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Ground state of trapped interacting Bose-Einstein condensates
by an explicit imaginary-time algorithm
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We show that an explicit time-marching method previously developed for the numerical study of the
dynamics of Bose-Einstein condensates can be profitably adapted to the numerical determination of their
ground state. After reduction to a one-dimensional model, we first reproduce and test known results on
condensates in harmonic traps and then determine the ground state of a condensate in a harmonically bound
optical lattice in the range of parameters which are relevant to existing experiments.

PACS numbes): 02.60—x, 03.75.Fi, 32.80-t, 42.50—p

[. INTRODUCTION require any expensive Monte Carlo procedure, but can be
carried out by means of standard grid methods. Among
The experimental realization of Bose-Einstein condensathese, perhaps the most popular choice is finite differencing
tion (BEC) of trapped atomic vaporgl—3] has spurred a Of space variables as combined with semi-impli@ranck-
great deal of experimental, theoretical, and computationaNicholson time marching[9]. The key points of semi-
activity, all aimed at gaining a deeper insight into the fasci-mplicit methods argi) freedom from stringent stability con-
nating behavior of this state of matter. Computational methStraints on the time-step size afij) the attendant capability
ods have been developed to analyze both the dynamical b& march in large steps to steady state. The price for this is
havior and the ground-state properties of Bose-Einsteifin® need to solve a linear algebraic problem at each time

condensates, which are based on the solution of the timeteP: in principle a rather expen_sive computational task. In
dependent and stationary Gross-Pitaevskii equat®RE) this paper we present an alternative method based on the use

[45], respectively. Typically, these two scenarios areof explicit algorithms. We shall not make any point of supe-

L . . LT rior efficiency as compared with implicit methodsuch a
hanc_;lk_ad _W|th dlstm_ct numerical techniques; implicit an_d/orpoint can be made for genuinely time-dependent methods
explicit time-marching schemes for the former, and eigen

._but just highlight the simplicity, flexibility, and ease-of-use

value and/or variational solvers for the latter. However, it iSy¢tordeqd by explicit methods at a reasonable computational
well known that minimization procedures based (icti- efficiency.

tious) dynamics can often provide the most effective option
also to compute ground-state properties of quantum systems
[6,7].

Besides the intrinsic interest of computing the ground In this paper we shall be interested in effectively one-
state of BEC matteper se the availability of ground-state dimensional(1D) BEC systems. Despite their mathematical
numerical solvers is also important for BEC dynamics be-simplicity, these systems bear nonetheless a significant
cause the dynamic behavior of BEC matter can be very serphysical interest, mainly in view of experiments on the trans-
sitive to initial conditions. port behavior of condensates in elongated optical traps which

The implementation of numerical methods for ground-are periodic in only one direction of spalc0]. Such optical
state calculations on one-dimensional systems is a highliattices can also give access to the spin degrees of freedom,
developed subject in computational condensed méafter Which are indeed frozen in magnetic-type traps.

These methods rely mostly on clever techniques to diagonal- At zero temperature the dynamics of a dilute trapped Bose
ize the Hamiltonian which, in some cases, may even lead tgondensate is well described by the time-dependent GPE for
exact solutions. However, owing to the nonlinearity built in the condensate wave functioi(r,t) [4,5]

the GPE, the computation calls for the solution of a whole

Il. MODEL

sequence of lineéized problems, each requiring its own ., d¥(r,t) | h? 2 2
diagonalization. Under these conditions, a dynamic proce- a WVerUeX‘(rHU"\P(r’t)l .y,
dure may be more efficient. (1)

Many such dynami¢minimization procedures are again

available from Monte Carlo simulation techniques. For ex-Here, M is the atomic massy,=4=m#%?aN/M is the cou-
ample, the basic idea of diffusion Monte CafR) is to for-  pling strength, andl,,, is the external potentiag being the
mulate the Schidinger equation in imaginary time so as to scattering length, antl the number of particles in the con-
turn it into a real-time diffusion equation whose steady-statadensate. In what follows).(r) is due either to a harmonic
yields the ground-state of the corresponding quantum sysnagnetic trap or to an optical lattice. In the former case
tem. For the case of single-particle equations, such as the

