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Abstract. In the last few years many numerical techniques for computing eigenvalues of structured rank
matrices have been proposed. Most of them are based on QR iterations since, in the symmetric case, the rank
structure is preserved and high accuracy is guaranteed. In the unsymmetric case, however, the QR algorithm
destroys the rank structure, which is instead preserved if LR iterations are used. We consider a wide class of
quasiseparable matrices which can be represented in terms of the same parameters involved in their Neville
factorization. This class, if assumptions are made to prevent possible breakdowns, is closed under LR steps.
Moreover, we propose an implicit shifted LRmethod with a linear cost per step, which resembles the qd method
for tridiagonal matrices. We show that for totally nonnegative quasiseparable matrices the algorithm is stable
and breakdowns cannot occur if the Laguerre shift, or other shift strategy preserving nonnegativity, is used.
Computational evidence shows that good accuracy is obtained also when applied to symmetric positive definite
matrices.
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1. Introduction. In the recent literature quasiseparable matrices have received a
great deal of interest (see [8], [9], [4], and references therein). In fact, matrices with this
structure appear naturally in many application fields such as systems theory, signal pro-
cessing, or integral equations. Also covariance matrices, or matrices involved in multi-
variate statistics or discretization of elliptic PDEs, often have the quasiseparable
structure.

The class of quasiseparable matrices includes many important matrices such as com-
panion matrices of polynomials, tridiagonal matrices and their inverses (Green’s qua-
siseparable), unitary Hessenberg matrices, and banded matrices. In [8] the class is
proved to be closed under inversion, and a linear complexity inversion method is
proposed.

An interesting research topic is the development of fast algorithms, both for the
solution of linear systems and for eigenvalue and eigenvector computations, taking ad-
vantage of the representation of the matrix in terms of a small number of parameters.

The main purpose of this paper is to propose an LR scheme for eigenvalue compu-
tations of a quasiseparable matrix not necessarily Hermitian. In fact, for unsymmetric
quasiseparable matrices, it is well known that the QR algorithm destroys the rank struc-
ture with an increase of the cost of the computation of the eigenvalues. The LR algo-
rithm, on the contrary, maintains the rank structure providing a valid alternative once
the stability is guaranteed. The main objection to the use of LR iterations is the possible
instability. However, Fernando and Parlett [10] and Parlett in [17] suggested applying
the LR algorithm to symmetric positive definite tridiagonal matrices, showing the good
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performance and stability of the qd-type methods over the standard QR
method. The idea behind qd-type algorithms, first proposed by Rutishauser [20], is
to represent tridiagonal matrices as the product of the bidiagonal factors of the LU fac-
torization and to update the bidiagonal factors with formulas requiring only quotients
and sums. The algorithm is highly accurate and has become one of LAPACK’s main
tools for computing eigenvalues of symmetric tridiagonal matrices. Since many interest-
ing algorithms for semiseparable and quasiseparable matrices have been derived from
similar techniques employed on tridiagonal matrices (see, for example [16], [19], [23]),
our idea is to design an algorithm inspired by the qd-type algorithms. While these algo-
rithms for tridiagonals perform well on symmetric positive definite matrices, it turns out
that the methods we propose in this paper achieve a high accuracy and stability when
applied to totally nonnegative (TN) quasiseparable matrices.

The association between TN and quasiseparable matrices was recently made by Do-
pico, Bella, and Olshevsky in two different talks [6], [7] and by Gemignani in [14]. They
presented necessary and sufficient conditions to verify if a quasiseparable matrix is TN,
and they proposed fast and stable algorithms for the solution of linear systems. In [14]
the more general case of order-r semiseparable matrices has been exploited.

A historical example of a TN and quasiseparable matrix is the discrete Green func-
tion for a string with both ends fastened [11].

For TN matrices, we are able to prove that the algorithms here proposed for the
computation of the eigenvalues are subtraction-free and turn out to be very effective
when combined with the Laguerre shift strategy. The formulation of the algorithms
in terms of recurrences, where some intermediate variables are introduced to avoid pos-
sible cancellations, makes these methods similar to the qd-type algorithms for tridiago-
nal matrices. For quasiseparable, TN matrices Gemignani in [14], following an idea of
Koev [15], sketched an algorithm for the reduction into a similar tridiagonal form. We
extend this algorithm for the matrices that we call Neville-representable (see section 3),
showing the effectiveness when associated with a qd scheme.

The paper is organized as follows. In section 2 some preliminary definitions and
results are provided. In section 3 the class of Neville-representable quasiseparable ma-
trices is introduced, and structural results for the L andR factors of the LU factorization
of matrices in this class are given. A complete characterization of the class of the Neville-
representable quasiseparable matrices is given in terms of the generators of the quasi-
separable matrix. Section 4 contains a description of the shifted LR iterations and the-
oretical results about the preservation of the structure. The study of the numerical
stability and of the computational cost of the proposed methods is addressed in section 5.
In section 6, as an alternative for the computation of the eigenvalue, we show a tridia-
gonalization procedure that can be followed by qd-type iterations as well as any other
eigensolver for unsymmetric tridiagonal matrices. Section 7 contains the numerical ex-
periments. In particular, we tested our methods on both random unsymmetric matrices
and TN matrices. The results show a good performance in terms of time required and
accuracy achieved, also for matrices not TN. A comparison for symmetric matrices with
EIGSSD routine1—implementing implicit QR steps—is performed, showing the better
behavior of our methods still achieving a comparable accuracy.

2. Preliminary results. In this section we present some preliminary results that
will be useful in the remaining parts of the paper.

1EIGSSD is a function included in the MATLAB package SSPACK, accompanying the book [25], and it is
available online at http://www.cs.kuleuven.be/~mase/.
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In the paper we will use the MATLAB-like notation to denote the lower (upper)
triangular part of a matrix. In particular, trilðA; kÞ denotes the lower triangular part
of the matrix A below and including the kth diagonal, that is, trilðA; kÞ ¼ faijjj−
i ≤ kg, and triuðA; kÞ denotes the upper triangular part of the matrix A above and in-
cluding the kth diagonal, that is, triuðA; kÞ ¼ faijjj− i ≥ kg. Note that the index k in
these definitions can also be negative; hence k ¼ 0 is the main diagonal, k > 0 is above
the main diagonal, and k < 0 is below the main diagonal. Similarly diagðv; kÞ denotes the
matrix with the elements of vector v on the kth diagonal. We denote by vi∶j the partial
product of the entries of vector v, from index i to index j, that is, vi∶j ¼ viviþ1 · · · vj,
where i ≤ j.

