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Introduction

Due to its inherent capability of producing thrust without using any propellant consump-

tion, a solar sail is a particularly attractive option for the generation of so-called Artificial

Equilibrium Points (AEPs). These points are of great interest for mission applications

because the spacecraft can be used to provide new vantage points for scientific observa-

tion [1]. Interesting positions for AEPs are those placed along the segment connecting the

two primaries in the neighborhood of the classical L1 Lagrange Point. For example, in the

Sun-(Earth+Moon) system, these L1-type AEPs have been suggested as useful locations for

space weather observation missions [2] or for geo-engineering missions [3, 4].

Because L1-type AEPs are intrinsically unstable [5], a suitable control strategy is re-

quired to maintain their desired location. This problem has been addressed with different

approaches, which mainly consider either a pitch and yaw-angle control, or a solar sail area

variation [6]. However, both solutions present some drawbacks.

A substantial simplification of the control problem is obtained when the solar sail attitude

is maintained fixed, in a passive way, using a conically shaped structure [7]. The propulsive

thrust is therefore always in the Sun-spacecraft direction, but it can be modulated by varying,

within a limited range, the ratio of the solar radiation pressure acceleration to the solar
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gravitational acceleration, that is, the sail lightness number β. Such a solution is commonly

referred to as β-control. The original idea of a β-control applied to a solar-sail-based mission

towards a L1-type AEP is due to Biggs and McInnes [4]. An interesting implementation of

a β-control makes use of Electrochromic Material Panels (EMPs) [8]. These materials have

been already employed in space missions, notably for the attitude control of the Japanese

solar sail demonstrator IKAROS [9,10].

The aim of this Note is to explore the capabilities of the emerging EMP technology for

the active stabilization of L1-type AEPs using a square solar sail with a fixed attitude. The

problem is addressed within an elliptic restricted framework, which is a more realistic model

with respect to the classical circular case [4]. The main spacecraft parameters, including the

sail side and the total spacecraft mass, are defined, by means of a simplified mathematical

model, as a function of the main mission requirements in terms of maximum allowed sail

lightness number variation and AEP position.

Mathematical Preliminaries

Consider the motion of a solar sail within an elliptic restricted three-body problem

(ERTBP) with the Earth and the Sun as the two primaries and the spacecraft as the (mass-

less) third body. Both Sun and Earth rotate around their center of mass C and cover elliptic

orbits with the same eccentricity e, and semimajor axes μ a and (1−μ) a, respectively, where

μ � 1/328900.56 is the Earth’s dimensionless mass [11, 12]. Introduce a non-uniformly ro-

tating and pulsating reference frame T (C; x/�, y/�, z/�), in which � is the time-dependent

distance between the two celestial bodies, the (x, y) plane coincides with the plane of motion

of the primaries, x points toward the Earth at any instant of time and rotates around z [11].

Note that � = a(1− e2)g, where g � 1/(1 + e cos ν) and ν is the Earth’s true anomaly. Also,

denote r, ρS and ρE as the spacecraft’s dimensionless position vectors (normalized by �)
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with respect to C, Sun, and Earth, respectively.

In the following the solar sail is assumed to provide a purely radial acceleration with

respect to the Sun [7, 13]. This situation is representative of a solar sail whose attitude is

maintained in a passive way by means of a suitable design of the sail shape. The spacecraft

propulsive acceleration can be written as

aP = β
μ�

�2ρ3S
ρS (1)

where μ� � 132 712 439 935.5 km3/s2 is the Sun’s gravitational parameter and ρS = |ρS|.

The dimensionless vectorial equation of motion of the solar sail spacecraft in the rotating

frame T is [14]:

r′′ + 2 k̂ × r′ = g

[
−(1− β) (1− μ)

ρ3S
ρS − μ

ρ3E
ρE − k̂ ×

(
k̂ × r

)
− e cos ν

(
r · k̂

)
k̂

]
(2)

where the prime symbol denotes a derivative taken with respect to the angular coordinate ν

and k̂ is the unit vector of (z/�)-axis. Let P0 be a L1-type AEP (with subscript 0), that is,

a point located along the (x/�)-axis between the Sun and the classical Lagrange point L1,

where ρL1 � 0.989989 is the Sun-L1 dimensionless distance. It can be shown [14–16] that

the sail lightness number β0 required for placing P0 at a given distance ρS0 ∈ (0, ρL1 ] from

the Sun is

β0 = 1− μ

1− μ

[
ρS0

μ
+

1

(1− ρS0)
2 − 1

]
ρ2S0

(3)

where ρS0 = r0 + μ. Equation (2) is now linearized around P0, where r′′
0 = r′

0 = 0 by

definition. Using the transformations r = r0 + δr and β = β0 + δβ, with |δr| � |r0| and