GPE, the solution of the diffusion problem does not even Uexin(r,2) = 3Mo?(r’+ €°2?), 2)
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€= w,/w being the aspect ratio. In the latter c446], 3 J=—"HR, whereH=7+YV is the Hamiltonian consisting
of kinetic plus potential energy operators7=(%2/
2M)(9%19z%) and V=ue,+g|]? with g=8=7aN. Under

the Wick rotation, this system turns into

©)

whereU; is the well depthr , is the transverse size, and the

Uex(r,2)=U[1—exp —r?/r3)co(2mz/\)],

wavelengthA yields the lattice periodi=\/2. Finally, the JR=—HR (9)
normalization condition for the wave function is
J|w(r,t)|?dr=1. and
An effective model for the mean-field interaction in the
1D GPE can be derived by requiring that the chemical po- d,J=—"H7J, (10)

tential « in 1D be equal to the chemical potential of the

three-dimensional3D) system. This model has been used inshowing that the real and imaginary parts of the wave func-

the context of harmonic magnetic tradsl, 12 and has been
shown to be best performing in the case of optical lattice

where the dynamical simulation of the emission of coheren ' ) .
Seme scheme previously used for the real-time evolution

matter wave pulses from a condensate under the action
gravity is found to yield quantitative agreement with full 3D
calculationg 13].

In brief, the reduction to a 1D model turns Ed) into the
following 1D equation:

aP(z,t)
a

A T oM 92

+ uext(z)+ U||l//(z,t)|2 l,b(z,t)
4

Here uq,(2) is the external one-dimensional potential and

u=47h*aN/M, a=ay being a renormalized coupling pa-
rameter with the dimensions of an inverse length.

In the case of harmonic confinementugyy(2)
=M w?€%2%/2] one obtaing11,12

5
Y=

3/5
—) (24meNalS) " 2PIS?,

2 ®)

with S;=(A/2M ). In the case of optical lattice confine-

ment[ Ugy(2) = U} sir(27z/\)] we find [13]

UP—p 1
4ER EaN

1
N (), ©®)

Er=h?/(2M\?) being the recoil energy. The explicit ex-
pression for the positive quantityfu) in Eq. (6) is

f(u)

|(,L)=f " W tanw/2)dw=>0, (7)
0

with f(u)=arcco$l—2u/U}].

IIl. NUMERICAL METHOD

Our numerical method is based on an imaginary-time for

mulation of the effective 1D GP&). By a Wick rotation

8

t—r=—it

the 1D GPE turns into a diffusion equation with absorption/
emission due to the potential term. In solving this equation

we use an explicit synchronous Visscher sché¢iag. Since

tion evolve independently according to a diffusion equation
with a (nonlineay source and/or sink term.

t The diffusion system can be evolved according to the

equationg15]. This consists of a centered finite-differencing
for the spatial variable and an explicit time marching for the
variable 7. The result is the following finite-difference
scheme:

RITE= R 20 7(T+H V)RS (11)

and

Wr=5 28 7TV, (12)

j
where Ty'= (¢}, ;= 20+ i )1(A,)% and VFyl= iy

The scheme is initiated with a single Euler-forward step
[16] from k=0 to k=1 using Eq.(11) with a time step
AR =—Ar(THVP)R] and J}=—A7(7+1°)3%. Once
level k=1 is available, the time-marching can proceed in
steps of A7 as indicated in Eqg11) and(12). We summa-
rize in the following the main properties of this numerical
scheme.

