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Ground state of trapped interacting Bose-Einstein condensates
by an explicit imaginary-time algorithm

M. L. Chiofalo,1 S. Succi,2 and M. P. Tosi1
1Istituto Nazionale di Fisica della Materia and Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa, Italy

2Istituto Applicazioni Calcolo ‘‘M. Picone,’’ Via del Policlinico 137, I-00161 Roma, Italy
~Received 20 April 2000!

We show that an explicit time-marching method previously developed for the numerical study of the
dynamics of Bose-Einstein condensates can be profitably adapted to the numerical determination of their
ground state. After reduction to a one-dimensional model, we first reproduce and test known results on
condensates in harmonic traps and then determine the ground state of a condensate in a harmonically bound
optical lattice in the range of parameters which are relevant to existing experiments.

PACS number~s!: 02.60.2x, 03.75.Fi, 32.80.2t, 42.50.2p
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion ~BEC! of trapped atomic vapors@1–3# has spurred a
great deal of experimental, theoretical, and computatio
activity, all aimed at gaining a deeper insight into the fas
nating behavior of this state of matter. Computational me
ods have been developed to analyze both the dynamica
havior and the ground-state properties of Bose-Eins
condensates, which are based on the solution of the ti
dependent and stationary Gross-Pitaevskii equation~GPE!
@4,5#, respectively. Typically, these two scenarios a
handled with distinct numerical techniques; implicit and
explicit time-marching schemes for the former, and eig
value and/or variational solvers for the latter. However, it
well known that minimization procedures based on~ficti-
tious! dynamics can often provide the most effective opti
also to compute ground-state properties of quantum syst
@6,7#.

Besides the intrinsic interest of computing the grou
state of BEC matterper se, the availability of ground-state
numerical solvers is also important for BEC dynamics b
cause the dynamic behavior of BEC matter can be very s
sitive to initial conditions.

The implementation of numerical methods for groun
state calculations on one-dimensional systems is a hig
developed subject in computational condensed matter@7#.
These methods rely mostly on clever techniques to diago
ize the Hamiltonian which, in some cases, may even lea
exact solutions. However, owing to the nonlinearity built
the GPE, the computation calls for the solution of a wh
sequence of linear~ized! problems, each requiring its ow
diagonalization. Under these conditions, a dynamic pro
dure may be more efficient.

Many such dynamic~minimization! procedures are agai
available from Monte Carlo simulation techniques. For e
ample, the basic idea of diffusion Monte Carlo@8# is to for-
mulate the Schro¨dinger equation in imaginary time so as
turn it into a real-time diffusion equation whose steady-st
yields the ground-state of the corresponding quantum
tem. For the case of single-particle equations, such as
GPE, the solution of the diffusion problem does not ev
PRE 621063-651X/2000/62~5!/7438~7!/$15.00
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require any expensive Monte Carlo procedure, but can
carried out by means of standard grid methods. Amo
these, perhaps the most popular choice is finite differenc
of space variables as combined with semi-implicit~Cranck-
Nicholson! time marching @9#. The key points of semi-
implicit methods are~i! freedom from stringent stability con
straints on the time-step size and~ii ! the attendant capability
to march in large steps to steady state. The price for thi
the need to solve a linear algebraic problem at each t
step, in principle a rather expensive computational task
this paper we present an alternative method based on the
of explicit algorithms. We shall not make any point of sup
rior efficiency as compared with implicit methods~such a
point can be made for genuinely time-dependent metho!
but just highlight the simplicity, flexibility, and ease-of-us
afforded by explicit methods at a reasonable computatio
efficiency.

II. MODEL

In this paper we shall be interested in effectively on
dimensional~1D! BEC systems. Despite their mathematic
simplicity, these systems bear nonetheless a signific
physical interest, mainly in view of experiments on the tran
port behavior of condensates in elongated optical traps wh
are periodic in only one direction of space@10#. Such optical
lattices can also give access to the spin degrees of freed
which are indeed frozen in magnetic-type traps.