DEFINITION 1. An n× n matrix S is called a semiseparable matrix if the following
properties are satisfied:

rank Sði∶n; 1∶iÞ ≤ 1; rank Sð1∶i; i∶nÞ ≤ 1 for i ¼ 1; : : : ; n− 1:

All semiseparable matrices S ¼ ðsijÞ can be represented by using six vectors u, v, t,
p, q, and r in this way (see Definition 2.14 in [24]):

sij ¼
8<
:

uiti−1∶jvj; 1 ≤ j < i ≤ n;
uivi ¼ piqi; 1 ≤ j ¼ i ≤ n;
piri∶j−1qj; 1 ≤ i < j ≤ n:

ð2:1Þ

DEFINITION 2. Amatrix S is called a generator-representable semiseparable matrix if
there exist four vectors u, v, p, and q such that

sij ¼
8<
:

uivj; 1 ≤ j < i ≤ n;
uivi ¼ piqi; 1 ≤ j ¼ i ≤ n;
piqj; 1 ≤ i < j ≤ n:

ð2:2Þ

In the case S is irreducible, t and r in (2.1)can be chosen as unit vectors, and S is
then generator-representable. If some ti or ri is zero, S is reducible. However, if S is
reducible but symmetric or triangular, then it can always be expressed as the direct
sum of two or more generator-representable matrices. See [2] for the details.

The class of matrices that can be represented as the sum of a semiseparable and a
diagonal matrix is called the class of the semiseparable plus diagonal matrices.

In this paper a generalization of the semiseparable plus diagonal matrices is con-
sidered, that is, the class of quasiseparable matrices introduced in [8], [21].

There are many definitions of quasiseparable matrices [24]. The most general is the
following.

DEFINITION 3. An n× n matrix S is called a quasiseparable matrix if the following
conditions are satisfied:

rank Sðiþ 1∶n; 1∶iÞ ≤ 1; rank Sð1∶i; iþ 1∶nÞ ≤ 1 for i ¼ 1; : : : ; n− 1:

This definition captures semiseparable matrices, tridiagonal matrices, and semise-
parable plus diagonal matrices. Note that singular matrices as well as block diagonal
matrices are included in the class, while this does not happen if other definitions are
chosen.

A very convenient way to represent quasiseparable matrices is the one introduced in
[5], [8]. The Givens-vector representation as well as the generator representation
can both be considered as special cases of this quasiseparable representation [24].

qd-TYPE METHODS FOR QUASISEPARABLE MATRICES 3



An unsymmetric quasiseparable matrix A can be expressed by means of 7n− 8 para-
meters, as follows:

A ¼

0
BBBBBBBBBB@

δ1 q2p1 q3r2p1 q4r3∶2p1 · · · qnrn−1∶2p1
u2v1 δ2 q3p2 q4r3p2 · · · qnrn−1∶3p2
u3t2v1 u3v2 δ3 q4p3 · · · qnrn−1∶4p3

u4t3∶2v1 u4t3v2 u4v3
. .
. ..

.

..

. ..
. ..

.
δn−1 qnpn−1

untn−1∶2v1 untn−1∶3v2 untn−1∶4v3 · · · unvn−1 δn

1
CCCCCCCCCCA
:ð2:3Þ

Note that the redundancy of parameters allows us to express quasiseparable matrices
with zero subblocks. The relevance of this representation is proved by the following the-
orem proven in [24].

THEOREM 1. Amatrix A is quasiseparable if and only if it is representable as in (2.3).
In what follows, we prove some preliminary results about representations of qua-

siseparable matrices, which will be useful in the remaining part of the paper.
COROLLARY 2. A quasiseparable matrix A can be decomposed as A ¼ S ðuÞ þQ,

where Q is a lower triangular matrix and

S ðuÞ ¼

2
6664
0
..
.

Sn−1

0

0 0 · · · 0

3
7775:

Sn−1 is an ðn− 1Þ× ðn− 1Þ symmetric semiseparable matrix, representable with para-
meters q ¼ ðq2; : : : ; qnÞT , p ¼ ðp1; : : : ; pn−1ÞT , r ¼ ðr2; : : : ; rn−1ÞT , and in view of the
symmetry, u ¼ q, v ¼ p, and t ¼ r (see (2.3)). SimilarlyA ¼ S ðlÞ þ P, where SðlÞ embeds
a symmetric semiseparable matrix of size n− 1 with zeros in the first row and in the last
column, and P is upper triangular.

Proof. From (2.3) we see that the upper right ðn− 1Þ× ðn− 1Þ minor of A has a
semiseparable structure (2.1) in the upper triangular part. We set Sn−1 ¼ triuðA; 1Þþ
trilðAT;−2Þ. Matrix Q is defined as the difference between A and SðuÞ, and it is easy to
see that it is lower triangular. ▯

LEMMA 3. If a quasiseparable matrix A is such that ri ≠ 0 for i ¼ 2; : : : ; n− 1 in the
representation (2.3), thenA can be decomposed into the sum of a lower triangular matrix
and a rank-one matrix.

Proof. Using Corollary 2, A ¼ S ðuÞ þQ. If ri ≠ 0, we can define the vectors q̂ and p̂
as follows:

8>><
>>:

q̂1 ¼ 0;

q̂2 ¼ q2;

q̂i ¼ qiri−1ri−2 · · · r2; i ¼ 3; : : : ; n;

8>><
>>:

p̂1 ¼ p1;

p̂i ¼ pi ∕ ðriri−1 · · · r2Þ; i ¼ 2; : : : ; n− 1;

p̂n ¼ 0:
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We have S ðuÞ ¼ p̂q̂T þ Z , where Z is a lower triangular matrix. ThenA ¼ p̂q̂T þK with
K ¼ Q þ Z , and then it is the sum of the rank-one matrix p̂q̂T and the lower triangular
matrix K . ▯

3. The Neville representation. Neville elimination is a classical elimination
technique which, differently from the standard Gaussian method, uses consecutive rows
(columns) to reduce a matrix into an upper (lower) triangular form. When this elim-
ination can be completely accomplished over rows and columns to reduce the matrix to
diagonal form without interchanges, its formulation in terms of Gauss elementary ma-
trices allows us to represent the matrix as the product of OðnÞ bidiagonal matrices.
These factors give the Neville representation of the matrix, which is called Neville-
representable. Neville elimination for rank-structured matrices is considered in [14].