A. Unitarity and relaxation

The real-time formulation of this algorithm can be shown
[15] to preserve unitarity at each discrete titge provided
that (i) the discrete probability density at the space location
() and timek+1 is defined asP*'=nRK" T+ gk 1ok,
and (ii) the boundary conditions are such as to annihilate
surface terms. This is indeed the case of our applications,
since we impose periodicity alorgy For the imaginary-time
version, the normm is obviously decaying in time due to the
potential term. This decay can be expressed as follows:

n(T)Ef |¢(Z,T)|2d22|220 pi(0)e” 17, (13

wherep;(0)=p,(7) is the projection upon thith eigenstate
of energyE, . The quantitye(r)= [ 4* Hydz follows a simi-
lar decay:

1
n(7) =0

f Y Hy dz= p,(0)Ee BT, (14)

the details of this scheme have been published elsewheltis an easy matter to show that for a given spectrum of

[15], in the following we shall only recall the basic steps.

eigenvaluegE,}, the average enerd¥(7))=e(7)/n(7) de-

The method evolves the real and imaginary parts of the waveays monotonically in time till the steady state is reached:

function ¢y=2R+17 according to the relationg?R="HJ and

n(r)—poe~ ™", e(7)—poEe” """, and (E(r))—Ey.
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The ground-state energy can then be read off from the IV. SIMULATION RESULTS

steady-state value of the specific energyras:. We use the numerical scheme presented in the previous

As afinal comment, we notl_ce_th_at in order to maintain @section to calculate the ground state of 1D BEC's trapped in
reasonable signal-to-noise ratio it is a good practice to re:

o = : . two different geometries. We first recover known results on
store unitarity{ n(7) =1] every few steps during the simula- - . . ;
tion. In actual practice, we have found it convenient to renor_conde_nsates m_harmonlc potentials, which are related to the
mali.ze the wave funciion at each time step. This implies a/ery first experiments on BEC1-3]. We then turn o an
small computational overhead but ensures optimal signal-toc-)rlglnal p.roblem, Wh'Ch refers to the ground state O.f a con-
noise ratio densate in an optical lattice, related to the experiment of
' Anderson and KasevicHL0Q].
N The whole series of runs refers to atoms®@Rb, whose

B. Stability scattering length ig= 110 Bohr radii. As to the optical lat-

Following a standard proceduf#7], in order to appraise tice parameters, we take=850 nm andr,=80um from
the stability of the discrete evolution operatdd) and(12),  the experiment. The typical height of the barrier in the ex-
we decompose the solution in plane waves[Exg—Qt)]  periment is UP=1.4Eg. Finally, we adopt the unitsS,
and require that the resulting dispersion relation does not \A/2Mw, Sc=#fw, and S;=1/w for length, energy, and
give rise to any time-growingspurious solutions. time, to turn Eq.(4) into a dimensionless form.

This yields a stability limit in the following general form:

A+(|CyDI(AZ)2+ CoVy 1)) <1, (15) A. Harmonic potential

For simplicity, we treat here the case of an isotropic har-
whereD=#%/2M is the quantum diffusivity), the maxi- monic potentialu,, with e=1. Besides their usefulness as
mum value of the potential, and,,C, two numerical con- test cases, there is new experimental activity in producing
stants which for the case in point take the val@gs=2 and  spherical trapgd19]. Isotropic geometries are theoretically
C,=1/2. The above relation identifies the largest acceptabléteresting in view of the effects that the reduced avalability

dimensionless time stefpr, as of states has on the damping mechanism of the condensate
and noncondensate excitatio[fs9]. We choose the initial
(Az)? guess for the imaginary-time evolution in the form of a non-
ATC:C1D+CZ(VM/7L)(A2)2' (16)  minimal Gaussian wave packety(z)xexg—Ma(z

—20)?/(24)] with @=w/2. In the absence of the nonlinear

This expression shows that interaction potentials below th&"M in Eq. (4), such a wave packet would relax to the
numerical threshold/,,<V,=(C,/C,)L do not affect the ground state _of the harmomc os_mllator, characterizedoby
standard Courant-Friedrichs-Lewy conditidm~ (Az)? for =w. As self-lnteractlo_ns are switched on, the gr_ound s_tate
the diffusion equation. This is a severe bound since it force&2K€s the form of an “interpolate” between a noninteracting
the time step to decrease with the square of the grid spécingga,uss'ar(_'” the tail of the distributionand an inverse para-
AboveV, , the time step is basically controled by the poten-Polic profile in the trap centell20]. The physical picture is
tial alone, A r<#/(C,V,,) independently of the mesh size. that in the mteracUon—dommated regime the neglect of the
This regime implies limitations on the physical parameteré“ne'[IC energy term in Eq.4) yields the well-known
characterizing the interaction potential and in particular! "omas-Fermi expression
forces the time step to scale inversely with the number of _
bosons M~ Uexth(2)

