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Abstract This study analyses the dynamics of a general equilibrium, overlapping 
generations (closed) economy with pay-as-you-go public pensions and tax-financed health 
investments that affect the retirement time when old. Life of the typical agent is divided 
between youth (firth period) and old age (second period). The latter period of life is, in turn, 
divided between work time and retirement time in a proportion contingent on an individual’s 
state of health. We show that: (i) a unique non-trivial steady state exists, and (ii) when the 
labour income tax rates used to finance health expenditure or public pensions are included in 
an intermediate range of values, complex dynamics occur when individuals have perfect 
foresight. This holds because the increase either in the fraction of time spent working when 
old or disability pensions reduces the need to save when young and then capital accumulation 
reduces. In addition, dynamic phenomena such as multiple bubbling structures related to the 
bifurcation diagram can be observed. Under some general assumptions, we show that the rise 
in health care expenditure and/or public pensions initially destabilises the steady-state 
equilibrium and causes complex dynamics but eventually acts as a stabilising device. 
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1. Introduction 
 
It is recognised that health status of humans and income are significantly correlated and 
observed to dramatically vary across time and nations (see, e.g., Chakraborty [1]). The 
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tremendous improvement in lifestyles and standards of living experienced especially in 
Western countries after World War II, has contributed to make individuals healthier. This fact 
has accelerated and sustained economic growth in several nations (Fogel [2]), with a resulting 
increase in both the quantity (longevity) and quality of life of humans, because health 
spending essentially reduces mortality risks (Evans and Pritchard [3], Cairncross [4])1 and 
fertility, while increasing per capita income (Cervellati and Sunde [9]), even if a non-
monotonic relationship that contributes to explain the Demographic Transition is also 
observed (Lorentzen et al. [10], Galor [11], [12]; Cervellati and Sunde [13]). This phenomenon 
has increased the individual demand for health services, while also requiring the response of 
governments (especially in developed countries) and international organisations to the 
question of whether and in what extent health investments and/or disability pensions have to 
be financed to an increasing number of old age individuals. Therefore, problems concerning 
the public provision of health services and pension benefits for mature workers are currently 
high on the political agenda in several industrialised countries. 
    The study of problems of the interrelationship between health and the macroeconomics – 
notably, income per person – has gained popularity in both the empirical and theoretical 
literatures,2 since the state of health of humans may affect economic behaviours: the role 
played by health on both the ability to work and productivity of work (see Fanti and Gori 
[21]); the relationship between adult mortality and private and/or public health spending 
(see, e.g., Chakraborty [1], Chakraborty and Das [22], Bhattacharya and Qiao [23], de la Croix 
and Ponthière [24], Leung and Wang [25], Fanti and Gori [26]); the relationship between adult 
mortality and the accumulation of human capital due to changes in investments in education 
(see Blackburn and Cipriani [27]). 
    The link between health status and labour productivity has been early recognised by the 
pioneering paper by Grossman [28]. In addition, several empirical studies have found that 
health plays a relevant role on the labour supply of older people (e.g. Chirikos [29], Currie and 
Madrian [30], Campolieti [31], Cai and Kalb [32], Disney et al. [33]). However, at the best of 
our knowledge, the effects of both public health spending and retirement age on the long-run 
dynamics in a neoclassical growth model has not been so far investigated in a theoretical 
context. In this paper we aim at filling this gap by using the overlapping generations (OLG) 
model à la Diamond [34], extended with the following assumptions: (i) people inelastically 
supply labour when old in a proportion contingent on their state of health, (ii) an individual’s 
health status when old is improved by the provision of public health expenditure when young, 
and (iii) public PAYG pensions exist to support old-age people unable to work and then 
retired (disability pensions). 
    In order to concentrate on the effects of health spending and pensions on the length of the 
age of retirement, we avoid to include adult mortality in the analysis and the utility effect of 
health per se. We also neglect to explicitly account for labour/leisure choices (of both young 
and old people), which can indeed be an important determinant of macroeconomic outcomes. 
In particular, we assume that the length of the retirement time depends on an individual’s 
health status when old. This means that the age of retirement is chosen neither voluntarily by 
mature workers nor it is fixed by the government with appropriate laws. When the health 
status is low, mature workers are allowed to retire and they are entitled to a pension benefit 
                                                