δβ � β0, and introducing the state vector ξ � [δrT, δr′T]T, the linearized equation of motion
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can be written in matrix form as

ξ′ =

⎡
⎢⎣03×3 I3×3

g K −2E

⎤
⎥⎦ ξ +

⎡
⎢⎣03×1

g U

⎤
⎥⎦ δβ (4)

where I is the identity matrix and

K �

⎡
⎢⎢⎢⎢⎢⎣

−2 k22 + 3 0 0

0 k22 0

0 0 k22 − 1

⎤
⎥⎥⎥⎥⎥⎦

, E �

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0

1 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, U �

⎡
⎢⎢⎢⎢⎢⎣

1− μ

ρ2S0

0

0

⎤
⎥⎥⎥⎥⎥⎦

(5)

with k22 � (μ/ρS0)
[
1− 1/(1− ρS0)

3].
The β-control Concept

It is known that L1-type AEPs are intrinsically unstable [5], and therefore a suitable

control strategy is necessary to maintain their desired location [17]. Assuming that the sail

pitch and yaw angles are not actively controlled [18,19], an interesting solution for stabilizing

a solar sail spacecraft about an L1-type AEP, is to vary the sail lightness number in such a

way that β tracks a desired control law [4,6].

A straightforward approach is to use a proportional control law, in the form δβ = −k δx,

where k > 0 is a pure gain, and δx � (x/�) − r0 is the component along the x-axis of the

position error vector δr. With such a simple control logic it may be shown [4] that there exists

a minimum value of k, depending on the distance ρS0 , the eccentricity e and the dimensionless

mass μ, beyond which the L1-type AEP is stable. Here stability is intended in the sense of

Lyapunov, because the spacecraft trajectory remains bounded, even if asymptotic stability

is not possible [4].

A feasible solution is offered by a proportional-derivative (PD) control logic, which has
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been shown to guarantee an asymptotical stability, in the (x, y) plane, for the spacecraft

trajectory [4]. The out of plane dynamics, instead, cannot be driven to converge toward the

AEP because the motion along (z/�)-axis is not controllable but only β-stabilizable (in the

sense of Lyapunov) about the given AEP.

A PD control logic, however, could produce unacceptable errors in the final spacecraft

position when an uncertainty in the actual sail lightness number occurs. Indeed, if the

actual value of the sail lightness number is (slightly) different from the nominal value given

by Eq. (3), the spacecraft trajectory converges to an AEP different from the desired one.

To get over this problem, a classical Proportional-Integral-Derivative (PID) control law

is used. More precisely, an ideal control law will be assumed in the form

δβPID = −hP δx − hD δ′x − hI

∫ ν

0

δx dν (6)

where hP , hD and hI are the proportional, derivative, and integral gains, respectively. The

term “ideal” is used above to emphasize that the practical implementation of the control law

requires some differences to be introduced with respect to Eq. (6), as will be discussed in the

next section. A stability analysis of Eq. (4) by means of Floquet’s theory provides the gains

necessary to stabilize a given L1-type AEP. For example, Fig. 1 summarizes the stability

region for r0 = 0.980 where β0 = 0.051497. Each isocontour line in the figure is drawn for a

fixed value of hI , and represents the lower-left boundary region of pairs (hP , hD) for which

the L1-type AEP is stable.

To appreciate the usefulness of the PID control logic, consider a L1-type AEP with

r0 = 0.980, and assume hP = hD = 10. Figure 2 compares the spacecraft trajectories with

and without integral control, when the reference value of the sail lightness number is β =

1.01 β0 and the injection position error is |δr| ≈ 14.3×10−5 (corresponding to approximately
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Figure 1: PID gains when r0 = 0.980.

20000 km). Note that the integral control with hI = 1 eliminates any asymptotical error.

-2 0 2 4 6 8 10

x 10
-5

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2
x 10

-4

AEP

y
/
�

0( / )x r��

a) β = 1.01β0 and hI = 0

-2 0 2 4 6 8 10

x 10
-5

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2
x 10

-4

AEP

y
/
�

0( / )x r��
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Figure 2: Effect of the integral control on the asymptotical error when r0 = 0.980.