In this section we introduce a subclass of quasiseparable matrices which are Neville-
representable.

We first present some general results about the LU factorization of a quasiseparable
matrix, and then we consider the Neville representation of a quasiseparable matrix,
showing conditions for its existence.

With the LU factorization, the standard factorization of a matrix into the product
of a unit lower triangular matrix and of an upper triangular matrix is meant. In the
following, we will denote with L unit lower triangular matrices and with R unit upper
triangular matrices.

THEOREM 4. Let A be a quasiseparable matrix, and assume there exist L, R, and D
such that A ¼ LDR, where L and R are unit lower and upper triangular and D is diag-
onal. Then L and R can be chosen having quasiseparable structure. Moreover, L and R
can be represented, according to (2.3), with the same parameters ui, ti, qi, ri appearing
in the representation of A.

Proof. Since A is LU -factorizable, if A is nonsingular, then it is also strongly non-
singular, and the thesis follows from a known result, which states that in this case L and
R must be quasiseparable (see [24, p. 171]).

In the case A is singular, we have that at least one of the diagonal entries di of D is
zero. Writing A ¼ S ðlÞ þ P, where SðlÞ is strictly lower triangular and quasiseparable,
and P is upper triangular, we have LD ¼ AR−1 ¼ S ðlÞR−1 þ PR−1, and looking at
the trilðLD;−1Þ ¼ trilðSðlÞR−1;−1Þ, we see that LD is quasiseparable, and the genera-
tors can be expressed in terms of the generators of A. In detail, denote by u, v, t the
generators of the lower triangular part ofA, by ~u, ~v, ~t the generators of trilðLD;−1Þ, and
by wij the (i, j)th entry of R−1, we can take, e.g.,

~ui ¼ ui; ~ti ¼ ti; ~vi ¼
Xi

j¼1

ti∶jþ1vjwji:

Thus L can be chosen, in infinitely many ways, as a unit lower triangular semiseparable
matrix, generated by the same ~u, ~~v, ~t, where ~~vidi ¼ ~vi.

Similarly, R can be chosen as a unit upper triangular semiseparable matrix, gener-
ated by the same q, r generating the upper triangular part of A. ▯

Now we will consider a set of quasiseparable matrices which are Neville-represen-
table. A Neville-representable matrix can be expressed as a product of this form
(see [12]):

Lðn−1Þ · · · Lð1ÞDRð1Þ · · · Rðn−1Þ;
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where D is diagonal, and the factors LðiÞ, RðiÞ are unit bidiagonal, lower and upper, re-
spectively, with zero entries in these positions:

L
ðiÞ
kþ1;k ¼ R

ðiÞ
k;kþ1 ¼ 0 for k ¼ 1; : : : ; i− 1:

DEFINITION 4. Let S be the set of matrices A admitting the following factorization:

A ¼ LsL1DR1Rs;ð3:1Þ

where

L−1
s ¼

0
BBBBBB@

1

−x1 1

−x2 1

. .
. . .

.

−xn−1 1

1
CCCCCCA
; L1 ¼

0
BBBBBB@

1

−a1 1

−a2 1

. .
. . .

.

−an−1 1

1
CCCCCCA
;

R1 ¼

0
BBBBBB@

1 −b1
1 −b2

. .
. . .

.

1 −bn−1

1

1
CCCCCCA
; R−1

s ¼

0
BBBBBB@

1 −y1
1 −y2

. .
. . .

.

1 −yn−1

1

1
CCCCCCA
;

and D is a diagonal matrix.
It is straightforward to see that the matrices introduced by Definition 4 are LU -fac-

torizable and quasiseparable. Moreover, they are also Neville-representable, because if
we set

LðiÞ ¼ I þ diagðxiei;−1Þ; RðiÞ ¼ I þ diagðyiei; 1Þ; i ¼ n− 1; : : : ; 2;

Lð1Þ ¼ ðI þ diagðx1e1;−1ÞÞL1; Rð1Þ ¼ R1ðI þ diagðy1e1; 1ÞÞ;

where ei is the ith vector of the canonical basis of Rn−1, we have

A ¼ LsL1DR1Rs ¼ Lðn−1Þ · · · Lð1ÞDRð1Þ · · · Rððn−1ÞÞ;

that is, the Neville representation of A. Therefore (3.1) can be seen as a variant of the
Neville representation. The factorization (3.1) is not unique: even when A is strongly
nonsingular and the products L ¼ LsL1 and R ¼ R1Rs are uniquely determined, there
are infinitely many values of x1, a1, b1, y1 giving the same matrices Lð1Þ and Rð1Þ, and
therefore the same A. They can be freely chosen according to the conditions x1 − a1 ¼
l21 and y1 − b1 ¼ r12.

Nevertheless, there are LU -factorizable quasiseparable matrices which are not
Neville-representable. For instance, the matrix

A ¼
0
@ 1 1 1

0 1 1
1 1 1

1
A
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is factorizable A ¼ LDR, where

L ¼
0
@ 1 0 0

0 1 0
1 0 1

1
A;

but we cannot find any xi and ai such that LsL1 ¼ L.
DEFINITION 5. Let S1 be the set of matrices in S for which there exists a choice of

parameters in the representation (2.3) satisfying the following conditions:
(a) ui ≠ 0 for i ¼ 2; 3; : : : n;
(b) qi ≠ 0 for i ¼ 2; 3; : : : ; n.
Remark 1. One can see some ambiguity in Definition 5 of S1, due to the fact that the

same quasiseparable matrix has infinitely many representations (2.3). For instance, a
quasiseparable matrix having zero entries only in the last row is in S1, because it can be
represented according to (2.3) with un ¼ 1, tn−1 ¼ vn−1 ¼ δn ¼ 0, but it can also be
represented with un ¼ δn ¼ 0 for arbitrary choices of tn−1 and vn−1. Two simple equiva-
lent conditions for a matrix in S to be in S1 are the following:

(i) if there is an entry aij ¼ 0 in the strictly lower triangular part, then akj ¼ 0
for k ¼ iþ 1; : : : ; n;

(ii) if there is an entry aij ¼ 0 in the strictly upper triangular part, then aik ¼ 0
for k ¼ jþ 1; : : : ; n.