1 At the time of writing, a lot of people continue to suffer from malnutrition in several developing and 
underdeveloped countries, where also epidemics (e.g., HIV/AIDS) contribute to keep the individual state of 
health poorer and child mortality higher (see, e.g., Fioroni [5]) than in developed countries, the HIV/AIDS being 
one of the main causes of the reversal in the observed positive trend in life expectancy in such countries (see 
Becker et al. [6], Cutler et al. [7]). See also Young [8], which provides estimates of the impact of the tragedy of 
AIDS for South African population. 
2 On the empirical side, see, e.g., Cutler et al. [14], Cutler and McClellan [15], Cutler [16] and Weil [17]. On the 
theoretical side, see, e.g., Ehrlich and Chuma [18], Ehrlich and Yin [19], and Hall and Jones [20]. 
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(alternatively, it may be assumed that for the period of ill-health they receive a pay-as-you-go 
health insurance bonus because they cannot work). 
    The main finding of the present paper is the following: when the conventional Diamond’s 
model with rational individuals is extended with the three assumptions above mentioned, the 
dynamics may be oscillatory. Moreover, both periodic and chaotic dynamics seem to be the 
rule rather than the exception for this simple one-dimensional OLG economy with logarithmic 
preferences and Cobb-Douglas technology. So far the OLG economic growth literature has 
shown that complex dynamics typically occur either in two-dimensional model under rational 
expectations, when the elasticity of substitution between capital and labour in production is 
sufficiently small (e.g., the case of Leontief technology),3 or in one-dimensional models when 
individual have myopic expectations.4 In the latter case, periodic and/or complex dynamics 
occur for high values of the inter-temporal elasticity of substitution in the utility function (e.g., 
Michel and de la Croix [41], de la Croix and Michel [42], Chen et al. [43], Fanti and Spataro 
[44]). In either cases of rational and myopic expectations, therefore, the OLG economy with 
logarithmic preferences and Cobb-Douglas technology represents a framework not prone to 
describe periodic or chaotic dynamic events, even if some exceptions do exist (Fanti and Gori 
[21], Fanti and Gori [45]). 
    In addition, the long-run dynamics described in the present paper shows a multiplicity of 
“bubbling” phenomena5 related to the bifurcation diagram (Stone [47]), i.e., a sequence of 
period doubling bifurcations is followed a sequence of period halving bifurcations, when 
either the pension contribution rate or health tax rate is included in an intermediate range of 
values. However, further increases in the pension contribution rate or the health tax rate 
eventually reduce economic fluctuations, thus properly working for the global stability of the 
economy. This twofold role is remarkable from an economic point of view: on the one hand, it 
contributes to explain the observed business cycles in per capita income – showing that an 
endogenous deterministic origin of economic cycles may complement the stochastic origin of 
it, the latter being at the core of the real business cycle theory (see, e.g., Kydland and Prescott 
[48], Long and Plosser [49]); on the other hand, the health tax rate may even be used to 
control and eventually suppress periodic or complex dynamics. Thus, the equilibrium 
dynamics in this simple economy may reconcile the existence of business cycles (Grandmont 
[50]) or monotonic dynamics (Galor and Ryder [51]) depending on the configuration of 
parameters. 
    The rest of the paper is organised as follows. Section 2 presents the model. Section 3 (resp. 
4) analyses the steady-state and dynamic outcomes when the health tax rate (resp. the 
contribution rate to the pension system) varies. Section 5 concludes. 
 
2. The economy 
 
2.1. Individuals 
 
Consider a general equilibrium OLG closed economy comprised of a continuum of rational and 
identical individuals of measure one per generation. Population is constant and there is no 
adult mortality, i.e., an individual is alive at the end of youth with certainty. Life of the typical 
                                                
3 For instance, Reichlin [35] discusses the Leontief case, while in the Farmer’s [36] example with a Constant 
Elasticity of Substitution (CES) technology, endogenous fluctuations can occur only whether the production 
function exhibits lower factor substitutability than the Cobb-Douglas function. 
4 Note that interesting economic models either with overlapping generations and discrete time or Ramsey-type 
models with continuous time exist, where nonlinear dynamics, oscillations and deterministic chaos are studied, 
especially with regards to problems of environmental sustainability and externality (see, e.g., Zhang [37], Antoci 
et al. [38], Antoci and Sodini [39], Chen and Li [40]). 
5 Pioneering discussions about similar dynamic outcomes can be found in Bier and Bountis [46] and Stone [47]. 
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agent is divided into youth (first period) and old-age (second period), as in Diamond [34]. An 
individual born at the beginning of time t  has preferences towards first-period consumption 
( tc ,1 ) and second-period consumption ( 1,2 tc ). When young, he/she is endowed with one unit 

of labour inelastically supplied to firms, while receiving wage income tw . This income is used 
for consumption and saving purposes. Moreover, the government collects wage income taxes 
at the constant rates 10   and 10  , with 10   , to separately finance health 
investments and public pensions, respectively. Therefore, the first-period budget constraint of 
individuals of generation t  reads as follows: 
 )1(,1   ttt wsc , (1.1) 

where ts  is saving. 
    The time endowment of an old individual of generation t  is divided between work time 
( 1td ) and retirement time ( 11  td ). He/she expects to receive the market wage 1t

ew  when 

he/she works, and (disability) pensions 1t
ep  when he/she retires (see, e.g., Hu [52], Momota 

[53]) because of ill-health. This amounts to say that the total retirement benefit depends on 
both the pension entitlement p  and length of retirement d1 . The budget constraint at time 

1t  of an old person born at time t  therefore is: 
 111111,2 )1()1(   t

e
tt

e
tt

e
tt pdwdsRc  , (1.2) 

where e
t

e
t rR 11 1    is the expected factor of interest from time t  to time 1t  on saving. 