The actual implementation of a PID logic for a β-control will now be discussed assuming
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that the sail lightness number may be varied, within a specified range, by means of EMPs,

whose reflectivity changes depending on the amount of voltage applied to the panels.

Spacecraft mathematical model

Consider a spacecraft of total mass m, whose primary propulsion system is constituted by

a square, Sun-faced solar sail of total area A, with a slightly conical shape and whose apex is

directed sunward, see Fig. 3. With such a sail configuration a radial thrust is maintained in

a pure passive way [7]. Note that, in principle, the useful sail area A is strictly related to the

sail conical angle. However, in this simplified analysis a slight conical angle is assumed, such

that the area of each reflecting surface is substantially coincident with the area projected in

the sunward direction.

EMP onEMP off
EM

A

PL
m

TF
A

HR
A

a) Front View.

incident

light

b) Side View.

Figure 3: Spacecraft schematic model.

The sail surface can be thought of as being constituted by three parts. The first part,

of area AHR, is covered with high reflectivity material. Its main purpose is that of exploit-

ing the solar radiation pressure to produce a propulsive thrust. A second part is covered

by electrochromic material [20], which is used to modulate the thrust (within a moderate
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range) without varying the sail attitude [8]. In analogy to the design solution adopted for

IKAROS [9, 10], this second part is constituted by N EMPs. Each panel, with area AEM,

varies its reflectivity as it changes its state. The latter can assume two values, either power-off

(low reflectivity), or power-on state (high reflectivity), depending on the amount of voltage

applied to the panel [9]. Finally, the third part, of area ATF, is covered with flexible thin-film

solar cells [21], whose purpose is to guarantee the electric power required by the payload and

the electrochromic material.

Each reflective surface contributes to the total spacecraft acceleration by converting,

with different efficiencies, the solar radiation pressure into propulsive thrust. According to

Dachwald [22,23], the reflectivity of a generic sail element can be modeled by introducing an

efficiency factor η. The latter is a dimensionless coefficient that can assume a value ranging

from 0.5 (perfectly absorbing surface) to 1 (perfectly reflecting surface). In particular, the

efficiency value can be set equal to either ηON or ηOFF < ηON according to whether the

corresponding EMP is switched on or off. The total sail’s surface is written as

A � AHR + ATF +N AEM (7)

whereas the total spacecraft mass can be expressed by adapting the simplified model de-

scribed in Ref. [24], viz.

m = σHR AHR + σTFATF +N σEM AEM +mPL (8)

where mPL is the payload mass (including the spacecraft bus), and σ is the areal density,

defined as the mass per surface unit for each element. Note that σHR includes the supporting

structures as, for example, booms and deployment module [24].

Revision #1 8 of 22



Sail lightness number calculation

Assume that, at a given time instant, a number NON ≤ N of EMPs are switched on.

To guarantee that the EMPs provide a pure thrust contribution (without introducing any

additional torque on the spacecraft) it is necessary that a symmetry exists in the distribution

of switched on/off panels with respect to the spacecraft’s center of mass. Note that, in this

simplified analysis, a failure of part of the EMPs (with a consequent loss of symmetry) is

not considered. However, in that case the symmetry could be restored by simply excluding

both the broken EMPs and their symmetric counterpart. This solution, of course, reduces

the maximum available variation of the sail lightness number.

Let n ≥ 2 the minimum number of EMPs that simultaneously can vary their state. For

example, if n = 4, these four panels are placed at the vertices of a rectangle whose center

coincides with the spacecraft’s center of mass. Observe that both N and NON must be

integer multiples of n. In particular, the number NON ∈ N represents the only thrust control

variable, since the spacecraft thrust variation is obtained by simply setting on (or off) a

suitable number of EMPs.