At zero temperature the dynamics of a dilute trapped B
condensate is well described by the time-dependent GPE
the condensate wave functionC(r ,t) @4,5#

i\
]C~r ,t !

]t
5S 2

\2

2M
¹ r

21Uext~r !1UI uC~r ,t !u2DC~r ,t !.

~1!

Here, M is the atomic mass,U154p\2aN/M is the cou-
pling strength, andUext is the external potential,a being the
scattering length, andN the number of particles in the con
densate. In what followsUext(r ) is due either to a harmonic
magnetic trap or to an optical lattice. In the former case

Uext,h~r ,z!5 1
2 Mv2~r 21e2z2!, ~2!
7438 ©2000 The American Physical Society
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e5vz /v being the aspect ratio. In the latter case@10#,

Uext,l~r ,z!5Ul
0@12exp~2r 2/r lb

2 !cos2~2pz/l!#, ~3!

whereUl
0 is the well depth,r lb is the transverse size, and th

wavelengthl yields the lattice periodd5l/2. Finally, the
normalization condition for the wave function
* uC(r ,t)u2dr51.

An effective model for the mean-field interaction in th
1D GPE can be derived by requiring that the chemical
tential m in 1D be equal to the chemical potential of th
three-dimensional~3D! system. This model has been used
the context of harmonic magnetic traps@11,12# and has been
shown to be best performing in the case of optical lattic
where the dynamical simulation of the emission of coher
matter wave pulses from a condensate under the actio
gravity is found to yield quantitative agreement with full 3
calculations@13#.

In brief, the reduction to a 1D model turns Eq.~1! into the
following 1D equation:

i\
]c~z,t !

]t
5S 2

\2

2M

]2

]z2 1uext~z!1uI uc~z,t !u2Dc~z,t !.

~4!

Here uext(z) is the external one-dimensional potential a
uI54p\2ãN/M , ã[ag being a renormalized coupling pa
rameter with the dimensions of an inverse length.

In the case of harmonic confinement@uext,h (z)
5Mv2e2z2/2# one obtains@11,12#

gh5S 5

2p D 3/5

~24peNa/Sl !
22/5/Sl

2, ~5!

with S15(\/2Mv)1/2. In the case of optical lattice confine
ment @uext,l(z)5Ul

0 sin2(2pz/l)# we find @13#

g l5
1

pr lb
2 1

Ul
02m

4ER

1

eaN
I ~m!, ~6!

ER5h2/(2Ml2) being the recoil energy. The explicit ex
pression for the positive quantityI (m) in Eq. ~6! is

I ~m!5E
0

f ~m!

w tan~w/2!dw.0, ~7!

with f (m)5arccos@122m/Ul
0#.

III. NUMERICAL METHOD

Our numerical method is based on an imaginary-time f
mulation of the effective 1D GPE~4!. By a Wick rotation

t→t52 i t ~8!

the 1D GPE turns into a diffusion equation with absorptio
emission due to the potential term. In solving this equat
we use an explicit synchronous Visscher scheme@14#. Since
the details of this scheme have been published elsew
@15#, in the following we shall only recall the basic step
The method evolves the real and imaginary parts of the w
function c5R1 iI according to the relations] tR5HI and
-

s,
t
of

-

/
n

re

e

] tI52HR, whereH5T1V is the Hamiltonian consisting
of kinetic plus potential energy operators.T5(\2/
2M )(]2/]z2) and V5uext1gucu2, with g58pãN. Under
the Wick rotation, this system turns into

]tR52HR ~9!

and

]tI52HI, ~10!

showing that the real and imaginary parts of the wave fu
tion evolve independently according to a diffusion equat
with a ~nonlinear! source and/or sink term.