' (D)= ——, (18

It is readily checked that for typical values of current U

experimental interest, i.eN~10° anda~10 ° in dimen-
sionless unitgsee Sec. Y the time step in the numerical
simulation is diffusion limited. In fact, leaving the external
potential aside for simplicity, the conditiov,, <V, yields

the chemical potentiale being given by the normalization
condition on the wave function. The Gaussian tails in the
distribution derive from the Laplacian in E¢4), which be-
comes dominant over the interaction potential term.

The ground state has been computed for a series of values

2
I of N=1x10%, 5x10%, 1x1CP, 2x 1%, 5x1C°, 1x 1CF,
I\|<Nmax 2= ’ (17) . . .
2w (Az)°a§ and 2x 10°, which correspond to increasing strength of the
_ . interactions. In all cases a 7391-point grid, extending from
where S, is the typical length scalesee Sec. IY. For the  _18< <18 has been used,being the dimensionless coor-

typical valueAz/S~107?, this yieldSNp,,~10°. In order  dinatez=2/S. This grid corresponds th¢=5x10"2. The
to secure a further margin of stability, we have adopted aRypical dimensionless time step &57=1x10"°, which is
empirical safety factorby keeping the actual time step con- pejow the diffusive stability threshold .= 0.5(A¢)2~1.2
sistently below the marginal threshold, typically by a factor « 10-5.
of about 0.2. The resulting steady-state density profilgz)|? is shown
in Fig. 1 for the whole sequence Nfvalues. The progressive
broadening of the wave function with increasing number of
Such quadratic constraint can be brought down to a linear depertoms in the condensate is in accord with the physical picture
dence by using lattice kinetic methofdk8]. However, the latter are  mentioned above. As a convergence criterion, the imaginary-
not straightforwardly extended to non-Cartesian geometries. time simulation is stopped upon steadiness in the fifth digit
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TABLE |. Condensate in harmonic trap. Ground-state energy

02 | ulhio and 3D chemical potentighg/%iw in the Thomas-Fermi
L approximation for various values of.
015 B N plho prelho
- 1x10 4.314 4.263
i 5x 10" 8.149 8.116
o L 1x10° 10.738 10.710
§ 01 2x10° 14.159 14.130
%2 i 5x10° 20.422 20.386
s 1x10° 26.949 26.899
- 2x10° 35.572 35.493
0.05 -
L however, with an accurate determination of the ground state
0 r . L . as the initial state for simulation studies of dynamical behav-

ior. Therefore, as an independent check of steadiness we use
2/, the ground state)y(z) computed by the imaginary-time
simulation as an initial state for a real-time evolution, the
FIG. 1. Condensate in harmonic trap. Density prof@ge/(z)|>  idea being that a genuine ground state should evolve in real
att=0 for a=110 Bohr radii and various values bt From top to  time like a purely oscillating mode at frequenay= /7%
bottom in the central part of the figur&i=1X 10%, 5x10%, 1 with no change in the density profile, namely,
X 10°, 2x10°, 5x1C°, 1x 1C%, and 2x 1CP.
W(z,t) = go(2)e ' #0 (19

of the average total enerd¥(7)). This typically requires a

number of time steps of the order one million. A typical
energy relaxation pattern is shown in Fig. 2 for different
values ofN. The computed values of the ground-state energ
are reported in Table | together with the values of the