A quasiseparable matrix which violates (i) or (ii) cannot be represented with all nonzero
ui and qi. We could overcome the question by saying that the matrices in S1 are all those
that admit a representation (2.3) with ui ¼ qi ¼ 1 for every i, as we will see in Corol-
lary 6.

THEOREM 5. The class S coincides with the class S1.
Proof. We prove the theorem by showing that S ⊆ S1 and S1 ⊆ S.
Let us start by proving that if A ∈ S, then A ∈ S1. First, A is factorizable A ¼ LDR

with L ¼ LsL1 and R ¼ R1Rs. To prove that A is quasiseparable it is sufficient to prove
that it is quasiseparable in the lower and upper triangular parts.

Observe that Ls is semiseparable, and in fact the rank-one structure propagates to
the main diagonal. We distinguish two cases according to the possible reducibility of Ls.

If Ls is irreducible, then all xi ≠ 0. Hence it can be written as Ls ¼ ūv̄T þ P, where
ūi ¼

Q
i−1
k¼1 xk, v̄i ¼ ū−1

i ; P is a strictly upper triangular matrix with superdiagonal en-
tries pi;iþ1 ¼ x−1

i . Writing the bidiagonal matrix L1 as L1 ¼ I − diagða;−1Þ, we have

A ¼ ðūv̄T þ PÞðI − diagða;−1ÞÞDR

¼ ðūv̄T þ P − ūv̄Tdiagða;−1Þ− Pdiagða;−1ÞÞDR

¼ ūðv̄T − v̄Tdiagða;−1ÞÞDRþ ðP − Pdiagða;−1ÞÞDR:

Setting ~vT ¼ ðv̄T − v̄Tdiagða;−1ÞÞDR and ~P ¼ ðP − Pdiagða;−1ÞÞDR, we have that
A ¼ ū ~vT þ ~P. ~P is an upper triangular matrix having −aidix

−1
i as ith diagonal entry.

SoA is the sum of a rank-one matrix and an upper triangular matrix, and hence its lower
triangular part is quasiseparable. In a similar way we can show that A has the upper
triangular part with a quasiseparable structure. Note that all the entries of ū are non-
zero, since ūi ¼

Q
i−1
k¼1 xk. Hence, condition (a) of Definition 5 is satisfied.

If Ls is reducible, then one or more xi ¼ 0. For simplicity let us consider only the case
for which xi ¼ 0 and xj ≠ 0 for all j ≠ i. The generalization to multiple blocks is straight-
forward. We already observed that reducible triangular semiseparable matrices can be
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expressed as the direct sum of generator-representable semiseparable matrices. In this

case Ls ¼ L
ð1Þ
s

L
L
ð2Þ
s , where Lð1Þ

s and L
ð2Þ
s are generator-representable semiseparable ir-

reducible matrices of sizes n1 and n2, respectively, and hence Lð1Þ
s ¼ uð1Þvð1ÞT þ P1, and

L
ð2Þ
s ¼ uð2Þvð2ÞT þ P2, withP1 andP2 being strictly upper triangularmatrices. Moreover,

uð1Þ and uð2Þ have no zero entries; since uð1Þ
i v

ð1Þ
i ¼ 1, uð2Þ

i v
ð2Þ
i ¼ 1. Let us partition all the

relevant matrices according to the partitioning of Ls; thus we have D ¼ D1

L
D2, and

R ¼ R1Rs ¼
�
R11 R12

0 R22

�
:

In the same way as before we get

A ¼
�
uð1Þwð1ÞT 0
κuð2ÞeTn1

uð2Þwð2ÞT

�
þ
�
P11 P12

0 P22

�
;

where en1
is the n1th vector of the canonical basis in Rn1 , κ ¼ −v

ð2Þ
1 dn1

ai, wð1ÞT ¼
ðvð1ÞT− vð1ÞTdiagðað1∶i−1Þ;−1ÞÞD1R11, and wð2ÞT ¼ ðvð2ÞT − vð2ÞTdiagðaðiþ 1∶n− 1Þ;
−1ÞÞD2R22 þ κeTn1

R12. Moreover, P11 and P22 are upper triangular matrices. Note that
the block in position ð2; 1Þ of A is null except for the last column, and this column is pro-
portional touð2Þ. Then trilðA; 0Þ is quasiseparable, and the following is a possible choice of
generators for A:

tj ¼
�
0 for j ¼ i;
1 for j ≠ i;

uj ¼
(
u
ð1Þ
j for 1 ≤ j ≤ i;

u
ð2Þ
j−i for iþ 1 ≤ j ≤ n;

vj ¼

8>><
>>:

w
ð1Þ
j for 1 ≤ j < i;

κ for j ¼ i;

w
ð2Þ
j−i for jþ 1 ≤ j ≤ n.

Clearly alluj’s are nonzero. A similar proof can be given for the upper triangular part ofA.
Let us prove that S1 ⊆ S; that is, for every quasiseparable, LU -factorizable matrix

with ui ≠ 0 and qi ≠ 0, we can find parameters x, a, b, y, d such that A ¼ LsL1DR1Rs.
By assumption we haveA ¼ LDR, where L is unit lower triangular,D diagonal, and

R is unit upper triangular. We want to prove that it is possible to factorize L as LsL1 and
R as R1Rs. By Theorem 4, we have that L and R can be chosen quasiseparable, so in
detail,

L ¼

0
BBBBBBBBB@

1
~u2 ~v1 1
~u3
~t2 ~v1 ~u3 ~v2 1

~u4
~t3∶2 ~v1 ~u4

~t3 ~v2 ~u4 ~v3 1

..

. ..
. ..

. . .
.