The diffusion system can be evolved according to
same scheme previously used for the real-time evolu
equations@15#. This consists of a centered finite-differencin
for the spatial variable and an explicit time marching for t
variable t. The result is the following finite-difference
scheme:

Rj
k115Rj

k2122Dt~T1Vk!Rj
k ~11!

and

Ij
k115Ij

k2122Dt~T1Vk!Ij
k , ~12!

whereTc j
k[(c j 11

k 22c j
k1c j 21

k )/(Dz)
2 andVkc j

k[Vj
kc j

k .
The scheme is initiated with a single Euler-forward st

@16# from k50 to k51 using Eq.~11! with a time step
Dt:Rj

152Dt(T1V0)Rj
0 and Ij

152Dt(T1V0)Ij
0. Once

level k51 is available, the time-marching can proceed
steps of 2Dt as indicated in Eqs.~11! and~12!. We summa-
rize in the following the main properties of this numeric
scheme.

A. Unitarity and relaxation

The real-time formulation of this algorithm can be show
@15# to preserve unitarity at each discrete timetk , provided
that ~i! the discrete probability density at the space locat
~j! and timek11 is defined asPj

k11[Rj
k11Rj

k1Ij
k11Ij

k ,
and ~ii ! the boundary conditions are such as to annihil
surface terms. This is indeed the case of our applicatio
since we impose periodicity alongz. For the imaginary-time
version, the normn is obviously decaying in time due to th
potential term. This decay can be expressed as follows:

n~t![E uc~z,t!u2dz5(
l>0

pl~0!e2v lt, ~13!

wherepl(0)5pl(t) is the projection upon thel th eigenstate
of energyEl . The quantitye(t)[*c* Hcdz follows a simi-
lar decay:

E c* Hc dz5
1

n~t! (l>0
pl~0!Ele

2Elt/\. ~14!

It is an easy matter to show that for a given spectrum
eigenvalues$El%, the average energy^E(t)&5e(t)/n(t) de-
cays monotonically in time till the steady state is reach
n(t)→p0e2E0t/\, e(t)→p0E0e2E0t/\, and ^E(t)&→E0 .
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The ground-state energy can then be read off from
steady-state value of the specific energy ast→`.

As a final comment, we notice that in order to maintain
reasonable signal-to-noise ratio it is a good practice to
store unitarity@n(t)51# every few steps during the simula
tion. In actual practice, we have found it convenient to ren
malize the wave function at each time step. This implie
small computational overhead but ensures optimal signa
noise ratio.

B. Stability

Following a standard procedure@17#, in order to appraise
the stability of the discrete evolution operator~11! and~12!,
we decompose the solution in plane waves exp@i(xzj2Vtk)#
and require that the resulting dispersion relation does
give rise to any time-growing~spurious! solutions.

This yields a stability limit in the following general form

Dt~ uC1D/~Dz!21C2VM /\u!,1, ~15!

whereD[\/2M is the quantum diffusivity,VM the maxi-
mum value of the potential, andC1 ,C2 two numerical con-
stants which for the case in point take the valuesC152 and
C251/2. The above relation identifies the largest accepta
dimensionless time stepDtc as

Dtc5
~Dz!2

C1D1C2~VM /\!~Dz!2 . ~16!

This expression shows that interaction potentials below
numerical thresholdVM,VD[(C1 /C2)L do not affect the
standard Courant-Friedrichs-Lewy conditionDt;(Dz)2 for
the diffusion equation. This is a severe bound since it for
the time step to decrease with the square of the grid spac1

AboveVD , the time step is basically controled by the pote
tial alone,Dt,\/(C2VM) independently of the mesh size
This regime implies limitations on the physical paramet
characterizing the interaction potential and in particu
forces the time step to scale inversely with the number
bosons.