Moreover, Eq. (1.2) implies that a tax on mature workers to finance pensions does exist (see 
Michel and Pestieau [54]). 
    We assume that the length of the work time when old, 1td , depends on an individual’s state 

of health when old, which is improved by health expenditure th  provided when young, i.e. the 
healthier an old individual, the larger the fraction of time spent working. In a content with 
exogenous (constant) population (namely, fertility and longevity), the assumption that an 
individual’s state of health when old (and the age of retirement accordingly) is determined 
only by public health investments provided when young, is general enough to capture the case 
under which an individual’s health status when old depends upon investments in health 
provided both when young and when old.6 
    The relationship between the length of work time of mature workers and health 
expenditure is captured by the following strictly increasing (thought bounded) function: 
 )(1 tt hdd  , (2) 

where 0)0( 0  dd , 1)(lim dhdh   and 10 10  dd . 
    Preferences of the individual representative of generation t  over young-age consumption 
and old-age consumption are described by the logarithmic utility function: 
 )ln()ln( 1,2,1  ttt ccU  , (3) 

where 10    is the degree of individual (im)patience to consume over the life cycle. He/she 
chooses how much to save out of his/her disposable income to maximise Eq. (3) subject to 
Eqs. (1.1) and (1.2), where actual and expected factor prices, the coefficient 1td , the tax rates 

and the expected pension benefit e
tp 1  are taken as given. Therefore, optimal saving for an 

individual are given by: 

                                                
6 See Footnote 8 for a discussion on the difference in assuming that an individual’s state of health when old 
depends on the public provision of health investments when young and when old in a model with exogenous or 
endogenous population. 
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2.2. Firms 
 
At time t  identical and competitive firms produce a homogeneous good, tY , by combining 

capital and labour, tK  and tL , respectively. The (aggregate) constant returns to scale Cobb-

Douglas technology is   1
ttt LAKY , where 0A  is a scale parameter and 10   the 

output elasticity of capital. The labour supply is )1( tt dLL  , where L  is the constant 
number of (young and old) workers in each cohort (see, e.g., Fanti and Gori [21], Gori and 
Sodini [55]);7 then, we set 1L  without loss of generality. Therefore, output per efficient 
worker ( ty ) as a function of capital per efficient worker ( tk ) is 

 
tt Aky  , (5) 

where ttt LYy /:  and ttt LKk /:  are output and capital per efficient labour. 
    By assuming that capital totally depreciates at the end of every period and output is sold at 
the unit price, firms maximise profit by taking factor prices as given, so that perfect 
competition guarantees that factor inputs are paid their marginal products, that is: 
 1  tt AkR , (6.1) 

  tt Akw )1(  . (6.2) 
 
2.3. Government 
 
The government separately finances health investments and unfunded pensions at a balanced 
budget by levying labour income taxes. 
    Health expenditure at time t  ( tthN ) is constrained by the amount of tax receipts ( tt wN  ), 

where 10   is the health tax rate and tN  is the number of young people in period t . 
Therefore, the health budget per young person in period t  reads as follows:8 
 tt wh  , (7.1) 
see Chakraborty [1], Bhattacharya and Qiao [23] and Fanti and Gori [45]. 
    PAYG pensions 1)1(  tttt NpdP  are also used to redistribute across generations, where tp  
is the per old pension expenditure in period t  weighted by the retirement time of the old that 
belong to generation 1t . Such an expenditure is financed by levying a constant wage income 
tax rate 10   on both young-age workers and old-age workers in every period, so that 

                                                
7 See also Michel and Pestieau [54] and Crettez and Le Maitre [56]. 
8 Things may be different if: (i) population (fertility and longevity) is endogenous, and (ii) an individual’s health 
status when old depends on health investments provided both when young and when old. In fact, the 

government budget constraint Eq. (7.1) modifies to: t
t

t
t w

n
h 




 )1(
1

1 , where 1tn  (resp. 1t ) is the rate of 

fertility (resp. longevity) at time 1t . Another interesting extension would be the assumption that an 
individual’s health status when old depends on public health investments provided when young and when old, 
and the government collects wage income taxes on both young workers and old workers accordingly. The budget 
constraint Eq. (7.1), therefore, modifies to )1( ttt dwh   and then through Eq. (1) one obtains 

))1(()( ttt dwdhd   . These extensions are left for future research. 
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ttttt wdNwN  1  represents the amount of tax receipts. Knowing 11  tt NN , the time- t  
per pensioner budget constraint of the government is given by the following accounting rule: 
 )1()1( tttt dwpd   . (7.2) 
 
2.4. General equilibrium 
 
Exploiting the one-period forward pension accounting rule Eq. (7.2) to substitute out for the 
pension expenditure, 11)1(  t

e
t pd , into Eq. (4) and using Eq. (2), saving can be rewritten as 

follows: 

 )]([
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    Given the government budget constraints Eqs. (7.1) and (7.2), market-clearing in the capital 
market yields the equilibrium condition: 
 ttt shdk  )](1[1 . (9) 

Since tt wh   and tw  depends on tk  through Eq. (6.2), then we can define 

)())1((:)( ttt hdAkdkD   .9 Now, let individuals have perfect foresight, i.e. 1
11

   t

e
t AkR  

and  11 )1(   t
e
t Akw . Then, by using Eqs. (8) and (9) capital accumulation is described by the 

following first order nonlinear difference equation: 

 
)(

)(
:)(1

t

t
tt kDF

kyI
kJk


 , (10) 

where 0)1)(1(:  I , 0)1()1(:  F , 01:   , F , and 

tt Akky )( from Eq. (5). 

 
3. Dynamics 
 
This section studies the existence and stability properties of the steady states of the map 
defined in Eq. (10). 
 
Proposition 1. (1) 0k  is a locally unstable steady state. (2) The infinity is not an attractor. 
 
Proof. It is easy to verify that 0k  is a stationary solution of Eq. (10). From the hypotheses 
stated below Eq. (2), we have that for 0k  

 k
G

IA
kJ )( .  

