t
+NPev · ∇x1 = ∇ · [x1x2∇µ̃23 + x1 (1− x1)∇µ̃13] ; (43)

∂x2

∂t
+NPev · ∇x2 = ∇ · [x1x2∇µ̃13 + x2 (1− x2)∇µ̃23] , (44)

where hats have been omitted for simplicity, while µ̃13 and µ̃23 are given by

Eq. (22) and (23). Here, NRe = V a/ν is the Reynolds number, while NPe =

V a/D = NReNSc defines the capillary Peclet number, with NSc = ν/D

denoting the Schmidt number. Here, we will consider the case where NPe =

0.05 and NSc = 1011, corresponding to a typical value of polymer melts,

where a ≈ 10−5cm, D ≈ 10−9cm2/s, ν ≈ 102cm2/s, Mw ≈ 104g/gmole.

Clearly, in this case, Eq. (41) reduces to a creeping flow equation, as its LHS

can be neglected.

3. Numerical results

Physically, we consider an instantaneous quench bringing the mixture

from its single-phase, stable and homogeneous initial state to an unstable

final state, corresponding to a point in its phase diagram lying within the

coexistence curve.

Two types of ternary mixtures were considered, corresponding to mixtures

that phase separate in two and in three coexisting phases. In the following,

these two cases will be treated separately.
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3.1. Numerical methods

The two second-order differential equations representing the chemical po-

tential and the concentration equation are solved in a coupled way for both

phases. For the temporal discretization a first-order Euler implicit scheme

was employed, with a 4 × 10−3 non-dimensional time step. The nonlinear

terms in the chemical potential equation and momentum balance equation

were linearized by a standard Picard method. A second-order finite element

method was used for spatial discretization of the set of equations, using a

square periodic domain, with 40× 40 elements, assuming bi-periodic bound-

ary condition.

Details about the iteration scheme can be found in Keestra et al. (2003)

and Khatavkar et al. (2006). The flow problem was solved using the velocity-

pressure formulation and discretized by a standard Garlekin finite element

method. Taylor-Hood quadrilateral elements with continuous pressure, that

employ a biquadratic approximation for the velocity and a bilinear approx-

imation for the pressure, are used. The resulting discretized second-order

linear algebraic equation was solved using a direct method based on a sparse

multifrontal variant of Gaussian elimination (HSL/MA41). (Amestoy and

Duff, 1989; Amestoy and Puglisi, 2002)

The average domain size is calculated using a correlation function defined

as

G(R, t) =
1

Nn

Nn∑

i=1

(xk(ri +R, t)− xav) · (xk(ri, t)− xav), (45)

where Nn is total number of nodal points, ri and R are the lattice vectors,

and xav is the average molar fraction of species k. Radial averaging is carried
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out using a Brillouin zone function to eliminate any directional effects

g(R, t) =
1

Nr

∑

R−∆R/2<|R|<R+∆R/2

G(R, t), (46)

where Nr is the number of nodal points used in the averaging. The first

intersection of the correlation function with the R-axis is used as a measure

for the domain size (Prusty et al., 2007).

3.2. Two-phase mixture

Assume that Ψ12 = 4 and Ψ13 = Ψ23 = 0, corresponding to the triangular

phase diagram of Fig. 1. Here, the line 1−2 represents an almost immiscible

binary mixture, with equilibrium points having composition (x1; x2) = (x; 1−

x) and (1−x; x), with x = 0.021 (we find that from Eq. (21), imposing that

µ12 = 0, with x1 and x2 uniform, so that there is no contribution from

the non-local part; the additional solution, x = 1/2, is unstable.) As we

add the 3-component, which is miscible with both 1 and 2, the mixture

becomes more and more miscible, until we reach the critical point C at

(x1 = x2 = 0.224; x3 = 0.552) (we find that imposing that at the critical

point x1 = x2 = x, so that x3 = 1−2x, and then imposing that the chemical

potential differences are all zero.) Note that because of symmetry all tie lines

are parallel to 1− 2 axis.

Initially, the mixture is assumed to be homogeneous with x1 = x2 = 0.35

and x3 = 0.3, corresponding to a state well inside the unstable region of

the phase diagram. When a small random perturbation is superimposed, as

shown in Figs. 2-3, we see that the mixture separates into two phases, one

rich of component 1 and the other rich of component 2, while component 3,

being equally miscible within 1 and 2, distributes homogeneously within the
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mixture. As one should expect, the dynamics of phase separation in this case

is identical to that for binary mixtures and therefore all the comments that

were made for binary mixtures can also be applied here.(Huang et al., 1995;

Lamorgese and Mauri, 2008) In particular, the typical size R of single phase

domains grows with time as R(t) ∝ tn, where the power-law scaling exponent

n = 1/3 can be obtained imposing that the capillary force is balanced by

the viscous force. The agreement shown in Fig. 3 can be considered as an

indication that our theoretical model of ternary mixtures is sound and also

as a validation of the numerical scheme.

3.3. Three-phase mixture

Consider a symmetric ternary mixture, Ψ12 = Ψ13 = Ψ23 = Ψ = 4.

