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Probing the energy bands of a Bose-Einstein condensate in an optical lattice
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We simulate several methods which could be realized in the laboratory to probe the band excitation energies
and the momentum distribution of a Bose-Einstein condensate inside an optical lattice. The values of the
excitation energies obtained by the different methods agree within the accuracy of the simulation. The meaning
of the results in terms of density and phase deformations is tested by studying the relaxation of a phase-
modulated condensate toward the ground state.

DOI: 10.1103/PhysRevA.63.063613 PACS number~s!: 03.75.Fi, 32.80.Pj, 67.40.Db
a
by

ic
c

a

av

di
at

ns
de
ct

on
re
th
o
s
vin

th

th

fie
e
a
fo
in
o
ti
ti
va
ng
di
m

he
ic
dis-

ca-
ved
of

eri-
of
ur-
its
o
to

p-
ady

ons
a-

he
s

or
ter-
ach
ing
fer
ther
we
e-
heir
re-
ec.

ity
dy-
by

tum
d-
I. INTRODUCTION

A periodic potential can be imposed on a cold atomic g
from a shift of the atomic ground state under illumination
a detuned laser standing wave@1#. Experiments on ultracold
atoms inside such an optical lattice have revealed dynam
behaviors which are well known from band theory for ele
trons in solids, i.e., Wannier-Stark ladders@2#, Bloch oscil-
lations @3#, and Landau-Zener tunneling@4#. Especially ex-
citing perspectives are offered by the confinement of
atomic Bose-Einstein condensate~BEC! inside an optical lat-
tice, in regard to the generation of coherent matter-w
pulses @5#, laser cooling@6#, quantum computing@7# and
more generally BEC quantum-state engineering.

Theoretical and numerical studies of a BEC in a perio
potential have been based on solutions of the st
Bogolubov–de Gennes equations@8–11# and the time-
dependent Gross-Pitaevskii equation~GPE! @12–16#. These
studies showed that the phase coherence of the conde
distinguishes it from an assembly of ultracold atoms un
essential aspects concerning both the energy-band stru
and the transport behavior.

As to the band structure, the main, and most striking c
sequence, of BEC phase coherence shows up in the natu
the excitations in the various energy bands. Excitations in
lowest band arise from pure phase modulations of the c
densate with a givenq vector in the Brillouin zone, wherea
the higher bands are associated with density profiles ha
the symmetry of the higher isolated-well states~see, espe-
cially, Ref.@11#, where these properties are derived using
Wannier representation for the wave functions!. Second, a
phononlike linear dispersion relation may be expected in
lowest band at the Brillouin-zone center@8,11#. This prop-
erty can be traced back to the presence of the mean-
interactions combined with the structure of th
Bogolubov–de Gennes equations under time-reversal inv
ance. In solid-state physics, a similar behavior is found
electrons in the band structure of graphite, from the mix
of atomic orbitals, to give wave functions which are even
odd under time reversal. A condensate in a periodic poten
may show such a linear dispersion, depending on the rela
strength of the mean-field vs lattice interactions, or equi
lently on the ratio of the healing length to the lattice spaci

As to the transport behavior, a BEC subject to a perio
optical potential and to a constant external force perfor
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Bloch oscillations as if it were a quasi particle inside t
lowest-energy band. At variance from ultracold atom
gases, such a control of the sharpness of the momentum
tribution is essential in the aforementioned physical appli
tions and, as an example, is consistent with the obser
emission of coherent matter pulses from a vertical array
optical traps under the force of gravity@5#.

The present work examines some pump-probe exp
ments which could be performed to explore the nature
condensate excitations inside an optical lattice under c
rently attainable experimental conditions, and to expose
quasiparticle behavior from its momentum distribution. T
this end, after introducing the numerical methods used
solve the GPE in Sec. II, we simulate two different pum
probe experiments based on techniques which have alre
been realized in the laboratory to measure Bloch oscillati
of ultracold Bose atoms@3# and to study the shape deform
tion modes of a BEC in harmonic traps@17,18#. In the first
method, described in Sec. III A, a velocity is imparted to t
whole condensate at timet50 and the velocity spectrum i
thereby probed, while in the second~see Sec. III B! a reso-
nant parametric driving of the optical lattice is carried out f
a variable length of time and the density spectrum is de
mined from an analysis of the condensate dynamics. In e
method we discuss the physical content of the pump
mechanism and of the observable quantities, in order to in
the nature of the energy bands as noted above. We fur
test the meaning of these concepts in Sec. III C, where
use the propagation in imaginary time of an initially phas
modulated condensate to probe the excitations through t
interband and intraband relaxations to equilibrium. The
sults of the different methods are then compared in S
III D, and displayed as energy bands.

