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Probing the energy bands of a Bose-Einstein condensate in an optical lattice
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We simulate several methods which could be realized in the laboratory to probe the band excitation energies
and the momentum distribution of a Bose-Einstein condensate inside an optical lattice. The values of the
excitation energies obtained by the different methods agree within the accuracy of the simulation. The meaning
of the results in terms of density and phase deformations is tested by studying the relaxation of a phase-
modulated condensate toward the ground state.
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I. INTRODUCTION Bloch oscillations as if it were a quasi particle inside the
lowest-energy band. At variance from ultracold atomic
A periodic potential can be imposed on a cold atomic gagases, such a control of the sharpness of the momentum dis-
from a shift of the atomic ground state under illumination by tribution is essential in the aforementioned physical applica-
a detuned laser standing wald. Experiments on ultracold tions and, as an example, is consistent with the observed
atoms inside such an optical lattice have revealed dynamic&mission of coherent matter pulses from a vertical array of
behaviors which are well known from band theory for elec-OPtical traps under the force of gravitg]. _
trons in solids, i.e., Wannier-Stark ladd¢gj, Bloch oscil- The present work examines some pump-probe experi-
lations [3], and Landau-Zener tunnelifg]. Especially ex- Mments which co.uld. be performed to (_axplore_the nature of
citing perspectives are offered by the confinement of arg:ondensat.e excitations inside an qptlcal lattice under cur-
atomic Bose-Einstein condensdBEC) inside an optical lat- rently attainable experimental conditions, and to expose its
tice, in regard to the generation of coherent matter-wavéuasiparticle behavior from its momentum distribution. To
pulses[5], laser cooling[6], quantum computing7] and this end, after |_ntroducmg the _numerlcal me_:thods used to
more generally BEC quantum-state engineering. solve the GI_DE in Sec. Il, we S|mul_ate two o_Ilfferent pump-
Theoretical and numerical studies of a BEC in a periodicP™obe experiments based on techniques which have already
potential have been based on solutions of the statipeen realized in the laboratory to measure Bloch oscillations
Bogolubov—de Gennes equatioi8—11] and the time- qf ultracold Bose atomB’S] and to'study the shape defprma—
dependent Gross-Pitaevskii equati@PE [12—16. These tion modes of a BEC in harmonic tra@];?,;fﬂ: In the first
studies showed that the phase coherence of the condens&iéthod, described in Sec. Il A, a velocity is imparted to the
distinguishes it from an assembly of ultracold atoms undetVhole condensate at tinte=0 and the velocity spectrum is
essential aspects concerning both the energy-band structiiftereby probed, while in the secorste Sec. Il B a reso-
and the transport behavior. nant parametric driving of the optical lattice is carried out for
As to the band structure, the main, and most striking con2 variable length of time and the density spectrum is deter-
sequence, of BEC phase coherence shows up in the nature pined from an analysis of the gondensate dynamics. In e_ach
the excitations in the various energy bands. Excitations in thé'ethod we discuss the physical content of the pumping
lowest band arise from pure phase modulations of the conmechanism and of the observable quantities, in order to infer
densate with a giveq vector in the Brillouin zone, whereas the nature of the energy bands as noted above. We further
the higher bands are associated with density profiles havintfSt the meaning of these concepts in Sec. Ill C, where we
the symmetry of the higher isolated-well statese, espe- Use the propagation in imaginary time of an initially phase—.
cially, Ref.[11], where these properties are derived using thénodulated condensate to probe the excitations through their
Wannier representation for the wave functipnSecond, a interband and'lntraband relaxations to equilibrium. The re-
phononlike linear dispersion relation may be expected in théults of the different methods are then compared in Sec.
lowest band at the Brillouin-zone centg8,11]. This prop- !l D, and displayed as energy bands. _
erty can be traced back to the presence of the mean-field In Sec. IV we illustrate the measurement of the velocity
interactions combined with the structure of the Spectrum discussed in Sec. Il A and the BEC coherent dy-
Bogolubov—de Gennes equations under time-reversal invari@mical behavior under the influence of an external force, by
ance. In solid-state physics, a similar behavior is found fosimulating an experiment to measure the sharp momentum
electrons in the band structure of graphite, from the mixingdistribution of the condensate. Finally, we give our conclud-
of atomic orbitals, to give wave functions which are even oring remarks in Sec. V.
odd under time reversal. A condensate in a periodic potential
may show such a linear dispersion, depending on the relative I. SIMULATION METHOD
strength of the mean-field vs lattice interactions, or equiva-
lently on the ratio of the healing length to the lattice spacing. We consider a dilute BEC in the external potentif 1
As to the transport behavior, a BEC subject to a periodic—exp (—rri)cog(27zIN)], whereU? is the well depth\
optical potential and to a constant external force performsand r, are the laser-beam wavelength and waist, and
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=N\/2 is the lattice period. Its dynamics is accurately de- 0.05 1T T~ 17 qu'/nlﬂ.'o L L B B
scribed by a one-dimensionélD) model, if the mean-field
interactions are renormalized to reproduce the correct 3D L |
value of the chemical potentigl4]. We thus adopt the 1D 0 X e S e o
GPE for the BEC wave functiol (z,t): RCECE ol N VU
22 ;;
=
PR U VZ+U(z,t)—I—Up(z,t) V(zt). (1) CEEN & TN VA
at 2M 0O T " T T " T~ T 1T T T "1 '
qd/m=0.50
In Eq. (1), U(z,t) includes the 1D lattice potentiél,(z) and
the mean-field interactions, i.e.U(z,t)=U,°sin2(7rz/d) S
+4mh2yap|¥(z)|Y/M, with a the scattering lengthy the T T T T T T T T T
renormalization factorp the number of particles per lattice qd/m=0.25
well, andM the atom mass. We study three different forms
for the pump potential ,(z,t), as will be specified below. L J T
We adopt the system parameters from the experiment on % 1 2 3 4 5 6 7 8 9 10