Then, it follows that 0k  is locally unstable. This prove point (1). In addition, 

 0
)(

lim,)(lim   k

kJ
kJ kk .  

This proves point (2). Q.E.D. 
 
Proposition 2. A unique non-trivial steady state 0* k  of the dynamic system described by Eq. 
(10) does exist. 
 

                                                
9 Therefore, the retirement age is endogenous as it depends on health expenditure, which in turn depends on 
capital accumulation. 
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Proof. Positive fixed points of the map are determined as interior solutions to )(kJk  , that 

can be rearranged as follows: )()( 21 kZkZ  , where  1
1 :)( kkZ  and 

)(
:)(2 kDF
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Since 1Z  and 2Z  are continuous functions and: (i) 0)0(1 Z , 0)1()(1   kkZ  for any 

0k ,  )(lim 1 kZk , and (ii) 0)0(
0

2 



G

IA

dF

IA
Z , where 0: 0  dFG , 

0
)]([
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)(

22 





kDF

kDIA
kZ  for any 0k  since 0)(  kD , then )()( 21 kZkZ   only once at *k  for 

any 0k . Q.E.D. 
 
From Propositions 1 and 2 it follows that the map Eq. (10) has the following properties: 

kkJ )(  for any *0 kk   (that is, the graph of J  lies above the 45° line) and kkJ )(  for 

any *kk   (that is, the graph of J  lies below the 45° line). 

    Now, let 
)(
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*
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kD

k
kDd   and 

)(
)(:

*

*
*

ky

k
kyy   be the elasticity of the supply of labour 

when old and the elasticity of GDP per efficient worker with respect to the stock of capital per 
efficient worker evaluated at *k , respectively. Then, the following proposition holds. 
 
Proposition 3. (Non-monotonic local dynamics). If 
 yd   , (11) 

and 

 

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F
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


:)(ˆ)( ** , (12) 

then the (local) dynamics described by Eq. (10) are non-monotonic and characterised by 
oscillations. 
 
Proof. By differentiating  kJ  with respect to k  and evaluating it at *k , we get: 

 
2*1*

*
*

)]([)(

)]()([
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kDFk

kDFIA
kJ ydy
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. (13) 

Since ))()(sgn())(sgn( ** kDFkJ ydy   , then: (1) for any yd   , 0)( *  kJ  always 

holds; (2) for any yd   , 0)( *  kJ  when )(ˆ)( ** kDkD   and 0)( *  kJ  when )(ˆ)( ** kDkD  . 

Q.E.D. 
 
It is important to stress that when conditions (11) and (12) are fulfilled, the dynamics around 

*k  can be either non-monotonic and convergent (damped oscillations) or non-convergent. 
This is shown below by using a particular functional form of the function D . In particular, in 
order to show: (i) the possibility of long-run non-monotonic (and/or complex) dynamics, and 
(ii) how the main long-run macroeconomic variables react to a change in either the size either 
of the pension system ( ) or the public health system ( ), we now introduce the following 
functional form of d  (see de la Croix and Ponthière [24], Blackburn and Cipriani [27]) that 
satisfies the general properties listed below Eq. (2), that is: 

 



t

t
tt

h

hdd
hdd





1

)( 10
1 , (14) 



L. Fanti, L. Gori, M. Sodini 

 8

where 0,  , 10 0  d , 110  dd , 0)0( 0  dd , 0
)1(

)(
)( 2

01
1












h

ddh
hd , 

1)(lim 1  dhdh , 0)(  hd  if 1  and 0)(

 hd  for any 






1

)1(

1
: 
















Thh  if 1 . 

    Eq. (14) captures several features of the ability to work when old of the typical agent as a 
function of the health measure h . In particular, it encompasses (i) the monotonic concave 
function used in the numerical examples by Chakraborty [1] and Leung and Wang [25] when 

1  and 00 d , while also preserving a positive exogenously given level of old age 
working period regardless of whether public health spending exists; (ii) the S-shaped function 
when 1  (i.e., threshold effects of public health investments exist) used in the numerical 
experiments by de la Croix and Ponthière [24] and Blackburn and Cipriani [27]. 
    The relationship between health status and income (which is a proxy of the public health 
spending in this model), has been shown to be S-shaped by Ecob and Davey Smith [57],10 by 
arguing that “these indices of morbidity, both self-reported and measured, are approximately 
linearly related to the logarithm of income, in all except very high and low incomes (this 
means that increasing income is associated with better health, but that there are diminishing 
returns at higher levels of income).” (p. 693). Moreover, Strauss and Thomas [58] contrast an 
index that captures nutritional status and health (the Body Mass Index) with the logarithm of 
wage income, and find an S-shaped relationship for Brazil (Strauss and Thomas [58], Figure 3, 
p. 774). 
    Now, by using Eq. (14) as a particular functional form of d , the map Eq. (10) becomes the 
following: 
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




G

dd

d

dd




 and 

G

IA

d

A






0)1()1()1(

)1)(1(
:




. From Eq. (15), we note that the parameter   enters 

only Q , and   and   are both decreasing functions of  , with   being a decreasing function 
of  . 
    In order to study the dynamic behaviour of the map Eq. (15), it is important to inquire about 
the monotonic properties of J .11 By simple calculations we find that: 
 )1])1(1[sgn())(sgn( 22    kQkQkJ . (16) 
If 1 , then 0)(  kJ  for any 0k . If 1 , then from Eq. (16), it is easy to recognise that 

the expression of )(kJ   is a quadratic equation in k  and the corresponding discriminant is 
the following: 
 ))1()1()(1(: 22   . (17) 
From straightforward calculation we have that 

                                                
10 See Ecob and Davey Smith (57, Figures 1 and 2, p. 698–700), where some indices of morbidity as a function of 
the logarithm of income for England, Wales and Scotland in 1984 and 1985 are presented. 
11 In general, for the map defined in Eq. (15) it is difficult to obtain analytical results about the number of 
attracting cycles since the Schwarzian derivative (see Devaney [59]) may change sign and no limitation on the 
first derivative of the map does exist (see Hommes [60] for a case in which such limitation allows to have a 
uniqueness result). 
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which in turn implies that 0  if and only if 

 1

1)1(

1)1(
:

01

01












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Gdd
G
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


 . (19) 

    Then, from Eq. (19) we have the following proposition. 
 
Proposition 4. Let J  be the map defined in Eq. (15). If   , then *k  is the global attractor of 
the map for positive initial conditions. 
 
In the case described by Proposition 4 the dynamics of map J  are monotonic and convergent 
to the steady state. This is in line with the result obtained in the standard Diamond’s model. 
    In contrast, by considering the case 0 , that is   , we find that: 

 1
1

1

1

1
2























, (20) 

from which it follows that 
 0)1(1   . (21) 
Thus, when   , by applying the Descartes’ rule of sign we find that two positive critical 
points maxk  (local maximum) and mink  (local minimum) exist, with maxmin kk  , whose 
coordinates are respectively given by: 

 

1

22

max 2

))1()1()(1()1()1(
:



















Q

k . (22) 

 

1

22

min 2

))1()1()(1()1()1(
:



















Q

k . (23) 

    Then, the map defined in Eq. (15) is bimodal in such a case. However, if max
* kk   or 

minkk  , then k  continues to be the unique global attractor of the dynamic system and, if 

trajectories start out from an initial condition sufficiently close to k , then they are 
monotonic. In contrast, if minmax kkk   , then the dynamics can be dramatically different. 
However, in this case (see Mira [61]) trajectories with a positive initial stock of capital fall in 
the forward invariant interval )](,)([ minmax kJkJ . 
    Amongst the parameters of the model, in what follows we concentrate on the study of the 
dynamic effects of changes in the health tax rate   and the contribution rate to the pension 
system   (Section 4), given the importance of them as policy parameters. 
    We now study the dynamics of map (15) by focusing on the role played by the health tax 
rate  . First, we note that   does not enter the discriminant Eq. (17). This implies that by 
assuming a parameter constellation such that the critical points maxk  (local maximum) and 

mink  (local minimum) exist, they continue to exist when   varies. Second, we note that   
belongs to the interval  1,0 . In particular, (1) when  1  map (15) boils down into 

0)( kJ . This, in turn, implies that 0k  is superstable. It is important to note that 0max k  

and 0min k  even if  1 , while (2) when 0  the critical points maxk  and mink  are moved 
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towards  . Point (2) implies that a threshold value 01   exists such that map (15) admits 
a globally stable fixed point for any 1  : the critical points maxk  and mink  are located on the 

right of the fixed point *k  and both maxmax )( kkJ   and minmin )( kkJ  . On the other hand, by 
starting from a value of the health tax rate such that  1 , we note that the graph of the 
map moves towards the abscissa line. Then, a threshold value 02   exists such that the 

critical points maxk  and mink  are located on the right of the fixed point *k  and both 

maxmax )( kkJ   and minmin )( kkJ  . This implies that the graph of the map crosses the diagonal in 

its initial increasing branch; then, a globally stable fixed point exists for any 2  .12 Figure 1 
depicts in a stylised way the alteration in the shape of the graph of the map when 0  and 

 1 . Notice alto that alteration in the graph of the map when   varies does not 
necessarily imply the existence of complex dynamics. It is possible that the critical points maxk  

and mink  are located on the right of *k  for any )1,0[    or, alternatively, even if a range of 

  such that minmax kkk    exists, then 1)( *  kJ  for any )1,0[   . 
 

 
Figure 1. (   ). Alteration in the shape of the graph of J  (Eq. 15) when 0  and when 

 1 . 
 
    However, it is possible to refine the knowledge of the dynamic behaviour of the map defined 
in Eq. (15) by introducing some hypotheses about the configuration of parameters, the results 
of which are summarised in the following proposition. 
 
Proposition 5. Let    and A  be sufficiently large. Then, there exists at least )1,0[    

(resp. )1,0[   ) such that  kkmin  (resp.  kkmax ). If 1)(  flexkJ  for any ),(   , where 

flexk  is the unique inflection point of J  in the interval ),( minmax kk , then there exists 

   such that map (15): 

    (1) admits a locally asymptotically stable fixed point *k  for any ),(   ; 

                                                
12 We note that 1  (resp. 2 ) is the highest (resp. lowest) value of  , when it exists, such that 1)( *  kJ . 

Otherwise, 1  (resp. 2 ) coincides with 1  (resp. 0 ). 
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    (2) generically13 undergoes a flip bifurcation when   , and an attracting two-period cycle 
around the fixed point *k  is born; 
    (3) generically undergoes a flip bifurcation when   , and an attracting two-period cycle 
around the fixed point *k  is born; 
    (4) admits a locally asymptotically stable fixed point *k  for any ),(   . 
 