~un
~tn−1∶2 ~v1 ~un

~tn−1∶3 ~v2 ~un
~tn−1∶4 ~v3 · · · ~un ~vn−1 1

1
CCCCCCCCCA
;

where ~ui ≠ 0 since ~ui ¼ ui, which are assumed to be nonzero. It is now easy to prove that
L can be factorized as the product of Ls and L1 by observing that the Neville elimination
can be applied to the rows of L. In particular, Ls is the inverse of the bidiagonal matrix
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I − diagðx;−1Þ having the Neville multipliers as codiagonal entries, i.e., xi−1 ¼
− ~ui

~ti−1 ∕ ~ui−1, i ¼ 3; : : : ; n.
Reasoning in the same way for the upper triangular part of A we can complete the

proof. ▯
The following corollary shows how a matrix in S, represented as in Definition 4, can

be represented by means of the generators appearing in (2.3).
COROLLARY 6. If A ∈ S, then it can be represented, according to (2.3), with

ui ¼ qi ¼ 1, i ¼ 2; : : : ; n, ti ¼ xi, ri ¼ yi, i ¼ 2; : : : ; n− 1, with the same xi, yi,
i ¼ 1; 2; : : : ; n− 1 as in Definition 4.

Proof. By direct inspection, a simple choice for the parameters involved in the re-
presentations of the semiseparable matrices L and R of the factorizationA ¼ LDR is the
following:

ui ¼ 1; vi ¼ xi − ai; i ¼ 2; : : : ; n; ti ¼ xi; i ¼ 2; : : : ; n− 1 for L;

qi ¼ 1; pi ¼ yi − bi; i ¼ 2; : : : ; n; ri ¼ yi; i ¼ 2; : : : ; n− 1 for R.

Theorem 4 says that the parameters ui, ti, qi, and ri for A can be taken from the re-
presentions of L and R. ▯

It is easy to prove that S contains all quasiseparable, Neville-representable matrices.
THEOREM 7. Any quasiseparable Neville-representable matrix is in S.
Proof. Since S ¼ S1, we show that a Neville-representable quasiseparable matrix

must be in S1. Assume by contradiction this is not true; then by Remark 1, one of con-
ditions (i), (ii) would not be obeyed, say, (i). This means that there exist, in the strictly
lower triangular part, some aij ¼ 0 with aiþ1;j ≠ 0, and, as a consequence of the rank
structure, all the entries in the ith row of the strictly lower triangular part would be zero.
Then the ith row could not be used to eliminate the (iþ 1)th one, and the Neville row
elimination would fail. But this would cause a contradiction. ▯

3.1. Quasiseparable TNmatrices. Neville elimination is deeply connected with
TN matrices [15], [12], [13].

DEFINITION 6. A matrix A is called TN if all its minors of any order are nonnegative.
THEOREM 8. If A ∈ S is representable as in Definition 4, and xi; yi ≥ 0, ai; bi ≤ 0,

and di ≥ 0, then A is TN.
Proof. In the standard hypothesis, A is TN, since it is the product of TN

matrices. ▯
In the nonsingular case, Theorem 8 (and its converse) was proved in [14].
Remark 2. We can easily recognize matrices in S diagonally similar to TN matrices.

The general condition is that xiyi ≥ 0, di ≥ 0, aibi ≥ 0 with aixi ≤ 0.
The class of TN matrices has nice properties that resemble those of positive semi-

definite Hermitian matrices; in particular, its eigenvalues are real and nonnegative.
Another similarity between the two classes of matrices is that also for TN matrices
we can give an interlacing theorem [11], [1].

THEOREM 9. Let A be TN with eigenvalues λ1 ≥ λ2 · · ·≥ λn. Suppose Ak is a k× k

submatrix of A lying in rows and columns with consecutive indices and having eigenva-
lues ~λ1 ≥ ~λ2 · · ·≥ ~λk. Then

λi ≥ ~λi ≥ λiþn−k; i ¼ 1; : : : ; k:
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4. On the shifted LR algorithm. In this section we present the shifted LR algo-
rithm acting implicitly on the representation (3.1) ofA. The shifted LRmethod proceeds
iteratively as follows.2. LetAð0Þ ¼ A; we obtain the sequence of matrices AðkÞ in this way:�

AðkÞ ¼ LðkÞDðkÞRðkÞ;
Aðkþ1Þ ¼ LðkÞ−1AðkÞLðkÞ − σkþ1I ¼ DðkÞRðkÞLðkÞ − σkþ1I ; k ¼ 0; 1; : : : ;

ð4:1Þ

where, for every k, the parameter σkþ1 is chosen in accordance with some shift strategy
to accelerate convergence.3 Usually, instead of computing explicitly the factorization of
AðkÞ and multiplying the factors in reverse order according to (4.1), we proceed implicitly
performing the transition AðkÞ → Aðkþ1Þ in terms of their Neville representations. Note
that Aðkþ1Þ is no more similar to AðkÞ because at each step we subtract a shift, but we
never restore it. This means that we have to accumulate the shifts during the computa-
tion and add them back once the approximation of each eigenvalue becomes available.
An important result is that the quasiseparable structure is preserved under LR steps.

THEOREM 10. If Að0Þ ¼ A is quasiseperable and LU -factorizable, then the matrixAð1Þ

built by (4.1) is quasiseparable.
Proof. Let A ¼ LDR. We want to prove that the matrix Að1Þ ¼ DRL is still qua-

siseparable, although the possible symmetry ofA is not preserved. Since the addition of a
scalar matrix does not affect the quasiseparable structure, we can assume that no shift is
performed for notational simplicity. By Corollary 2, there exists a symmetric semisepar-
able matrix SðuÞ and a lower triangular matrix Q such that A ¼ S ðuÞ þQ, so we have
Að1Þ ¼ L−1AL ¼ L−1ðS ðuÞ þQÞL. As remarked in section 2, if S ðuÞ is irreducible, then it
is generator-representable; otherwise it is the direct sum of generator-representable ma-
trices. Assume that S ðuÞ is irreducible, and therefore S ðuÞ ¼ pqT þ X , where X is a
strictly lower triangular matrix. Then Að1Þ ¼ L−1pqTLþ L−1XLþ L−1QL. Setting
~p ¼ L−1p, ~q ¼ LTq, ~Q ¼ L−1ðX þQÞL, we have Að1Þ ¼ ~p ~qþ ~Q. Then the minors taken
out of the strictly upper triangular part of Að1Þ have rank at most one. In the case SðuÞ is
reducible, we can use the same arguments for each of the irreducible diagonal blocks,
obtaining that Að1Þ is reducible too and is quasiseparable in the upper triangular part.