In Sec. IV we illustrate the measurement of the veloc
spectrum discussed in Sec. III A and the BEC coherent
namical behavior under the influence of an external force,
simulating an experiment to measure the sharp momen
distribution of the condensate. Finally, we give our conclu
ing remarks in Sec. V.

II. SIMULATION METHOD

We consider a dilute BEC in the external potentialUl
0@1

2exp (2r2/rlb
2 )cos2(2pz/l)#, whereUl

0 is the well depth,l
and r lb are the laser-beam wavelength and waist, andd
©2001 The American Physical Society13-1
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5l/2 is the lattice period. Its dynamics is accurately d
scribed by a one-dimensional~1D! model, if the mean-field
interactions are renormalized to reproduce the correct
value of the chemical potential@14#. We thus adopt the 1D
GPE for the BEC wave functionC(z,t):

i\
]C~z,t !

]t
5F2

\2¹z
2

2M
1U~z,t !1Up~z,t !GC~z,t !. ~1!

In Eq. ~1!, U(z,t) includes the 1D lattice potentialUl(z) and
the mean-field interactions, i.e.,U(z,t)5Ul

0 sin2(pz/d)
14p\2garuC(z,t)u2/M, with a the scattering length,g the
renormalization factor,r the number of particles per lattic
well, andM the atom mass. We study three different form
for the pump potentialUp(z,t), as will be specified below
We adopt the system parameters from the experimen
87Rb @5# (a5110 Bohr radii,l5850 nm andUl

051.4ER ,
with ER5h2/8Md2!, and taker52500 atoms per well.

On the technical side, we handle the heavy simulati
needed to obtain significant results on fine spectral struct
by a well-tested explicit-time-marching algorithm@15,19#.
We first determine the ground state by numerically propag
ing Eq. ~1! in imaginary time, and then insert it as the initi
condition for evolution in real time. By the same algorith
we preliminarily calculate the band energiesEn(q) from the
relaxation of a statically deformed BEC~see below!, n being
the band index andq the reduced wave vector in the Bri
louin zone. The size of the simulation box is 700 wells,
needed for a three-digit accuracy in the ground-state en
(m50.695ER). We guard against unwanted localized exci
tions at the boundaries by letting the density profile van
over a length scale which is much larger than the hea
length j5(8par)21/2.1.4d. Typically, a grid contains 5
3104 points, and the simulation is carried out up to fin
times ranging from 13 to 32 ms. In dynamical simulatio
the data are stored every 20ms, and used to obtain the re
and imaginary parts of the Fourier transform of the wa
function @C(z,v), say#.

III. SIMULATION RESULTS

A. Probing the velocity spectrum

In the first simulational method, which we familiarly refe
to as kicking, we impart a velocityv5\q/M to the BEC at
time t50, by imposing a phaseqz on the ground-state wav
function. The dynamics of the BEC is then monitored w
Up50. We first analyze the dynamics of the wave functi
C(z,t), and then comment on its observability.

In Fig. 1 we show the spectra ReC(z,v) obtained after
Fourier transform ofC(z,t) at any positionz in the bulk of
the BEC, as functions of (\v2m)/ER for four values ofq.
At eachq the strong peak on the left refers to excitations
the lowest band (n50, say! and the other two peaks belon
to the bandsn51 and 2. The eigenfrequencies revealed
Fig. 1 are the same as those appearing in ImC(z,v). The
density spectrumnc(z,v)5*dt exp (ivt)uC(z,t)u2, which is
not displayed here, instead shows a strong peak center
energym for all values ofq and two further peaks corre
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sponding to then51 and 2 peaks in Fig. 1~then50 peak of
Fig. 1 being absent!.

This analysis shows that in this method a measuremen
the densityuC(Dz,t)u2 in a portion Dz of the BEC could
reveal excitations in the higher bands, but should have
access to those in the lowest band. This is in accord with
aforementioned theoretical result@11# showing that excita-
tions in then50 band correspond to pure phase modu
tions. In the kicking process a phase modulation of the c
densate is excited, and only a measurement of a ph
related quantity, such as the BEC average velocity, may g
the desired information in the lowest-energy band.