Because, by assumption , the mean solar sail plane is orthogonal to the direction of

incoming solar rays, with the aid of Eqs. (1) and (8) the sail lightness number may be

written as:

β � σ� [ηHR AHR + ηTFATF +NON ηONAEM + (N −NON) ηOFF AEM]

(σHR AHR + σTFATF +N σEM AEM +mPL)
(9)

where σ� � 1.53 g/m2 is the critical sail loading parameter [25]. The presence of EMPs is

useful for varying the sail lightness number between a minimum value βmin, when all of EMPs

are switched off (NON = 0) and a maximum value βmax, when NON = N . From Eq. (9), βmin
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and βmax are given by:

βmin =
σ� [ηHR AHR + ηTFATF +N ηOFF AEM]

(σHR AHR + σTFATF +N σEM AEM +mPL)
(10)

βmax =
σ� [ηHR AHR + ηTFATF +N ηONAEM]

(σHR AHR + σTFATF +N σEM AEM +mPL)
(11)

Note that β can only take a finite number of values (equal to N/n + 1) within its variation

interval. Therefore β is actually chosen from a“thrust setting table”, similar to what happens

for solar electric propulsion systems [26].

The mean sail lightness number β � (βmin + βmax)/2 is obtained when one half of EMPs

are switched on, that is, when NON = N/2. The quantity β can be thought of as a reference

sail lightness number and its value is chosen to be as close as possible to β0 given by Eq. (3).

The maximum allowable variation with respect to the mean value will be referred to as

Δβ � (βmax − βmin)/2 and represents an index of the maximum spacecraft capability of

varying its performance during the mission. Combining Eqs. (10) and (11) it is found that

β =
σ� [2 ηHR AHR + 2 ηTFATF +N (ηON + ηOFF) AEM]

2 (σHR AHR + σTFATF +N σEM AEM +mPL)
(12)

Δβ =
σ� N (ηON − ηOFF) AEM

2 (σHR AHR + σTFATF +N σEM AEM +mPL)
(13)

The term ATF in the previous equations will now be expressed as a function of mPL and

AEM. This is possible by observing that the surface covered with flexible thin-film solar cells

must generate an electric power sufficient for supplying power to both the payload and the

EMPs. More precisely, introduce a payload specific power αPL, defined as the electric power

per unit mass required by the payload, and a solar array efficiency εTF [27], which coincides

with the ratio between the solar arrays output electric power per unit area and the local
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solar irradiance.

The power generation system is designed in a conservative way under the following as-

sumptions: 1) end life conditions (when the degradation effects are maximum), 2) maximum

solar distance during the mission (when the solar irradiance is minimum), and 3) maximum

required power condition. Assuming that the degradation effects are all included in a single

coefficient εTF and that the maximum Sun-spacecraft distance is equal to one Astronomical

Unit, a simplified electric power balance between the power generated by the solar cells and

that absorbed by EMPs and payload provides the required value of ATF:

ATF =
φEM N AEM + αPL mPL

εTFW⊕
(14)

where W⊕ � 1366W/m2 is the solar constant, and φEM is the electric power per unit area

required by the electrochromic material.

Spacecraft sizing

When Eq. (14) is substituted into Eq. (9) and the solar sail’s physical characteristics are

fixed, β is shown to depend linearly on the control variable NON ∈ {0, n, 2n, ..., N}, that is

β = βmin + kβ NON with kβ � σ� AEM (ηON − ηOFF)

σHR AHR + σTFATF +N σEM AEM +mPL

(15)

The sail lightness number also depends, in a more involved way, on the four design parameters

N , mPL, AHR, and AEM. However, by means of Eqs. (12) and (13), N and AHR are more

conveniently expressed as a function of two other mission parameters, that is, β0 and Δβ.
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Indeed, assuming that β = β0, the result is

N = n

∥∥∥∥
(

mPL/AEM

nσ�

)
Δβ

c1 β0 + c2 Δβ + c3

∥∥∥∥ (16)

AHR =
mPL

σ�

(
c4

c1 β0 + c2 Δβ + c3
− c6

)
− c5 N AEM (17)

where ‖ · ‖ is the round function, which is introduced in Eq. (16) because N can only take

integer values. Also ci (with i = 1, 2, . . . , 6) are dimensionless coefficients, independent of

the design parameters, defined as:

c1 �
εTFW⊕ (ηON − ηOFF) (σHR/σ

�)

2 (σHR ηTF αPL − σTF αPL ηHR − εTFW⊕ ηHR)
(18)

c2 �
2 σEM εTFW⊕ ηHR + 2φEM(σTF ηHR − σHR ηTF)− σHR εTFW⊕(ηON + ηOFF)

2 σ� (σHR ηTF αPL − σTF αPL ηHR − εTFW⊕ ηHR)
(19)

c3 �
−ηHR εTFW⊕ (ηON − ηOFF)