Similarly, if D is nonsingular, we can prove that Að1Þ has the quasiseparable struc-
ture in the strictly lower triangular part. If D is singular, consider the matrix B ¼ RL
which is quasiseparable because it is a special case of the theorem with D ¼ I . Now, the
quasiseparable structure is preserved by multiplication by a diagonal matrix D. ▯

In this section we present two different methods for performing an implicit LR step
through the updating of the parameters involved in the representation of matrices in S
(see Definition 4). The first, presented in section 4.1, works on the parameters ai, bi, xi,
yi, and di, and the second one, described in section 4.2, considers the aggregated para-
metersmi ¼ xiyi and takes advantage of the fact that there are some quantities that are
invariant during the steps, as explained in the following corollary.

COROLLARY 11. Let A be a quasiseparable matrix in S. If xi ≠ 0 and yi ≠ 0 for
i ¼ 1; : : : ; n− 1, we can define the quantities

hi ¼
aidi
xi

; ki ¼
bidi
yi

; i ¼ 1; : : : ; n− 1:ð4:2Þ

2The superscript notation ·ðiÞ will be used only for depicting LR steps performed on matrices. We will omit
this superscript as much as possible to avoid overloading the notation.

3In section 4.3 we describe in detail the choice of the Laguerre shift, which is particularly well suited when
dealing with TN matrices.
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These quantities are invariant under LR steps without shift.
Proof. By Corollary 6, in the representation (2.3) of A we have that ri ≠ 0 for

i ¼ 2; : : : ; n− 1. By Lemma 3, A ¼ p̂q̂T þK , where K is lower triangular. Consider
the diagonal entries of A, which for the previous equality are given by the sum of
the diagonal entries of p̂q̂T and the diagonal entries of K , say ki. This means
δi ¼ piqi þ ki. We have Að1Þ ¼ L−1AL ¼ L−1ðp̂q̂T þKÞL. Since L is unit lower trian-
gular, we have that the diagonal entries of the lower triangular term L−1KL are still
equal to ki and remain constant during all the iterative steps.

Set Δ ¼ dgðKÞ. The matrix B ¼ A− Δ has a semiseparable structure in the upper
triangular part, which extends to the main diagonal. Since A ¼ LsL1DR1Rs, B can be
expressed as

B ¼ A− Δ ¼ LsTRs;ð4:3Þ

where T ¼ L1DR1 − L−1
s ΔR−1

s is tridiagonal. The upper triangular matrix Rs is a semi-
separable upper triangular matrix satisfying Lemma 3; then it can be written as
Rs ¼ ~p ~qT þ ~K , where ~K is strictly lower triangular. Substituting in (4.3) we find

B ¼ LsT ~p ~qT þ LsT ~K ;

thus we see that the diagonal of B agrees with the rank-one structure in the upper tri-
angular part only if the lower triangular matrix LsT ~K has all zeros as diagonal entries,
and this happens only if T is lower bidiagonal. By equating to zero the upper codiagonal
entries of T ¼ L1DR1 − L−1

s ΔR−1
s , we readily obtain ki ¼ dibi

yi
.

Repeating the same reasoning for the lower triangular part ofA, we obtain that hi ¼
diai
xi

are invariants too. ▯

4.1. A qd-type method. In this section we show how to obtain, starting from a
matrix A ¼ AðkÞ in S, expressed as A ¼ LsL1DR1Rs, the new representation of Aðkþ1Þ ¼
DR1RsLsL1 − σkþ1I in terms of the updated parameters, that is, Aðkþ1Þ ¼ ¯̄Ls

¯̄L1
¯̄D ¯̄R1

¯̄Rs,
given that Aðkþ1Þ ∈ S.

The entire procedure consists in updating the parameters xi, yi, di, ai, bi which
define quasiseparable matrices in S. The updating process starts with the computation
of ~A ¼ DR1RsLsL1 and replaces products of the typeRLwith products of the type LDR,
where D is diagonal. In particular, we have

~A ¼ DR1ðRsLsÞL1 ¼ DR1ðL̄sER̄sÞL1ð4:4Þ

¼ ðDR1L̄sÞER̄sL1 ¼ ð ¯̄LsFR̄1ÞER̄sL1ð4:5Þ

¼ ¯̄LsFR̄1ðER̄sL1Þ ¼ ¯̄LsFR̄1ðL̄1G
¯̄RsÞ;ð4:6Þ

where D ¼ diagðdiÞ, E ¼ diagðeiÞ, F ¼ diagðf iÞ, and G ¼ diagðgiÞ are diagonal ma-
trices. Equations (4.4), (4.5), (4.6) make sense if the intermediate matrices RsLs,
DR1L̄s, and ER̄sL1 are all LU -factorizable. Anyway, if the procedure described by
(4.4), (4.5), (4.6) can be carried on and Aðkþ1Þ ¼ ~A− σkþ1I is LU -factorizable, too, then
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Aðkþ1Þ ¼ ¯̄LsFR̄1L̄1G
¯̄Rs − σkþ1I ¼ ¯̄Ls

¯̄L1
¯̄D ¯̄R1

¯̄Rs;ð4:7Þ

where ¯̄D is diagonal.
The assumptions required by the updating (4.4), (4.5), (4.6), besides the prelimin-

ary request forAðkþ1Þ to be in S, are satisfied for all TNmatrices, with a suitable choice of
the shift parameter (see section 4.3).

Let us describe the updating process of equality (4.4). Set

L̄sER̄s ¼ RsLs

for a suitable nonsingular diagonal matrix E. If we rewrite the above equation as
R̄−1

s E−1L̄−1
s ¼ L−1

s R−1
s , where all the matrices involved are bidiagonal or diagonal,

and we define the auxiliary variables�
αi ¼ e−1

i − xi−1yi−1; i ¼ 1; : : : ; n− 1;
αn ¼ 1;

ð4:8Þ

we obtain the following recurrences:8<
:

e−1
i ¼ αi þ xi−1yi−1; i ¼ n; : : : ; 2 ;

αi−1 ¼ αi ∕ e−1
i ; i ¼ n; : : : ; 2;

e−1
1 ¼ α1:

ð4:9Þ

The first recurrence of (4.9) for determining the e−1
i is obtained from the definition of the

auxiliary variables αi, while the recurrence for the computation of the αi comes from
equating the diagonal entries of the tridiagonal matrices R̄−1

s E−1L̄−1
s and L−1

s R−1
s .