Thomas-Fermi chemical potenti at the correspondin . X A
value ofN. From the tablepwe obilgrve that. as exgectedgthéurther test, we check that the density profile remains inde-

computed values are very close to the Thomas-Fermi apqendlfnt of t|r:ne. T.h'SF!S afglnt;rue;s a2h>|<glhosac_(l:_lr11racy In-our
proximation and consistently above it. resufts, as snown in rig. 4 in the case- - 1he main

The above results are consistent with earlier numericalPﬁdy of tht? f'gl;re shgzlv_s thde fgrour;r(il-s_tate gmpht%_m‘ml the
studies of the ground state of harmonically confined BosePaS€ pa erg) as obtained from the imaginary-time simu-

Einstein condensat¢21,27. Here we are mainly concerned,

The ground-state energy is then read off from the time trace
of the real(imaginary part of the wave function at any given
patial locationz. Such periodic oscillations are reproduced
0 an outstanding degree of accuracy in the temporal patterns
shown in Fig. 3 for the cased=10% 10°, and 16. As a

10 0.2 0.4 0.6
— T T T T T T : T ; T
F —106
60 T e —— 0.5 N=10
1 Y ;\/\\/\
] —05 F
d -1 E
250 iy N=108
_ > c _
. | C“; 0.55—
:,? N 0 v
=1 4 F
2 T o5
A - - &= £
= T
~ 20 = r
= E —104
v L ] 05 k& N=10
L | . ;‘H‘\\\\
L i -05 E .
A L | L | L L
0 1 1 L1 | ( ( 1 P 1 1 1 | 1 1 1 1 -1
0 0.5 1 15 2 ° 0.2 0.4 0.6
wt

it (units of w-1)

FIG. 3. Condensate in harmonic trap. Time evolutiomf(z

FIG. 2. Condensate in harmonic trap. Evolution of the average=0): from bottom to top, the cased=10%, 10°, and 16 are

total energy(E) in imaginary time for various values &. From shown. The points are the theoretical predictioty(z=0)

bottom to top:N=1x10% 5x10%, 1x1C°, 2Xx10°, 5x10°, 1 =|y(z=0,0)| cos(ut), with x=4.314, 10.738, and 26.948w for
X 10°, and 2x 10°. each case as in Table I.
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FIG. 4. Condensate in harmonic trap. Density profidg/(z)|?
at different times foN=2x 10°. From bottom to top, as zoomed in
the insett=0, 12, 24, 36, and 48 ms. Tli#tat) pattern of the phase
#(z) att=0 is marked by an arrow.

2z/A

FIG. 5. Condensate in optical lattice plus harmonic trap. Density
profiles of a condensate with different numbers of atoms in an op-

. . . . tical lattice with U°=1.4E. From bottom to top paneN= 10",
lation. The subsequent real-time evolved density profile '.0P, and 3x 10P. The abscissa is scaled with the lattice perid?
shown in the inset on a greatly magnified scale in order fQsee text

display otherwise visually unappreciable changes.

interactions, a similar trend as in Fig. 1 is visible in the
overall shape with increasing. The calculated values of the

In the present section we calculate the BEC ground statehemical potential are u=0.64&g for N=10%, pu
in the periodic optical potentiale,,, to which a harmonic  =0.64&R for N=10°, and u=0.65E for N=3x 1. It
confinementM »w?z%/2 is superposed. The calculation is sim- should be remarked that, even though three digits are reliable
plified by the fact that the chemical potential of the system infrom the point of view of the numerical simulation, this is
the harmonic trap is of the order of the harmonic eneigy not really the case because of the physical approximation
(n=hwl2 in the noninteracting casewhile that of the sys- used in calculatingy, .
tem in the optical lattice is of the order of the recoil energy

B. Optical lattice potential

Eg [13]. Since the ratio of the harmonic-to-recoil energy is 1 1
hwl/ Eg=1/464 for the present range of parameters, we may E .

neglect the renormalization of the scattering length coming ~ ®® Uo=14 B 08 w21 B
from the superposed harmonic confinement and use the rex ;4L N=10* s os [ N=10*
sult given in Eq.(6). _ _ . o s F S

The initial guess for the imaginary-time evolution is then @ %4 w04
chosen as 0z oz |-
~ 2 2 0 0, -
W(z)=Aexd —Maz%/2k]Y, ex —Mona(z—1d)2/24], -40 40 —40 40
[

(20

which is a sum of Gaussian profiles centered on the lattice
sites, with a width dictated by the harmonic approximation to
each lattice wel[corresponding to the frequenay,, in Eq.
(20)]. Due to the harmonic confinement, an overall nonmini-
mal Gaussian envelope shapes the profile. In(2Q). A is a
normalization factor antllabels the occupied sites.