It is readily checked that for typical values of curre
experimental interest, i.e.,N;106 and ã;1025 in dimen-
sionless units~see Sec. IV! the time step in the numerica
simulation is diffusion limited. In fact, leaving the extern
potential aside for simplicity, the conditionVM,VD yields

N,Nmax5
1

2p

Sl
2

~Dz!2

1

ãSl
, ~17!

where Sl is the typical length scale~see Sec. IV!. For the
typical valueDz/Sl;1022, this yieldsNmax;108. In order
to secure a further margin of stability, we have adopted
empiricalsafety factorby keeping the actual time step co
sistently below the marginal threshold, typically by a fac
of about 0.2.

1Such quadratic constraint can be brought down to a linear de
dence by using lattice kinetic methods@18#. However, the latter are
not straightforwardly extended to non-Cartesian geometries.
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IV. SIMULATION RESULTS

We use the numerical scheme presented in the prev
section to calculate the ground state of 1D BEC’s trapped
two different geometries. We first recover known results
condensates in harmonic potentials, which are related to
very first experiments on BEC@1–3#. We then turn to an
original problem, which refers to the ground state of a co
densate in an optical lattice, related to the experiment
Anderson and Kasevich@10#.

The whole series of runs refers to atoms of87Rb, whose
scattering length isa5110 Bohr radii. As to the optical lat-
tice parameters, we takel5850 nm andr lb580mm from
the experiment. The typical height of the barrier in the e
periment is Ul

051.4ER . Finally, we adopt the unitsSl

5A\/2Mv, SE5\v, and St51/v for length, energy, and
time, to turn Eq.~4! into a dimensionless form.

A. Harmonic potential

For simplicity, we treat here the case of an isotropic h
monic potentialuex,h with e51. Besides their usefulness a
test cases, there is new experimental activity in produc
spherical traps@19#. Isotropic geometries are theoretical
interesting in view of the effects that the reduced avalabi
of states has on the damping mechanism of the conden
and noncondensate excitations@19#. We choose the initial
guess for the imaginary-time evolution in the form of a no
minimal Gaussian wave packetc(z)}exp@2Mṽ(z
2z0)

2/(2\)# with ṽ5v/2. In the absence of the nonlinea
term in Eq. ~4!, such a wave packet would relax to th
ground state of the harmonic oscillator, characterized byṽ
5v. As self-interactions are switched on, the ground st
takes the form of an ‘‘interpolate’’ between a noninteracti
Gaussian~in the tail of the distribution! and an inverse para
bolic profile in the trap center@20#. The physical picture is
that in the interaction-dominated regime the neglect of
kinetic energy term in Eq.~4! yields the well-known
Thomas-Fermi expression

cTF~z!5
m2uext,h~z!

uI
, ~18!

the chemical potentialm being given by the normalization
condition on the wave function. The Gaussian tails in t
distribution derive from the Laplacian in Eq.~4!, which be-
comes dominant over the interaction potential term.

The ground state has been computed for a series of va
of N513104, 53104, 13105, 23105, 53105, 13106,
and 23106, which correspond to increasing strength of t
interactions. In all cases a 7391-point grid, extending fr
218,z,18 has been used,z being the dimensionless coo
dinatez5z/Sl . This grid corresponds toDz5531023. The
typical dimensionless time step isDt5131026, which is
below the diffusive stability thresholdDtc50.5(Dz)2;1.2
31025.

The resulting steady-state density profileuc(z)u2 is shown
in Fig. 1 for the whole sequence ofN values. The progressive
broadening of the wave function with increasing number
atoms in the condensate is in accord with the physical pic
mentioned above. As a convergence criterion, the imagin
time simulation is stopped upon steadiness in the fifth d

n-
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of the average total energy^E(t)&. This typically requires a
number of time steps of the order one million. A typic
energy relaxation pattern is shown in Fig. 2 for differe
values ofN. The computed values of the ground-state ene
are reported in Table I together with the values of t
Thomas-Fermi chemical potentialmTF at the corresponding
value ofN. From the table we observe that, as expected,
computed values are very close to the Thomas-Fermi
proximation and consistently above it.