8Rb [5] (a=110 Bohr radii,A =850 nm andUp=1.4Eg, (o) /B
with Eg=h?/8Md?), and takep=2500 atoms per well. K7 "

On the technical side, we handle the heavy simulations FIG. 1. Kicking method: bulk spectrum RE(z,w) as a func-
needed to obtain significant results on fine spectral structuran of (fw— u)/Eg for four values ofq in the Brillouin zone.
by a well-tested explicit-time-marching algorithfd5,19.  From bottom to topg=0.25x/d, 0.507/d, 0.75x/d, and 1.0r/d.
We first determine the ground state by numerically propagat-
ing Eq.(1) in imaginary time, and then insert it as the initial sponding to thex=1 and 2 peaks in Fig. then=0 peak of
condition for evolution in real time. By the same algorithm Fig. 1 being abseht
we preliminarily calculate the band energies(q) from the This analysis shows that in this method a measurement of
relaxation of a statically deformed BEGee below, nbeing  the density|¥(Az,t)|? in a portionAz of the BEC could
the band index and| the reduced wave vector in the Bril- reveal excitations in the higher bands, but should have no
louin zone. The size of the simulation box is 700 wells, asaccess to those in the lowest band. This is in accord with the
needed for a three-digit accuracy in the ground-state energgforementioned theoretical resiilt1l] showing that excita-
(u=0.69%R). We guard against unwanted localized excita-tions in then=0 band correspond to pure phase modula-
tions at the boundaries by letting the density profile vanistions. In the kicking process a phase modulation of the con-
over a length scale which is much larger than the healinglensate is excited, and only a measurement of a phase-
length ¢é=(8map) Y?=1.4d. Typically, a grid contains 5 related quantity, such as the BEC average velocity, may give
x 10* points, and the simulation is carried out up to final the desired information in the lowest-energy band.
times ranging from 13 to 32 ms. In dynamical simulations In an actual experiment the kicking method may be real-
the data are stored every 20s, and used to obtain the real ized by suddenly accelerating the optical lattice on a micro-
and imaginary parts of the Fourier transform of the wavesecond time-scale. A measurement of the BEC momentum
function[ ¥ (z,w), sayl. distributionn(p,t)=|/dz¥(z,t)exp(p2)[? after variable in-
tervals of timet by a time-of-flight technique, would give
spatial variations of the BEC phase through the average ve-
locity (v)=fdz(Ap/M)n(p,t) [3]. An example of the mea-
A. Probing the velocity spectrum surement of the momentum distribution will be illustrated in
Sec. IV below.