2 (σHR ηTF αPL − σTF αPL ηHR − εTFW⊕ ηHR)
(20)

c4 �
σ� (ηON − ηOFF)

2 σHR

(21)

c5 �
σEM

σHR

+
σTF φEM

σHR εTFW⊕
(22)

c6 �
σ�

σHR

(
σTF αPL

εTFW⊕
+ 1

)
(23)

Note that, as a consequence of the discretization process induced by the finite number of

EMPs in Eq. (16), the attainable value of β is actually different from the required value

β0. This confirms the importance of an integral action in the control law (6). For a given

mission scenario (that is, β0 and Δβ are given) and for a prescribed set of coefficients ci,
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Eqs. (16)-(17) can be used to estimate the required values of N and AHR as a function of the

payload mass mPL and the area AEM of a single panel. It is worth noting that in the limiting

case in which Δβ = 0 (when the sail is unable to perform a β-control) Eq. (16) states that,

as expected, N = 0. Moreover, combining Eq. (17) with (18), (20), and (21), it can be shown

that when Δβ = 0, AHR is independent of the optical characteristics of the electrochromic

material.

To summarize, for a given set of data β0, Δβ, mPL, AEM, and n, the value of N is

calculated from Eq. (16), AHR from Eq. (17), ATF from Eq. (14), A from Eq. (7), m from

Eq. (8), and, finally, βmin and βmax from Eqs. (10)-(11).

Control law implementation

From the previous discussion, the sail lightness number can be effectively controlled,

through a PID control logic, in the interval β ∈ [βmin, βmax] according to Eq. (15). However,

unlike the ideal steering law described by Eq. (6), two other aspects must be taken into

account. In fact, the propulsive acceleration is both subjected to a discretization effect due

to the presence of a finite number of EMPs, and to a possible control saturation. In particular,

the quantization error introduced by the discretization process is n kβ, which corresponds

to the minimum sail lightness number variation obtained when a single group of n EMPs

changes its state. On the other hand, a saturation occurs (and a windup behavior takes place)

when the EMPs are unable to provide the sail lightness number variation δβPID commanded

by the control logic described in Eq. (6). This phenomenon can have a fundamental influence

on the behavior of the controlled system and, in some cases, it can cause instability.

To effectively counteract the saturation effect, an anti-windup compensator is therefore in-

troduced. Its main purpose is to reduce the integral action when the β-control saturates [28].

A block diagram for the β-control logic, including the anti-windup compensator (with a gain

hAW ≥ 0), is shown in Fig. 4. Recall that β is the reference sail lightness number. If the
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current spacecraft position (x/�) does not coincide with the desired AEP, an error δx 
= 0

occurs. This error signal is processed by the PID block whose output is first translated

into a (discrete) lightness number variation, and then compared to the minimum/maximum

obtainable values. When a saturation takes place, the integral of the difference between

the lightness value required by the control logic and the saturated value is integrated by

the anti-windup block and the result is eventually added to the PID output. Note that the

contribution from the anti-windup block is different from zero only when the control system

is saturated, that is, when δβ = ±kβ N/2.

PID
Eq. (6)

x PID ( /2)k N

yes

no

( /2)k N ( /2)k N

( /2)k N
yes

no

( / )x
0r

AW
0

e dh e

nk
nk

S/C
Eq. (2)

Figure 4: Block diagram for the β-control logic.

Numerical Simulations

The previous mathematical model will now be used to illustrate the preliminary design of

a solar sail spacecraft, whose mission requirement is to maintain an L1-type AEP [14,29] in

the neighborhood of a classical L1 Lagrange point in the Sun-(Earth+Moon) system. Within

this mission scenario the AEP position is, at any time instant, along the Sun-Earth line at

a dimensionless distance r0 = 0.98 from the center of mass C.