By equating the codiagonal entries we get that the entries of L̄−1
s and R̄−1

s can be com-
puted as follows:

x̄i ¼ xi ∕ e−1
iþ1; i ¼ 1; : : : ; n− 1;

ȳi ¼ yi ∕ e−1
iþ1; i ¼ 1; : : : ; n− 1:

The updating described in (4.5) consists of

¯̄LsFR̄1 ¼ DR1L̄s

for a suitable nonsingular diagonal matrix F . Again we can use the fact that the inverse
of matrices of type Ls is bidiagonal. We have FR̄1L̄

−1
s ¼ ¯̄L

−1
s DR1, and setting

βi ¼ 1− bix̄i; i ¼ 1; : : : ; n− 1;

we obtain the following recurrences for the diagonal entries of F :8<
:

f 1 ¼ d1β1;
f i ¼ diβi ∕ βi−1; i ¼ 2; : : : ; n− 1;
fn ¼ dn ∕ βn−1;

and the final ¯̄xi describing
¯̄Ls,

¯̄xi ¼ x̄if iþ1 ∕ di; i ¼ 1; : : : ; n− 1:
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The intermediate entries of R̄1 are�
b̄1 ¼ b1 ∕ β1;
b̄i ¼ biβi ∕ βi−1; i ¼ 2; : : : ; n− 1:

Let us describe step (4.6), that is,

L̄1G
¯̄Rs ¼ ER̄sL1:

If we rewrite the above equation as R̄−1
s E−1L̄1 ¼ L1

¯̄R
−1
s G−1, and defining the auxiliary

variables

γi ¼ 1− ȳiai; i ¼ 1; : : : ; n− 1;

we obtain the following recurrences for the diagonal entries of G:8<
:

g1 ¼ γ1 ∕ e−1
1 ;

gi ¼ γi ∕ ðγi−1e
−1
i Þ; i ¼ 2; : : : ; n− 1;

gn ¼ 1 ∕ ðγn−1e
−1
n Þ:

The final entries of ¯̄Rs are computed as follows:

¯̄yi ¼ ȳigiþ1 ∕ e−1
iþ1; i ¼ 1; : : : ; n− 1;

while the intermediate entries of L̄1 are

āi ¼ ai ∕ ðe−1
iþ1giÞ; i ¼ 1; : : : ; n− 1:

It remains to describe the final updating which involves the terms in the brackets in
(4.7). If no shift is chosen, then Aðkþ1Þ ¼ Að1Þ, so ¯̄L1,

¯̄D, and ¯̄R1 have to be found such
that

¯̄L1
¯̄D ¯̄R1 ¼ FR̄1L̄1G:ð4:10Þ

The final matrices ¯̄L1 and
¯̄R1 can be computed introducing auxiliary variables δi defined

as

�
δi ¼ ¯̄di − āib̄if igi; i ¼ 1; : : : ; n− 1;

δn ¼ ¯̄dn:

We have the following recurrences for the final ¯̄D:8>>><
>>>:

δ1 ¼ f 1g1;
¯̄di ¼ δi þ āib̄if igi; i ¼ 1; : : : ; n− 1;

δiþ1 ¼ δif iþ1giþ1 ∕
¯̄di; i ¼ 1; : : : ; n− 1;

¯̄dn ¼ δn:

ð4:11Þ

The entries of ¯̄L1 and ¯̄R1 can then be obtained as follows:

¯̄ai ¼ āif iþ1gi ∕
¯̄di; i ¼ 1; : : : ; n− 1:ð4:12Þ

¯̄bi ¼ b̄if igiþ1 ∕
¯̄di; i ¼ 1; : : : ; n− 1:ð4:13Þ
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In case of shift σ ¼ σkþ1, note that Aðkþ1Þ ¼ Að1Þ − σI can be expressed as

¯̄LsFR̄1L̄1G
¯̄Rs − σI ¼ ¯̄LsðFR̄1L̄1G − σ

¯̄L
−1
s

¯̄R
−1
s Þ ¯̄Rs:

So we must modify only the updating of the variables ¯̄ai,
¯̄bi and

¯̄di described by (4.12),
(4.13), and (4.11). In particular, (4.10) becomes

¯̄L1
¯̄D ¯̄R1 ¼ FR̄1L̄1G − σ

¯̄L
−1
s

¯̄R
−1
s ;

and ¯̄L1,
¯̄D, and ¯̄R1 can be computed by means of the following recurrences, where δi is

defined as before as

�
δi ¼ ¯̄di − āib̄if igi; i ¼ 1; : : : ; n− 1;

δn ¼ ¯̄dn:

The recurrences replacing (4.11) are8>>>>><
>>>>>:

δ1 ¼ f 1g1 − σ;
¯̄di ¼ δi þ āib̄if igi; i ¼ 1; : : : ; n− 1;

δiþ1 ¼ f iþ1giþ1δi ∕
¯̄di − σð1þ ¯̄xið ¯̄yi − ¯̄biÞ− f iþ1giāi ¯̄yi ∕

¯̄diÞ; i ¼ 1; : : : ; n− 1;
¯̄dn ¼ δn:

ð4:14Þ

The new ¯̄ai and
¯̄bi can be obtained as follows:

¯̄ai ¼ ðāif igiþ1 − σ ¯̄xiÞ ∕ ¯̄di; i ¼ 1; : : : ; n− 1:ð4:15Þ
¯̄bi ¼ ðb̄if iþ1gi − σ ¯̄yiÞ ∕ ¯̄di; i ¼ 1; : : : ; n− 1:ð4:16Þ

Alternatively, one can first compute ¯̄ai and
¯̄bi with (4.15) and (4.16), and then express

δiþ1 as

δiþ1 ¼ f iþ1giþ1δi ∕
¯̄di − σð1þ ¯̄yið ¯̄xi − ¯̄aiÞ− f igiþ1b̄i ¯̄xi ∕

¯̄diÞ; i ¼ 1; : : : ; n− 1:

Remark 3. We denoted the method described in this section as belonging to the
family of qd algorithms [20], [10], [17]. The reason is that it has similar characteristics,
since the definition of the auxiliary variables αi, δi makes it possible, with some sign
hypotheses (see Theorem 13), to get rid of subtractions which are hidden in the auxiliary
parameters; only divisions, multiplications, and sums are needed (except for the shift).