Ill. SIMULATION RESULTS

In the first simulational method, which we familiarly refer
to as kicking, we impart a velocity=%q9/M to the BEC at
timet=0, by imposing a phasgz on the ground-state wave
function. The dynamics of the BEC is then monitored with  We turn to the second simulational method, that we refer
U,=0. We first analyze the dynamics of the wave functionto as shaking. In this method we modulate the BEC in space
V¥ (z,t), and then comment on its observability. and time by parametrically driving the lattice potential. To

In Fig. 1 we show the spectra R&z,») obtained after this end we set),(z,t) = aU,(z)cosgz—Qt) for t<ty and
Fourier transform ofV'(z,t) at any positiorz in the bulk of ~ U,=0 otherwise. We choose a small pump amplitude (
the BEC, as functions offi{w — n)/Eg for four values ofg. =0.15), match the pump frequen€y near resonance, and
At eachq the strong peak on the left refers to excitations intune the drive timety over several excitation periods, the
the lowest bandr{=0, say and the other two peaks belong time unit beingTr=h/Eg=0.32 ms. The density is then
to the bandsi=1 and 2. The eigenfrequencies revealed byrecorded at times>t,.

Fig. 1 are the same as those appearing inVi(z, ). The Figure 2 displays the bulk density spectr{in(z, w)|? for
density spectrurmg(z,») = fdtexp (wt)|¥(zt)[?, which is  the samey values as in Fig. 1. The spectrum contains a peak
not displayed here, instead shows a strong peak centered @éntered at energy for all values ofq and a strong peak
energy u for all values ofg and two further peaks corre- corresponding to the nearly resonant drive, at a frequency

B. Probing the density spectrum
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FIG. 3. Static deformation method: average enet) vs
(hw—u)/Eg imaginary timeit#/Eg for a modulated BEC with the santgval-

ues as in Figs. 1 and 2. Higher plateaus correpond to higher values
FIG. 2. Shaking method: bulk density (z )| as a function  of q in the lowest band.

of (hw— w)/Eg for the samey values as in Fig. 1.
lies at an energ¥,(q), and the second at an energy The

changing withg in accord with then=0 peaks in Fig. 1. The time scales for the appearance of the plateaus correspond to

other structures in Fig. 2 can be identified as harmonics ofhterband and intraband relaxations, respectively. Similar re-

the fundamental excitation energy, and combinations obults are obtained for the higher banBg(q) from phase

them. modulations having a wave vectgr-n’ r/d outside the first
Thus a near-resonance measurement of the densifyrillouin zone(with n’=n for evennandn’=n+1 for odd

|W(z,1)|? in the shaking method may reveal the excitationsh).

in all bands, and in particular those in the=0 band. This is The two-plateau structure in Fig. 3 results from a super-

possible since both the density and phase are excited duringpsition of different Bloch states induced by the finite size of

the parametric drive. Shaking g&=0 coherently drives the the simulation sample. An experimental equivalent would be

bound states in each well, and creates pure density fluctu@& measurement of the release energy after imparting a veloc-

tions. Phase modulations are also triggered a0, due to ity to the BEC as in the kicking method.

the spatial periodicity of the BEC: this is at variance with the

shape-deformation modes in harmonic trgp8]. The ener- D. Comparing the different methods

gies of these phase and density excitations are located at the

poles of the response function to the external drive, an%e

R 2
therefore show up as peaks|iif (z, )| that we have obtained by the three methods presented above,

In an actual experiment the time driving of the lattice for =0, 1, and 2. The three methods yield the same exci-
amplitude by an appropriate modulation of the laser mtens'nf?tion er;eréies Witﬁin the simulation accuracy, which is re-

is feasible in the proposed range of frequencies. The Spati;ﬁected by the size of the symbolsquares for the kicking

modulation is harder to realize, at least over the whole Br'l'method, circles for the shaking method, and triangles for the

louin zone. As to detection after driving, the density of a_, .. . . :
: I . static methogl in the main body of the figure. A gap has
portion Az of the BEC as large as ten lattice spacings opened atq=/d between then=0 and 1 bands, while

g;igg";?:grcsgligﬁcpé?(ggﬂs?g[ﬂ%tecm'que of absorption " there is no gap a=0 between th@=1 and 2 bands: this is

a well-known result for 1D lattice potentials having a
doubled period20]. We also remark that the results shown
in Fig. 4 for then=1 and 2 bands do not differ significantly
Before quantitatively comparing the results obtained byfrom those that we obtain for a noninteracting BEC: indeed,
the above dynamical methods, we pause to present the bamdth the present system parameters we Ha{}@ 2.12u, im-
structure that we obtained by a static deformation method. Iplying that the mean-field interactions are weak on the en-
this method we imprint a phase modulation on the BECergy scale of the lattice.
ground state so as to generate a state having some overlapThe inset in Fig. 4 shows an enlarged view of the excita-
with a Bloch state of quasimomentugn We then propagate tion energies in the lowest band updd/==0.5, where the
this modulated BEC in imaginary time, and monitor the av-band starts to bend over. On this scale the estimated error
erage energyE) as the BEC returns to its ground state. bars of the simulation become visible, and well within them
Figure 3 showsE) vs it#i/Eg for the sameqg values as in the results for the present interacting BEC agree with those
Fig. 1. Two plateaus are met during this evolution: the firstfor the noninteracting one, except perhapg@tz=0.1. The