Some spacecraft characteristics, as for example a payload mass of 91 kg, have been extrap-

olated from the Heliostorm Warning Mission (a variant of Geostorm Warning Mission [2]),
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using tables and plots taken from Ref. [30]. For the high-reflectivity element, a film with

an aluminum-coated front side and a chromium-coated back side is assumed [23]. As far

as the electrochromic part is concerned, AEM = 1m2 and n = 8 are assumed. Moreover,

according to Ref. [8], and in the absence of additional data, ηON is taken equal to ηHR and

ηOFF = 0.5, which corresponds to a complete absorption of the incoming photons. Finally,

thin-film solar cells with Cu(In,Ga)Se2 as an absorber layer and Kapton as a substrate are

assumed [21,27]. A conservatively small value of εTF = 10% is used to model the effects of a

performance degradation with time. The physical data necessary to calculate the coefficients

ci in Eqs. (18)–(23) are summarized in Table 1, along with the corresponding bibliographical

information from which those data have been derived. The values of the six coefficients

are therefore: c1 = −0.8303, c2 = −56.5111, c3 = 0.2031, c4 = 0.055, c5 = 16.1467, and

c6 = 0.2706.

parameter value units Ref.

αPL 8 W/kg [30]

σHR 5.68 g/m2 [30]

σEM 80 g/m2 [31]

σTF 80 g/m2 [27]

ηON 0.908

ηOFF 0.5 [8]

ηHR 0.908 [23]

ηTF 0.5

φEM 20 W/m2

εTF 0.1 [27]

Table 1: Physical reference data.

The maximum allowable variation Δβ must be chosen depending on the estimated per-

turbations magnitude that will affect the spacecraft dynamics at the desired AEP. The solar

sail characteristic parameters, obtained with the methodology outlined above, have been
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summarized in Table 2 for Δβ/β0 = {1%, 2%, 3%, 4%}. The table shows a rapid growth

of N with an increase of Δβ/β0, which implies an increase of the sail side (proportional to

√
A).

parameter Δβ/β0 Eq.

1% 2% 3% 4% #

N 232 600 1256 2792 (16)

AHR [m2] 5064 6219.3 8381.6 13236.7 (17)

ATF [m
2] 39.3 93.2 189.2 414.1 (14)

A [m2] 5335.3 6912.5 9826.8 16442.8 (7)

m [kg] 141.5 181.8 254.2 422.7 (8)

βmin × 102 5.119646 5.044816 5.015082 4.930915 (10)

βmax × 102 5.222018 5.250858 5.323488 5.343261 (11)

β × 102 5.170832 5.147837 5.169285 5.137088

n kβ × 105 3.530091 2.747230 1.964368 1.181506

kβ × 106 4.412614 3.434037 2.45546 1.476883 (15)

Table 2: Spacecraft parameters for r0 = 0.980 and β0 = 0.051497.

For illustrative purposes assume that Δβ/β0 = 1% and use the spacecraft parameters

from Table 2. To discuss the β-control effectiveness, two cases have been considered, with

and without (hAW = 0) the effect of the anti-windup logic. In both cases the PID parameters

are chosen to be hP = 10, hD = 10, and hI = 1 (this corresponds to a stable configuration,

see Fig. 1). An initial spacecraft position error of 20000 km and a velocity error of 150m/s

has been simulated.

Firstly, the anti-windup gain hAW is set equal to zero, and the simulation results are

shown in Figs. 5(a) and 6(a). Due to a control system saturation, the number of switched

on EMPs is either NON = 0 or NON = 232, and the control system is unable to drive the

spacecraft toward the desired L1-type AEP.

However, when the anti-windup controller is engaged, with hAW = 10, the sail lightness
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Figure 5: Sail lightness number variation time response for r0 = 0.980 and β0 =
0.051497.

number is quickly steered within its linear variation range (see Fig. 5(b)), and the spacecraft

dynamics remains bounded around the desired L1-type AEP (see Fig. 6(b)).

Conclusions

Electrochromic material panels can be effectively used as a simple control means to

stabilize a solar sail with a fixed attitude about an artificial, collinear , Lagrange point. The

panels are used to vary the sail lightness number by changing their state from on to off or

off to on in such a way to provide a propulsive acceleration variation without introducing
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Figure 6: Spacecraft trajectory in the rotating-pulsating frame T for r0 = 0.980 and
β0 = 0.051497.

additional torques on the spacecraft. A simplified mathematical model has been developed to

define the main spacecraft parameters, including the sail dimension and the total spacecraft

mass, as a function of the desired artificial equilibrium point position. Finally, a simple

steering logic, in the form of a proportional-integral-derivative control system, has been

introduced for stabilizing the spacecraft about a L1-type point.

A natural extension of the analysis discussed in this Note is to explore the influence of

the sail conical shape on both the control torque and the variation in sail lightness number.