The above results are consistent with earlier numer
studies of the ground state of harmonically confined Bo
Einstein condensates@21,22#. Here we are mainly concerned

FIG. 1. Condensate in harmonic trap. Density profilesSl uc(z)u2

at t50 for a5110 Bohr radii and various values ofN. From top to
bottom in the central part of the figure:N513104, 53104, 1
3105, 23105, 53105, 13106, and 23106.

FIG. 2. Condensate in harmonic trap. Evolution of the aver
total energy^E& in imaginary time for various values ofN. From
bottom to top:N513104, 53104, 13105, 23105, 53105, 1
3106, and 23106.
t
y

e
p-

al
-

however, with an accurate determination of the ground s
as the initial state for simulation studies of dynamical beh
ior. Therefore, as an independent check of steadiness we
the ground statec0(z) computed by the imaginary-time
simulation as an initial state for a real-time evolution, t
idea being that a genuine ground state should evolve in
time like a purely oscillating mode at frequencyv05m/\
with no change in the density profile, namely,

c~z,t !5c0~z!e2 imt/\. ~19!

The ground-state energy is then read off from the time tr
of the real~imaginary! part of the wave function at any give
spatial locationz. Such periodic oscillations are reproduce
to an outstanding degree of accuracy in the temporal patt
shown in Fig. 3 for the casesN5104, 105, and 106. As a
further test, we check that the density profile remains in
pendent of time. This is again true to a high accuracy in
results, as shown in Fig. 4 in the caseN523105. The main
body of the figure shows the ground-state amplitude~and the
phase patternf! as obtained from the imaginary-time simu

e

TABLE I. Condensate in harmonic trap. Ground-state ene
m/\v and 3D chemical potentialmTF /\v in the Thomas-Fermi
approximation for various values ofN.

N m/\v mTF /\v

13104 4.314 4.263
53104 8.149 8.116
13105 10.738 10.710
23105 14.159 14.130
53105 20.422 20.386
13106 26.949 26.899
23106 35.572 35.493

FIG. 3. Condensate in harmonic trap. Time evolution ofRc(z
50,t): from bottom to top, the casesN5104, 105, and 106 are
shown. The points are the theoretical predictionRc(z50,t)
5uc(z50,0)u cos(mt), with m54.314, 10.738, and 26.949\v for
each case as in Table I.
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lation. The subsequent real-time evolved density profile
shown in the inset on a greatly magnified scale in orde
display otherwise visually unappreciable changes.

B. Optical lattice potential

In the present section we calculate the BEC ground s
in the periodic optical potentialuext,l , to which a harmonic
confinementMv2z2/2 is superposed. The calculation is sim
plified by the fact that the chemical potential of the system
the harmonic trap is of the order of the harmonic energy\v
(m5\v/2 in the noninteracting case!, while that of the sys-
tem in the optical lattice is of the order of the recoil ener
ER @13#. Since the ratio of the harmonic-to-recoil energy
\v/ER.1/464 for the present range of parameters, we m
neglect the renormalization of the scattering length com
from the superposed harmonic confinement and use the
sult given in Eq.~6!.

The initial guess for the imaginary-time evolution is th
chosen as

c~z!5A exp@2M ṽz2/2\#(
l

exp@2Mvha~z2 ld !2/2\#,

~20!

which is a sum of Gaussian profiles centered on the lat
sites, with a width dictated by the harmonic approximation
each lattice well@corresponding to the frequencyvha in Eq.
~20!#. Due to the harmonic confinement, an overall nonmi
mal Gaussian envelope shapes the profile. In Eq.~20! A is a
normalization factor andl labels the occupied sites.