We finally collect and compare the results analyzed in
cs. A= C. Figure 4 reports the energy bartelg q)

C. Static deformation
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FIG. 4. The first three energy bands in the Brillouin zone 0  FIG. 5. Force-driving method: momentum distribution arbi-
<g=m/d as obtained by the methods reported in Figs. 1-3trary unitg at various times, equally spaced by/16 up toTg/2
(squares: kicking method; circles: shaking method; triangles: stati@nd then byTg/8 up toT. Inset: points give the BEC average
method. The inset zooms in on the lowest band. The size of thevelocity (v) (in units ofvg=fim/Md) as determined from the mo-
error bars reflects a two-digit accuracy in energy differences. Solidnentum distribution after backfolding of the second Brillouin zone,
line: quadratic dispersion with the bare atom mass. while the line shows the semiclassical average velocity.

calculated band energies are compatible with the freeebtained from the momentum distribution after backfolding
particle dispersion relatiofi’q?/2M, as shown by the solid of the second zone, is consistent with the semiclassical aver-
line in the inset. A high resolution, and a fine tuning of theage velocity as calculated froohEy(q)/dq using the results
strength of the self-interactions relative to the height of thein Fig. 4.

lattice confinement, would clearly be needed to experimen-

tally reveal the phononlike dispersion relation at long wave-

lengths which is predicted by gapless theofi@d 1]. From V. CONCLUDING REMARKS

the Bogolubov dispersion relation this linear behavior may

. In conclusion, we have simulated three different experi-
be expected to become visible belaw \2/¢. P

mental methods to probe the energy bands of a condensate in
an optical lattice, and tested their meaning in terms of the
IV. MEASURING THE MOMENTUM DISTRIBUTION density and phase deformations associated with excited band
states. The velocity spectrum in the kicking method and the

BEC in an optical lattice, as introduced in Sec. Il A. We density spectrum in the shaking method are the correct

simulate a feasible experimental method for its measuremeﬁ}]bervables' from which the whole band structure can be ex-
by driving a BEC with a forcé for a variable length of time  Plored and the nature of the BEC excitations inferred. The
tq, as described in Ref3] for an experiment on ultracold measurement of the momentum distribution within the force-
a{jt(’)ms. The force is taken as a positive constant in the rang%riving method will demonstrate the characteristic coherent

0=<ty<Tg/2, and as a negative constant in the rafigé? ynamical behavior of.the condensate. -
<t,=Tg, with Ts=h/|F|d being the period of Bloch oscil- We conclude by noting that a study of the observability of

lations. We seU(z,t)=—Fz for t<ty andU,=0 other- the eﬁpf?ctedtlme?r dlsperS|ort1 at tshmllt/r?lues Woutld re- d
wise, and choose the value Bfto correspond to a particle quire ditterent system parameters than tne present ones, an

acceleration of 85 cnisas in the experiments of Ben Dahan in particular stronger mean-field interactions and larger lat-
et al. [3]. The Brillouin zone is explored in this method ac- tice constants. To this extent, the details of the overall con-

cording toqd/7=2 sgn €)ty/Te. finement would become important, and should be appropri-

Figure 5 shows(p,t) at times Gsty<Tg covering one ately tailored in the simulation.
full Bloch oscillation. The peak seen =0 drifts to the
right up to the first zone boundary &= Tg/2, while a sec-
ond peak emerges in the second zone and moves to the left
entering the first zone at later times. The sharpness of the One of us(M.L.C.) thanks Dr. J. H. Mlier for enlighten-
peaks shows that the BEC is behaving as if it were a quasing discussions on experimental issues. Part of this work was
particle reflected back and forth at the Bragg planes. Thelone using the computational facilities of Cineca. We ac-
inset in Fig. 5 shows that the BEC average velogity, as  knowledge support from MURST through PRIN2000.

We now discuss the momentum distributiofp,t) for a
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