References

[1] McKay, R. J., Macdonald, M., Biggs, J., and McInnes, C. R., “Survey of Highly Non-

Keplerian Orbits with Low-Thrust Propulsion,”Journal of Guidance, Control and Dynamics ,

Vol. 34, No. 3, May-June 2011, pp. 645–666. doi: 10.2514/1.52133.

[2] West, J. L., “The Geostorm Warning Mission: enhanced opportunities based on new technol-

Revision #1 18 of 22



ogy,” 14th AAS/AIAA Space Flight Mechanics Conference, Maui, HI, February 8–12 2004,

Paper AAS 04-102.

[3] McInnes, C. R., “Minimum mass solar shield for terrestrial climate control,” Journal of the

British Interplanetary Society , Vol. 55, 2002, pp. 307–311.

[4] Biggs, J. D. and McInnes, C. R., “Passive Orbit Control for Space-Based Geo-Engineering,”

Journal of Guidance, Control and Dynamics , Vol. 33, No. 3, May-June 2010, pp. 1017–1020.

doi: 10.2514/1.46054.

[5] McInnes, C. R., McDonald, A. J. C., Simmons, J. F. L., and MacDonald, E. W., “Solar Sail

Parking in Restricted Three-Body Systems,” Journal of Guidance, Control, and Dynamics ,

Vol. 17, No. 2, March-April 1994, pp. 399–406. doi: 10.2514/3.21211.

[6] Bookless, J. and McInnes, C. R., “Control of Lagrange point orbits using solar sail propul-

sion,” Acta Astronautica, Vol. 62, No. 1-2, January-February 2008, pp. 159–176. doi:

10.1016/j.actaastro.2006.12.051.

[7] McInnes, C. R., “Passive Control of Displaced Solar Sail Orbits,” Journal of Guidance,

Control and Dynamics , Vol. 21, No. 6, November–December 1998, pp. 975–982. doi:

10.2514/2.4334.

[8] Lücking, C. M., Colombo, C., and McInnes, C. R., “Orbit control of high area-to-mass ratio

spacecraft using electrochromic coating,” 61st International Astronautical Congress , Prague,

Czech Republic, September 27 – October 1 2010, Paper IAC-10-C1.2.7.

[9] Mori, O., Tsuda, Y., Shirasawa, Y., Saiki, T., Mimasu, Y., and Kawaguchi, J.,“Attitude Con-

trol of IKAROS Solar Sail Spacecraft and Its Flight Results,”61st International Astronautical

Congress , Prague, Czech Republic, September 27–October 1 2010, Paper IAC-10.C1.4.3.

[10] Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., and Kawaguchi, J.,

“Fuel-free and Oscillation-free Attitude Control of IKAROS Solar Sail Spacecraft Using Re-

Revision #1 19 of 22



flectivity Control Device,” 28th International Symposium on Space Technology and Science,

Okinawa, Japan, June 5–12 2011.

[11] Szebehely, V., Theory of orbits: the restricted problem of three bodies , Academic Press Inc.,

1967, pp. 255, 587–602.

[12] Luzum, B., Capitaine, N., Fienga, A., Folkner, W., Fukushima, T., Hilton, J., Hohenkerk,

C., Krasinsky, G., Petit, G., Pitjeva, E., Soffel, M., and Wallace, P., “The IAU 2009 system

of astronomical constants: the report of the IAU working group on numerical standards for

Fundamental Astronomy.” Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 4,

August 2011, pp. 293–304. doi: 10.1007/s10569-011-9352-4.

[13] Quarta, A. A. and Mengali, G., “Optimal Switching Strategy for Radially Accelerated Tra-

jectories,”Celestial Mechanics and Dynamical Astronomy , Vol. 105, No. 4, December 2009,

pp. 361–377. doi: 10.1007/s10569-009-9233-2.

[14] Baoyin, H. and McInnes, C. R., “Solar Sail Equilibria in the Elliptical Restricted Three-

Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 3, May-June

2006, pp. 538–543. doi: 10.2514/1.15596.

[15] Aliasi, G., Mengali, G., and Quarta, A. A., “Artificial Equilibrium Points for a Generalized

Sail in the Circular Restricted Three-Body Problem,” Celestial Mechanics and Dynamical

Astronomy , Vol. 110, No. 4, August 2011, pp. 343–368. doi: 10.1007/s10569-011-9366-y.