As shown in Fig. 4, at the center of the triangular phase diagram there in

a smaller triangle (called tie triangle), whose three vertices represent the

composition of three coexisting phases, α in point A, β in point B and γ in

point C (Huang et al., 1995). If x is the distance between A and the 1 − 2

axis (and between B and the 1− 3 axis as well as between C and the 2 − 3

axis, by symmetry), the compositions of the three coexisting phases are:

xα = (1− 2x, x, x) ; xβ = (x, 1− 2x, x) ; xγ = (x, x, 1− 2x) , (47)

with x < 1/3. Then, from Eq. (21)-(23), we see that all thermodynamic

chemical potential differences in A, B and C are identically zero, which gives

us the following relation:

µα
12 = ln

1− 2x

x
+Ψ(3x− 1) = 0. (48)

(all the other relations reduce to this one or are identically satisfied) So,

assuming that we have three phases, knowing Ψ, we can find x, i.e. the
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composition of the three coexisting phases. Here, we see that the composition

x = 1/3 always satisfies this expression. However, this correspond to a

point of stable equilibrium only for Ψ < 8/3. Clearly, we see that when

Ψ = 8/3 the three points A, B and C converge at center of the triangle,

while when Ψ ≫ 8/3 they end up at the three vertices 1, 2 and 3 of the

phase diagram, as it should be. In our case, with Ψ = 4, we find x = 0.023,

corresponding to xα = (0.954; 0.023; 0.023); xβ = (0.023; 0.954; 0.023); xγ =

(0.023; 0.023; 0.954).

Initially, the mixture is assumed to be homogeneous with x1 = x2 =

x3 = 1/3, corresponding again to an unstable state. When a small random

perturbation is superimposed, as shown in Figs. 5-7, we see that the mixture

separates into three coexisting phases which, initially, grow together, with

the usual diffusion-driven t1/3 growth law. Unexpectedly, though, at about

t = 150, the perfect symmetry among the three components breaks down,

as phase γ continues to separate quickly, as seen in Fig. 7, while the other

two phases separate later, as their domains appear to shrink sharply (see

Figs. 5d-e and Figs. 6d-e). In addition, the morphology of the system from

this point on becomes more regular, almost crystal-like, as if the different

phases were forced to orient themselves at certain angles with respect to

each other. Perhaps because of that (but the reason of this behavior should

be further investigated), after the symmetry break the domain size of all

three phases grow following the same power law, R(t) ∝ tn, where n = 0.11

(see Fig. 8). As this phenomenon has not been observed before, further

investigation is required to confirm and better understand it.
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4. Conclusions

In this study we have presented phase separation of ternary liquid mix-

tures in a bi-periodic square domain. The theoretical model for three com-

ponent system is developed by extending the existing two component model,

where the Navier-Stokes equation is coupled with the Cahn-Hilliard equa-

tions of the phase variables. A second-order finite element method is used

to discretize the set of equations, and the nonlinear terms are linearized by

a standard Picard method.

We study two examples of the phase separation of ternary mixtures which

are initially quenched to an unstable state of their phase diagram, assum-

ing that the process is diffusion-driven, so that the Peclet number is small

and the Reynolds number is negligibly small. In the first example, two com-

ponents are almost immiscible with each other while the third component

is equally miscible with the others, so that the system separates into two

phases. In this case, after the initial quench, phase separation is driven by

the two immiscible components, while the third component is distributed

homogeneously within the mixture, so that the growth of the domain size

follows predictably the well known diffusion-driven scaling, R(t) ∝ t1/3. In

the second example, the ternary mixture is perfectly symmetric and consists

of three components, which are mutually partially miscible. In this case, af-

ter the initial quench, the domain size growth follows the usual , t1/3 scaling,

until the symmetry among the three phases breaks down and the domain size

of two of the three phases decrease sharply. After that point, the morphology

of the system becomes more regular, almost crystal-like, and the three phases

start to grow again, with the same growth rate R(t) ∝ tn, with n = 0.11.
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As this result is new and quite unexpected, further studies are required to

confirm it, providing also an understanding of this complex phenomenon.
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Figure 1: Phase diagram for Ψ12 = 4, Ψ23 = Ψ31 = 0.

20



Figure 2: Evolution of x1 for two-phase mixture: (a) t = 120, (b) t = 160, (c) t = 320, (d)

t = 480, (e) t = 640, and (f) t = 800.
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Figure 3: Growth of domain size in two-phase case.

R

t

Figure 4: Phase diagram for Ψ12 = Ψ23 = Ψ31 = 4.

22



Figure 5: Evolution of x1 for three-phase mixture: (a) t = 24 , (b) t = 72, (c) t = 120, (d)

t = 136, (e) t = 200, and (f) t = 400.
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Figure 6: Evolution of x2 for three-phase mixture: (a) t = 24, (b) t = 72, (c) t = 120, (d)

t = 136, (e) t = 200, and (f) t = 400.
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Figure 7: Evolution of x3 for three-phase mixture: (a) t = 24, (b) t = 72, (c) t = 120, (d)

t = 136, (e) t = 200, and (f) t = 400.
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Figure 8: Growth of domain size in three-phase case.
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