Figure 5 shows the density profiles which are obtained
fixed barrier heightUl

051.4ER for increasing values ofN
5104, 105, and 33105 from the bottom to the top pane
The corresponding values of the parametergSl

2 are gSl
2

55.731023, 2.131023, and 1.331023 @13#. Peaks show
up in correspondence to the lattice sites, which are coun
by the adimensional variable 2z/l. As to the effect of the

FIG. 4. Condensate in harmonic trap. Density profilesSl uc(z)u2

at different times forN523105. From bottom to top, as zoomed i
the inset:t50, 12, 24, 36, and 48 ms. The~flat! pattern of the phase
f(z) at t50 is marked by an arrow.
is
o

te
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y
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interactions, a similar trend as in Fig. 1 is visible in th
overall shape with increasingN. The calculated values of th
chemical potential arem50.644ER for N5104, m
50.648ER for N5105, andm50.652ER for N533105. It
should be remarked that, even though three digits are reli
from the point of view of the numerical simulation, this
not really the case because of the physical approxima
used in calculatingg l .

FIG. 6. Condensate in optical lattice plus harmonic trap. Den
profiles of a condensate withN5104 atoms in an optical lattice
with different barrier heights. Clockwise from the top-left pane
Ul

051.4, 2.1, 5, and 10ER .

FIG. 5. Condensate in optical lattice plus harmonic trap. Den
profiles of a condensate with different numbers of atoms in an
tical lattice with Ul

051.4ER . From bottom to top panel:N5104,
105, and 33105. The abscissa is scaled with the lattice periodl/2
~see text!.



in

in
n
on
iv

by
me
alv-
a

on
he
p is
he

ence
ith

re
h a
a

od
in
cal
ein

ms
op-
ew
an

e
m
alu

PRE 62 7443GROUND STATE OF TRAPPED INTERACTING BOSE- . . .
Figure 6 displays how the density profiles change on
creasing the barrier height at fixedN5104. Clockwise from
the top-left panel, the results for the casesUl

051.4, 2.1, 5,
and 10ER are reported. The corresponding values ofgSl

2 are
gSl

255.731023, 6.831023, 9.631023, and 1.331022.
The calculated values of the chemical potential arem
50.923ER for Ul

052.1ER , 1.835ER for Ul
055ER , and

2.869ER for Ul
0510ER . The figure shows that an increase

the well depth yields progressive localization of the portio
of condensate in each well. We expect that the original c
densate will eventually fragment into pieces, their relat

FIG. 7. The average total energy^E& for a condensate withN
5105 atoms in a harmonic trap, as obtained after convergenc
the imaginary-time simulation, is plotted as a function of the nu
ber of grid points. The dashed line shows the corresponding v
of the Thomas-Fermi chemical potential.
an
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tt.

et
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phases becoming uncorrelated@23,24#. The analysis of such
an issue will be the subject of future work.

C. Computational performance

The code takes about 0.4ms per grid point and time step
on a PC~double Pentium II 450 MhZ!, corresponding to
about 0.5 CPU hours for a fully converged~fifth digit!
ground state. This figure can be considerably reduced
lowering the accuracy requirements. In fact, since the ti
step scales roughly like the square of the mesh spacing, h
ing the spatial resolution brings savings in CPU time by
factor of 8.

A quantitative feeling for the dependence of accuracy
the number of grid points is conveyed in Fig. 7, where t
ground-state energy of the condensate in a harmonic tra
shown as a function of the number of grid points in t
simulation, the dashed line indicating the correspondingmTF
as a reference. From this figure we see that the converg
to the asymptotic value is basically quadratic, in accord w
earlier findings in time-dependent applications@15#. In par-
ticular, it is seen from Fig. 7 that about 1000 grid points a
sufficient to ensure an accuracy within a few percent. Suc
simulation requires a few minutes of CPU time on
midrange workstation.

V. SUMMARY

We have shown that an explicit time-marching meth
combined with the well-known concept of evolution
imaginary time can be profitably adapted to the numeri
determination of the ground state of dilute Bose-Einst
condensates, which obey a nonlinear Schro¨dinger equation.
We have given two examples of one-dimensional syste
which are relevant to experiments in harmonic traps and
tical lattices. Such simulations can be carried out in a f
minutes of CPU time on a midrange workstation with
accuracy of a few percent.
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