[16] Aliasi, G., Mengali, G., and Quarta, A. A., “Artificial Equilibrium Points for a Generalized

Sail in the Elliptic Restricted Three-Body Problem,” Celestial Mechanics and Dynamical

Astronomy , 2012 (in press). doi: 10.1007/s10569-012-9425-z.

[17] Biggs, J. D., McInnes, C. R., and Waters, T., “Control of Solar Sail Periodic Orbits in the

Elliptic Three-Body Problem,” Journal of Guidance, Control and Dynamics , Vol. 32, No. 1,

January-February 2009, pp. 318–320. doi: 10.2514/1.38362.

Revision #1 20 of 22



[18] Bolle, A. and Circi, C., “Solar Sail Attitude Control Through In-Plane Moving Masses,”

Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engi-

neering , Vol. 222, No. 1, January 2008, pp. 81–94. doi: 10.1243/09544100JAERO223.

[19] Circi, C., “Three-Axis Attitude Control Using Combined Gravity-Gradient and Solar Pres-

sure,”Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace

Engineering , Vol. 221, No. 1, January 2007, pp. 85–90. doi: 10.1243/09544100JAERO48.

[20] Kislov, N., “Variable Reflectance/Transmittance Coatings for Solar Sail Altitude Control and

Three Axis Stabilization,”AIP Conference Proceedings , Vol. 699, No. 1, 2004, pp. 103–111.

doi: 10.1063/1.1649563.

[21] Chopra, K. L., Paulson, P. D., and Dutta, V., “Thin-film solar cells: an overview,” Progress

in Photovoltaics: Research and Applications , Vol. 12, No. 2-3, March-May 2004, pp. 69–92.

doi: 10.1002/pip.541.

[22] Dachwald, B., “Optimization of Interplanetary Solar Sailcraft Trajectories Using Evolution-

ary Neurocontrol,” Journal of Guidance, Control, and Dynamics , Vol. 27, No. 1, January-

February 2004, pp. 66–72. doi: 10.2514/1.9286.

[23] Dachwald, B., “Interplanetary Mission Analysis for Non-Perfectly Reflecting Solar Sailcraft

Using Evolutionary Neurocontrol,” AAS/AIAA Astrodynamics Specialist Conference, Big

Sky, Montana, August 3–7 2003, Paper AAS 03-579.

[24] Baig, S. and McInnes, C. R., “Artificial Three-Body Equilibria for Hybrid Low-Thrust

Propulsion,” Journal of Guidance, Control and Dynamics , Vol. 31, No. 6, November-

December 2008, pp. 1644–1655. doi: 10.2514/1.36125.

[25] McInnes, C. R., Solar Sailing: Technology, Dynamics and Mission Applications, chap. 2,

Springer-Praxis Series in Space Science and Technology, Springer-Verlag, 1999, pp. 32–55,

ISBN: 1-852-33102-X.

Revision #1 21 of 22



[26] Quarta, A. A. and Mengali, G., “Minimum-Time Space Missions with Solar Electric Propul-

sion,”Aerospace Science and Technology , Vol. 15, No. 5, July-August 2011, pp. 381–392. doi:

10.1016/j.ast.2010.09.003.

[27] Otte, K., Makhova, L., Braun, A., and Konovalov, I., “Flexible Cu(In,Ga)Se2 thin-film solar

cells for space application,” Thin Solid Films , Vol. 511-512, July 2006, pp. 613–622. doi:

10.1016/j.tsf.2005.11.068.

[28] Franklin, G. F., Powell, J. D., and Emami-Naeini, A., Feedback Control of Dynamic Systems ,

Prentice-Hall, 4th ed., 2002, p. 228, ISBN: 0-130-32393-4.

[29] McInnes, C. R., “Artificial Lagrange Points for a Partially Reflecting Flat Solar Sail,”Journal

of Guidance, Control and Dynamics , Vol. 22, No. 1, January-February 1999, pp. 185–187.

doi: 10.2514/2.7627.

[30] Young, R. M., “Updated Heliostorm Warning Mission: Enhancements Based on New Tech-

nology,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-

rials Conference, Honolulu, Hawaii, April 23–26 2007, Paper AIAA 2007-2249.

[31] Adeli, S. N., Lappas, V., and Wie, B., “A scalable bus-based attitude control system for

Solar Sails,” Advances in Space Research, Vol. 48, No. 11, December 2011, pp. 1836–1847.

doi: 10.1016/j.asr.2011.08.024.

Revision #1 22 of 22