In an actual experiment the kicking method may be re
ized by suddenly accelerating the optical lattice on a mic
second time-scale. A measurement of the BEC momen
distributionn(p,t)5u*dzC(z,t)exp(ipz)u2, after variable in-
tervals of timet by a time-of-flight technique, would give
spatial variations of the BEC phase through the average
locity ^v&5*dz(\p/M )n(p,t) @3#. An example of the mea-
surement of the momentum distribution will be illustrated
Sec. IV below.

B. Probing the density spectrum

We turn to the second simulational method, that we re
to as shaking. In this method we modulate the BEC in sp
and time by parametrically driving the lattice potential. T
this end we setUp(z,t)5aUl(z)cos(qz2Vt) for t,td and
Up50 otherwise. We choose a small pump amplitudea
50.15), match the pump frequencyV near resonance, an
tune the drive timetd over several excitation periods, th
time unit beingTR[h/ER.0.32 ms. The density is the
recorded at timest@td .

Figure 2 displays the bulk density spectrumuC(z,v)u2 for
the sameq values as in Fig. 1. The spectrum contains a pe
centered at energym for all values ofq and a strong peak
corresponding to the nearly resonant drive, at a freque

FIG. 1. Kicking method: bulk spectrum ReC(z,v) as a func-
tion of (\v2m)/ER for four values ofq in the Brillouin zone.
From bottom to top:q50.25p/d, 0.50p/d, 0.75p/d, and 1.0p/d.
3-2
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PROBING THE ENERGY BANDS OF A BOSE-EINSTEIN . . . PHYSICAL REVIEW A63 063613
changing withq in accord with then50 peaks in Fig. 1. The
other structures in Fig. 2 can be identified as harmonics
the fundamental excitation energy, and combinations
them.

Thus a near-resonance measurement of the den
uC(z,t)u2 in the shaking method may reveal the excitatio
in all bands, and in particular those in then50 band. This is
possible since both the density and phase are excited du
the parametric drive. Shaking atq50 coherently drives the
bound states in each well, and creates pure density fluc
tions. Phase modulations are also triggered atqÞ0, due to
the spatial periodicity of the BEC: this is at variance with t
shape-deformation modes in harmonic traps@18#. The ener-
gies of these phase and density excitations are located a
poles of the response function to the external drive, a
therefore show up as peaks inuC(z,v)u2.

In an actual experiment the time driving of the latti
amplitude by an appropriate modulation of the laser inten
is feasible in the proposed range of frequencies. The sp
modulation is harder to realize, at least over the whole B
louin zone. As to detection after driving, the density of
portion Dz of the BEC as large as ten lattice spacing
(.5 mm) can be probed by a technique of absorption i
aging after ballistic expansion@17#.

C. Static deformation

Before quantitatively comparing the results obtained
the above dynamical methods, we pause to present the
structure that we obtained by a static deformation method
this method we imprint a phase modulation on the B
ground state so as to generate a state having some ov
with a Bloch state of quasimomentumq. We then propagate
this modulated BEC in imaginary time, and monitor the a
erage energŷ E& as the BEC returns to its ground stat
Figure 3 showŝ E& vs i t\/ER for the sameq values as in
Fig. 1. Two plateaus are met during this evolution: the fi

FIG. 2. Shaking method: bulk densityuC(z,v)u2 as a function
of (\v2m)/ER for the sameq values as in Fig. 1.
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lies at an energyE0(q), and the second at an energym. The
time scales for the appearance of the plateaus correspon
interband and intraband relaxations, respectively. Similar
sults are obtained for the higher bandsEn(q) from phase
modulations having a wave vectorq1n8p/d outside the first
Brillouin zone~with n85n for evenn andn85n11 for odd
n).

The two-plateau structure in Fig. 3 results from a sup
position of different Bloch states induced by the finite size
the simulation sample. An experimental equivalent would
a measurement of the release energy after imparting a ve
ity to the BEC as in the kicking method.