Proof. Consider a sufficiently large value of A  such that minmin )( kkJ  . This can always be 
assumed because the map defined in Eq. (15) is increasing and unbounded with A . From the 
study of the second derivative of J , it follows that a unique maximum point flexk  of J   exists 

in the interval ),( minmax kk . Then, by the properties of J  there exist )1,0[,   , with   , 

such that  kkmin  and  kkmax , respectively. By the continuity of )( *kJ  , considered as a 

function of  , and by the hypothesis that 1)(  flexkJ  for any ),(   , we have the existence 

of  ,  , with   , such that 1)( *  kJ  and 1)( *  kJ . By the shape of J , the 

stability properties of cycles hold. Q.E.D. 
 
Remark 1. In general, the study of map J  defined in Eq. (15) shows more intricate bifurcation 
sequences, when   varies, than those usually classified in the literature on bimodal maps (see, 
e.g., Skjolding et al. [62], which describe the skeleton of the bifurcation pattern of a cubic map, 
and Hommes [60], which classifies the dynamics of a family of bimodal maps, with first order 
derivative bounded from above, when its graph is vertically shifted). This is due to the fact that 
  induces deep changes in the shape of the graph of J . In particular, by starting from  kkmin  
and 1)(  flexkJ , it is possible to observe that 1)(  flexkJ  as   raises, so that no flip 

bifurcation occurs.14 Hence, the need to assume that 1)(  flexkJ  for any ),(   . Although 

this is a strong assumption, it is easy to be verified, because flexk  can be solved in closed-form. 

 
Proposition 5 allows us to get information on the values of   for which the fixed point *k  is 
“close enough” to the critical points maxk  and mink . Indeed, this leaves a question on what can 
happen from a dynamic point of view when   is included in an intermediate range of values. 
    In order to clarify the interesting dynamic properties of the system defined in Eq. (15), we 
now resort to some numerical experiments by taking the following configuration of 
parameters: 45.0  (which is an average between the values usually referred to developed 
countries, i.e. 36.0 , see e.g., Gollin [63], Kehoe and Perri [64], and those usually used for 
developing countries, i.e. 5.0 , see Purdue University’s Global Trade Analysis Project 2005 
database – GTAP), 6.0  (see Žamac [65]), 3.0  (see, e.g., Feldstein [66], Liikanen [67]), 

00 d , 9.01 d , 50 , and 50 . Then, we let health tax rate   vary as the bifurcation 
parameter, given the importance of it as a policy variable chosen by the government. Note that 
the choice of 50 15 amounts to assume that health investments have a stronger effect in 

                                                
13 For some parameter values it is possible that the condition on the mixed derivative of higher order (see 
Devaney [59]) is not fulfilled. 
14 As an example, for the following parameter set: 1.14A , 45.0 , 6.0 , 58.0 , 3.0 , 00 d , 

9.01 d , 50  and 50 , we have that 0256.0min
*  kk  and 524.1)(  flexkJ . Nevertheless if we 

let   increase, no bifurcation occurs due to the strong “flattening” of the graph of the map. 
15 Note that if )(hd  in Eq. (14) is a concave function (i.e. 1 ), the condition yd    cannot hold and, hence, 

non-monotonic trajectories can never be observed in such a case. 
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improving an individual’s state of health when a certain threshold value of health investments 
is achieved, while becoming scarcely effective when the ability to work is close to its 
saturating value.16 The simplest possible bifurcation scenario is obtained when a flip 
bifurcation emerges and it is followed by a reverse flip bifurcation without any further 
dynamic events, as it can be seen by looking at Figure 2.a where 5.8A . By increasing the 
value of the production scale parameter to 7.8A , Figure 2.b shows that a second period 
doubling bifurcation and a subsequent period halving occur. For larger values of A , the 
number of period doubling and period halving bifurcations increases, as depicted in Figures 
2.c ( 8.8A ) and 2.d ( 9.8A ), where an apparently chaotic attracting set emerges. Figures 
2.a-2.d are characterised by the existence of a global attractor for polar values of  , and 
cyclical or more complex behaviours for an intermediate range of values of  .17 The dynamic 
scenario drastically changes for larger values of A . The bifurcation diagram for   plotted in 
Figures 2.e ( 10A ) and 2.f ( 14A ) show several ranges of the bifurcation parameter where 
both a stable periodic and apparently chaotic behaviour alternate several times. In particular, 
Figure 2.f depicts the case where a window where the steady state   is a global attractor 
exists between two different “bubbles”. This last phenomenon is due to the fact that when   
varies we observe both horizontal and vertical alterations in the shape of the graph of the 
map, such that ))(,( maxmax kJk  and ))(,( minmin kJk  cross the 45° line several times. 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (a)              (b) 
 
 
 
 
 
 
 
 
 
 