Figure 5 shows the density profiles which are obtained at

Siv(z)P
Slv(z)P

0
fixed barrier heightu?=1.4E for increasing values oN —40 20 0 20 40 —40 20 0 20 40
2z/X 2z/\
=10% 10, and 3x10° from the bottom to the top panel.
- 2
The corresponding values of the parame’@@z are yS FIG. 6. Condensate in optical lattice plus harmonic trap. Density

=5.7X 1073, 2.1x10 3, and 1.X 10__3 [13]. Peaks show profiles of a condensate with=10" atoms in an optical lattice
up in correspondence to the lattice sites, which are countegith different barrier heights. Clockwise from the top-left panel:
by the adimensional variablez2\. As to the effect of the uUP=1.4, 2.1, 5, and 1B;.
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phases becoming uncorrelatg2B,24. The analysis of such
an issue will be the subject of future work.

C. Computational performance

The code takes about O per grid point and time step
on a PC(double Pentium Il 450 MhY corresponding to
about 0.5 CPU hours for a fully convergdfifth digit)
ground state. This figure can be considerably reduced by
lowering the accuracy requirements. In fact, since the time
step scales roughly like the square of the mesh spacing, halv-
ing the spatial resolution brings savings in CPU time by a
factor of 8.

A quantitative feeling for the dependence of accuracy on
the number of grid points is conveyed in Fig. 7, where the
ground-state energy of the condensate in a harmonic trap is

shown as a function of the number of grid points in the

simulation, the dashed line indicating the correspondirg

as a reference. From this figure we see that the convergence

to the asymptotic value is basically quadratic, in accord with
FIG. 7. The average total enerdf) for a condensate witi\ earlier findings in time-dependent applicatidi$]. In par-

=10 atoms in a harmonic trap, as obtained after convergence iticular, it is seen from Fig. 7 that about 1000 grid points are

the imaginary-time simulation, is plotted as a function of the num-sufficient to ensure an accuracy within a few percent. Such a

ber of grid points. The dashed line shows the corresponding valugimulation requires a few minutes of CPU time on a
of the Thomas-Fermi chemical potential. midrange workstation.

10 1] L L 1 I 13 1 1 ] | L L 1 L ‘ 1 1 1 i | 1 1 Il ]
0 1000 2000 3000 4000 5000
n

z

Figure 6 displays how the density profiles change on in- V. SUMMARY
creasing the barrier height at fixéd= 10*. Clockwise from
the top-left panel, the results for the cadé®d=1.4, 2.1, 5,
and 1(Eg are reported. The corresponding valueSySf are

yS$=5.7x10"3, 6.8x10°%, 9.6x10°%, and 1.3x10° 2

We have shown that an explicit time-marching method
combined with the well-known concept of evolution in
imaginary time can be profitably adapted to the numerical
determination of the ground state of dilute Bose-Einstein
The calculated values of the chemical potential are condensates, which obey a nonlinear Sdiwger equation.
=0.92F for U?=2.1ER, 1.83%FR for U,°=5ER, and  We have given two examples of one-dimensional systems
2.86%R for UP=10ER. The figure shows that an increase in which are relevant to experiments in harmonic traps and op-
the well depth yields progressive localization of the portionstical lattices. Such simulations can be carried out in a few
of condensate in each well. We expect that the original conminutes of CPU time on a midrange workstation with an
densate will eventually fragment into pieces, their relativeaccuracy of a few percent.
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