D. Comparing the different methods

We finally collect and compare the results analyzed
Secs. III A–III C. Figure 4 reports the energy bandsEn(q)
that we have obtained by the three methods presented ab
for n50, 1, and 2. The three methods yield the same ex
tation energies within the simulation accuracy, which is
flected by the size of the symbols~squares for the kicking
method, circles for the shaking method, and triangles for
static method! in the main body of the figure. A gap ha
opened atq5p/d between then50 and 1 bands, while
there is no gap atq50 between then51 and 2 bands: this is
a well-known result for 1D lattice potentials having
doubled period@20#. We also remark that the results show
in Fig. 4 for then51 and 2 bands do not differ significantl
from those that we obtain for a noninteracting BEC: inde
with the present system parameters we haveUl

0.2.12m, im-
plying that the mean-field interactions are weak on the
ergy scale of the lattice.

The inset in Fig. 4 shows an enlarged view of the exci
tion energies in the lowest band up toqd/p50.5, where the
band starts to bend over. On this scale the estimated e
bars of the simulation become visible, and well within the
the results for the present interacting BEC agree with th
for the noninteracting one, except perhaps atqd/p50.1. The

FIG. 3. Static deformation method: average energy^E& vs
imaginary timei t\/ER for a modulated BEC with the sameq val-
ues as in Figs. 1 and 2. Higher plateaus correpond to higher va
of q in the lowest band.
3-3
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calculated band energies are compatible with the fr
particle dispersion relation\2q2/2M , as shown by the solid
line in the inset. A high resolution, and a fine tuning of t
strength of the self-interactions relative to the height of
lattice confinement, would clearly be needed to experim
tally reveal the phononlike dispersion relation at long wa
lengths which is predicted by gapless theories@8,11#. From
the Bogolubov dispersion relation this linear behavior m
be expected to become visible belowq'A2/j.

IV. MEASURING THE MOMENTUM DISTRIBUTION

We now discuss the momentum distributionn(p,t) for a
BEC in an optical lattice, as introduced in Sec. III A. W
simulate a feasible experimental method for its measurem
by driving a BEC with a forceF for a variable length of time
td , as described in Ref.@3# for an experiment on ultracold
atoms. The force is taken as a positive constant in the ra
0<td<TB/2, and as a negative constant in the rangeTB/2
,td<TB , with TB5h/uFud being the period of Bloch oscil
lations. We setUp(z,t)52Fz for t,td and Up50 other-
wise, and choose the value ofF to correspond to a particle
acceleration of 85 cm/s2 as in the experiments of Ben Daha
et al. @3#. The Brillouin zone is explored in this method a
cording toqd/p52 sgn (F)td /TB .

Figure 5 showsn(p,t) at times 0<td<TB covering one
full Bloch oscillation. The peak seen attd50 drifts to the
right up to the first zone boundary attd5TB/2, while a sec-
ond peak emerges in the second zone and moves to the
entering the first zone at later times. The sharpness of
peaks shows that the BEC is behaving as if it were a qu
particle reflected back and forth at the Bragg planes. T
inset in Fig. 5 shows that the BEC average velocity^v&, as

FIG. 4. The first three energy bands in the Brillouin zone
<q<p/d as obtained by the methods reported in Figs. 1
~squares: kicking method; circles: shaking method; triangles: s
method!. The inset zooms in on the lowest band. The size of
error bars reflects a two-digit accuracy in energy differences. S
line: quadratic dispersion with the bare atom mass.
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obtained from the momentum distribution after backfoldi
of the second zone, is consistent with the semiclassical a
age velocity as calculated fromdE0(q)/dq using the results
in Fig. 4.

V. CONCLUDING REMARKS

In conclusion, we have simulated three different expe
mental methods to probe the energy bands of a condensa
an optical lattice, and tested their meaning in terms of
density and phase deformations associated with excited b
states. The velocity spectrum in the kicking method and
density spectrum in the shaking method are the cor
obervables, from which the whole band structure can be
plored and the nature of the BEC excitations inferred. T
measurement of the momentum distribution within the for
driving method will demonstrate the characteristic coher
dynamical behavior of the condensate.

We conclude by noting that a study of the observability
the expected linear dispersion at smallq values would re-
quire different system parameters than the present ones
in particular stronger mean-field interactions and larger
tice constants. To this extent, the details of the overall c
finement would become important, and should be appro
ately tailored in the simulation.
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FIG. 5. Force-driving method: momentum distribution~in arbi-
trary units! at various timestd , equally spaced byTB/16 up toTB/2
and then byTB/8 up to TB . Inset: points give the BEC averag
velocity ^v& ~in units ofvR5\p/Md) as determined from the mo
mentum distribution after backfolding of the second Brillouin zon
while the line shows the semiclassical average velocity.
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