                                                
16 As an example, think of the existence of threshold effects in the accumulation of knowledge required for new 
medical advances and discoveries in the treatment of diseases (e.g. vaccines) to be effective: the public health 
expenditure to finance new research projects may be high and apparently useless as long as a certain degree of 
knowledge is achieved. Beyond such a threshold, however, a “jump” effect exists that allows to trigger and bring 
the beneficial effects of the new discoveries to light, to make them efficient, usable and operative across 
population and eventually transformed into better health for older people. 
17 Note that similar phenomena have been studied and classified for analogous (bimodal) maps by using the 
kneading theory (see, e.g., MacKay and Tresser [68]). 
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(c)        (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(e) (f) 
Figure 2. Parameter set: 45.0 , 6.0 , 3.0 , 00 d , 9.01 d , 50 , and 50 . 
Bifurcation diagram with respect to   for different values of A . (a) 5.8A : one period 
doubling bifurcation followed by one period halving bifurcation. (b) 7.8A : an example of 
finitely many period doubling and period halving bifurcations. (c) 8.8A  and (d) 9.8A : 
apparently infinitely many period doubling and period halving bifurcations which generate a 
chaotic set. (e) 10A : stable periodic and apparently chaotic behaviour alternate one time. 
(f) 14A : stable periodic and apparently chaotic behaviour alternate several times. 
 

 
Figure 3. Lyapunov exponent plotted against   in the case corresponding to Figure 2.d 
( 9.8A ). The (positive) value of the Lyapunov exponent ( Le ) implies sensitive dependence 
on initial conditions of the system for some ranges of  .18 
 
4. Dynamics when   varies 
 

                                                
18 As is well known a positive value of the Lyapunov exponent does not necessarily imply the existence of a 
chaotic set. Nevertheless, for some parameter values the Li and Yorke [69] theorem can be applied to show the 
existence of a three-period cycle. 
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In this section we study how the long-run and dynamic outcomes of the system defined by Eq. 
(15) change when the contribution rate to the pension system ( ) varies. We also present 
some comparative static exercises to study how a change in   affect steady state outcomes in 
a Chakraborty-type economy with tax-financed health expenditure. With regard to the steady 
state, we now perform numerical experiments to show how the main macroeconomic 
variables react when   varies for a given level of  . The configuration of parameters is the 
following: 22A , 45.0 , 6.0 , 06.0 , 00 d , 9.01 d , 50 , and 1 . To this 
purpose, Table 1 illustrates Figure 4 with regards to the effects of a rise in   on the steady 
state stock of capital per efficient worker, while also reporting the steady state values of per 
capita health expenditure, *h , the length of time spent working when old, *d , the level of per 
capita GDP, )1()( *** dkAY   , the ratio of per capita health spending to per capita GDP, 

** /Yh , and the ratio of the per capita pension expenditure to per capita GDP, 
*

**)1(

Y

pd
. 

 

 
Figure 4. Phase map Eq. (15) when   raises ( 06.0 ). 
 
Table 1. Steady-state macroeconomic variables when   varies. 

  0 0.05 0.1 0.15 0.25 0.3 0.5 
*k  2.5 2.31 2.21 2.15 2.06 2.02 1.77 
*h  1.09 1.05 1.03 1.02 1 0.98 0.94 
*d  0.89 0.85 0.78 0.70 0.51 0.42 0.04 
*Y  62 59 56 52 46 42 29 

** /Yh  0.017 0.017 0.018 0.019 0.022 0.023 0.031 

*

**)1(

Y

pd
 

0 0.02 0.05 0.08 0.137 0.16 0.275 

 
Then, the following results hold. 
 
Result 1. The steady-state stock of capital per efficient worker ( *k ), the per capita health 
expenditure ( *h ), the length of the work time when old ( *d ), and the per capita GDP ( *Y ) 
monotonically reduce as   raises. 
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Result 2. The ratio of per capita health expenditure to per capita GDP at the steady state 

( ** /Yh ) and the ratio of capita pension expenditure to per capita GDP (
*

**)1(

Y

pd
) 

monotonically increase as   raises. 
 
The economic intuition behind Results 1 and 2 is the following. An increase in PAYG pensions 
causes an expected negative effect on capital accumulation and wages, and this in turn 
reduces health expenditure. Although the reduction in health spending is small and the ratio 
between health spending to GDP slightly increases,19 the worsening in the state of health 
status and the corresponding reduction in the ability to work, is large: for example, while in 
the absence of public pensions ( 0 ) mature workers spend 89 per cent of their second 
period of life to work, when pension benefits are close to the values observed in several 
European countries ( 15.0 , see Liikanen, 2007), the work time when old reduces to 70 per 
cent of the whole time endowment. When the contribution rate further increases to 25-30 per 
cent of wage income, as predicted by several economists for the near future, the time spent 
working when old dramatically reduces. Thus, the higher is the size of disability pensions, the 
lower the individual state of health because capital accumulation per efficient worker and per 
capita GDP reduce. The reduction in capital accumulation causes a reduction in wages earned 
by both the young and the old in the long run. The reduction in the former causes, in turn, a 
reduction in health expenditure which is eventually transformed into bad health. Therefore, a 
rise in the contribution rate to the pension system requires an increases in the health tax rate 
to keep health expenditure (and the individual health status) unchanged. The negative effect 
on the (neoclassical) economic growth is therefore due to a twofold channel: (i) a crowding 
out effect of PAYG pensions on saving and capital accumulation, and (ii) a negative effect on 
the labour supply of mature workers, because of a sort of crowding out effect of PAYG 
pensions on health spending. This mechanism, therefore, resembles rather to a vicious circle: 
the higher the size of the PAYG system, the larger the number of pensioners. 
    With regard to dynamic outcomes, the classification of bifurcation patterns when   varies 
is more difficult to be handled from an analytical point of view, because   enters the 
expression of the discriminant Eq. (17). This implies that the graph of map J  can either be 
monotonic or bimodal as long as   changes. In particular, the map is monotonically increasing 
if and only if the discriminant in Eq. (17) is negative. By solving with respect to  , we have 
that: 
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Then, by the study of Eq. (24) the following proposition follows. 
 
Proposition 6. (1) If 0 , then for any given positive initial condition 0k , the dynamics are 
monotonic for any )1,0[   . (2) If   10 , then for any given positive initial condition 

0k , the dynamics are monotonic for any )1,(   . 

                                                
19 Note that the ratio of both per capita health spending to per capita GDP and pension expenditure to per capita 
GDP are close to the actual values observed for some industrialised countries (see World Bank [70], World 
Health Statistics [71]), going from 1.7 per cent to 2.2 per cent and from 0 per cent to 13.7 per cent, respectively, 
when   raises from zero up to 0.25. 
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From Proposition 6, it follows that for  1  the map admits a unique locally 
asymptotically stable fixed point *k . In case (2) of Proposition 6, however, things result to be 
much more complicated when 0  since any of the possible dynamic regimes described in 
Section 3 can be observed for any 0 . In particular, different from the case 0 , small 
values of   do not necessarily induce the existence of a global attractor (see Figure 5). 
 

 
Figure 5. Bifurcation diagram for  . Parameter set: 33A , 45.0 , 6.0 , 022.0 , 

00 d , 9.01 d , 59 , and 1 . 
 
Focusing on case (2) of Proposition 6, we note that large values of   play a stabilising role. 
From a bimodal map with nonlinear dynamics when 0 , we get an increasing map where 
the fixed point represents the global attractor of the system when   , whatever the 
(positive) initial value of the stock of capital per efficient worker the economy start with. This 
result can be extended (at least locally) for any  . 
    By considering a parameter constellation characterised by nonlinear dynamics when 0 , 
the map boils down into 0)( kJ  when  1 . Then, a threshold value   exists such that 
the fixed point is locally asymptotically stable for any   . This means that if an economy 
starts with an initial condition close enough to the long-run equilibrium, the dynamics are 
convergent with monotonic trajectories. 
    The bifurcation diagram for   depicted in Figure 6 shows (the other parameters are the 
same as those used in Table 1) that for an economically meaningful range of values of   a 
stable periodic and an apparently chaotic behaviour alternate one times with a stable two-
period cycle between the two “bubbles”. 
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Figure 6. Bifurcation diagram for   ( 06.0 ). 
 
5. Conclusions 
 
Health is an important determinant of economic growth and development of nations (Zhang 
et al. [72], [73], Acemoglu and Johnson [74]), as it directly affects mortality rates of humans. 
As stressed by Weil ([17], p. 1265): “People in poor countries are, on average, much less 
healthy than their counterparts in rich countries”. This phenomenon has had dramatic effects 
on macroeconomic variables in underdeveloped, developing and developed countries across 
history and then it has stimulated economists to understand the reasons why some countries 
are rich and some countries are poor, as well as the reasons why the quantity and quality of 
life is different between them (Acemoglu et al. [75], Becker et al. [6]). 
    A bourgeoning theoretical literature based on models with overlapping generations deals 
with the effects on economic growth of public and private health expenditure in models with 
endogenous lifetime (Blackburn and Cipriani [27], Chakraborty [1], Chakraborty and Das [22], 
Bhattacharya and Qiao [23], Fanti and Gori [45]). In this class of models, however, less 
attention has been paid to the study of economies where an individual’s state of health affects 
both the ability and productivity to work (Fanti and Gori [21]). This study has analysed the 
long-run dynamics of an overlapping generations model with capital accumulation and tax-
financed public pensions, by assuming that the age of retirement of an old individual is 
contingent on his/her state of health, which is in turn improved by the public provision of 
health care services when young. If an individual’s health status when old is good, an agent 
works and earns wage income. If an individual’s health status when old is bad (ill-health), an 
agent cannot work and he/she is entitled to a pension benefit (disability pensions). 
    We have found that periodic and/or complex dynamics can occur when individuals have 
perfect foresight when the size of the public health system (for any given level of public 
pensions) or the pension system (for any given level of health expenditure) is included in an 
intermediate range of values. In addition, multiple “bubbling” phenomena can also be 
observed. Since problems concerning retirement age, disability pensions and health spending 
currently figure prominently on both the pension and public health system reform agendas in 
several developed and developing countries, we believe that our analysis may be useful to 
understand the effects of such policies on the dynamics of capital in a theoretical model. 
    As a possible extension, one can take demographic variables explicitly into analysis, so that 
problems about endogenous fertility under either weak altruism towards children (Eckstein 
and Wolpin [76], Eckstein et al. [77], Galor and Weil [78], Zhang and Zhang [79]) or pure 
altruism towards children (Barro [80], Becker and Barro [81], Barro and Becker [82]), and 
endogenous mortality (private and/or public investments in health) can be added. 
Alternatively, the study of possible complex dynamics in a general equilibrium model with 
infectious disease transmission à la Chakraborty et al [83] may be of interest. 
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