4.2. Working with invariants: Another qd-type method. In Corollary 11 we
proved that if xi ≠ 0 and yi ≠ 0 for all i ¼ 1; : : : ; n− 1, then the quantities hi and ki
defined as in (4.2) are invariant under LR steps. This observation allows us to rewrite
the previous recurrences using these quantities. The new algorithm, described by Algo-
rithm 1, although applicable only to a subclass of matrices in S, has a lower computa-
tional cost, as we will see in section 5.

The new recurrences consider the aggregated quantitiesmi ¼ xiyi, the invariants ki,
hi, and the diagonal entries di. Note that the use of invariants allows us to simplify the
recurrences since we have only to update the values mi and the new diagonal entries di.
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This procedure should be combined with an effective shift strategy. A particularly con-
venient choice for the shift is described in section 4.3.

As in the recurrences presented in section 4.1, we see that we still need auxiliary
variables αi and δi, but the aggregation of parameters xi and yi into mi allows us
to reduce the number of recurrences. This method does not have a natural matrix for-
mulation, but it is easy to verify its correctness by merging the recurrences for the up-
dating of xi and yi to get the updating formula for mi.

ALGORITHM 1. � ��m;
��h; ��k; ��d�←LRstep�m;h;k;d;σ�.

αn←1;
for i ¼ n to 2 do
e−1
i ←αi −mi−1; fAuxiliary variablesg;

αi−1←αi ∕ e−1
i

end for
e−1
1 ←α1;

for i ¼ 1 to n− 1 do
pi←ð1− kimi

die
−1
iþ1

Þð1− himi

die
−1
iþ1

Þ; fAuxiliary variablesg
end for
for i ¼ 1 to n− 1 do
¯̄mi←mipiþ1diþ1 ∕ ðpidie−2

iþ1Þ; fUpdating ofmig
end for
δ1←p1d1 ∕ e−1

1 − σ;
for i ¼ 1 to n− 1 do
¯̄di←δi þ hikimi ∕ ðdie−1

iþ1Þ; fUpdating of dig
δiþ1←δipiþ1diþ1 ∕ ðpi ¯̄die−1

iþ1Þ− σð1þ ¯̄mið1þ ðσ− ðhi þ kiÞÞ ∕ ¯̄diÞÞ;
end for
¯̄dn←δn; fUpdating of the last dng
for i ¼ 1 to n− 1 do
¯̄hi←hi − σ;
¯̄ki←ki − σ.

end for

4.3. The Laguerre shift. The choice of an adequate shift strategy is always of
crucial importance for the convergence. Various shift strategies have been proposed,
ranging from the classical Rayleigh shift defined as the entry in position (n, n), to
the Wilkinson shift in the case the matrix might have complex eigenvalues [27]. In this
section we describe in detail a shift technique known as Laguerre shift [27], [18] which
has shown to be particularly well suited in the case of quasiseparable matrices with real
positive eigenvalues.

In particular, the shift σ ¼ σkþ1 in (4.14) is chosen in accordance with the following
formula:

σ ¼ n

s
ðkÞ
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn− 1ÞðnsðkÞ2 − ðsðkÞ1 Þ2Þ

q ;ð4:17Þ

where s
ðkÞ
1 ¼ traceððAðkÞÞ−1Þ and s2 ¼ traceððAðkÞÞ−2Þ. The choice of the Laguerre shift

guarantees that the eigenvalues are computed in an ordered way since 0 < σ ≤ μn,
where μn is the smallest eigenvalue of AðkÞ. If μn is simple, then σ < μn.
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We start from AðkÞ factorized as

AðkÞ ¼ LsL1DR1Rs;

so we need the diagonal entries cii of

C ¼ ðAðkÞÞ−1 ¼ R−1
s R−1

1 D−1L−1
1 L−1

s :

In the case xi, yi ≠ 0, using the invariants4 by direct computation, we have8>><
>>:

cnn ¼ d−1
n ;

cn−1;n−1 ¼ d−1
n−1 þ d−1

n mn−1ðhn−1d
−1
n−1 − 1Þðkn−1d

−1
n−1 − 1Þ;

cii ¼ d−1
i þ ðd−1

iþ1 þ
P

n−1
r¼iþ1ð

Q
r
j¼iþ1 mjhjkjd

−2
j Þd−1

rþ1Þmiðhid−1
i − 1Þðkid−1

i − 1Þ;
i ¼ n− 2; : : : ; 1:

Setting �
tn−1 ¼ d−1

n mn−1;
ti ¼ ðd−1

iþ1 þ
P

n−1
r¼iþ1ð

Q
r
j¼iþ1 mjhjkjd

−2
j Þd−1

rþ1Þmi; i ¼ n− 2; : : : ; 1;

the requested trace s1 can be computed with about 14n flops in this way:

8>>><
>>>:

cnn ¼ d−1
n ;

tn−1 ¼ d−1
n mn−1;

ti ¼ ðtiþ1hiþ1kiþ1d
−1
iþ1 þ 1Þmid

−1
iþ1; i ¼ n− 2; : : : ; 1;

cii ¼ d−1
i þ tiðhid−1

i − 1Þðkid−1
i − 1Þ; i ¼ n− 1; : : : ; 1;

s1 ¼ traceðCÞ ¼ P
n
i cii:

Since s2 ¼ traceðC 2Þ ¼ P
n
i¼1 c

2
ii þ 2

P
n−1
j¼1

P
n
i¼jþ1 cijcji, the sum of all the products

cijcji has to be computed. Let us start from those involving codiagonal entries
ci;i−1ci−1;i, which have the form8>>>>>><
>>>>>>:

cn;n−1cn−1;n ¼ mn−1ðhn−1d
−1
n−1 − 1Þðkn−1d

−1
n−1 − 1Þd−2

n ;
cn−1;n−2cn−2;n−1 ¼ ð1þ hn−1mn−1d

−1
n ðkn−1d

−1
n−1 − 1ÞÞð1þ kn−1mn−1d

−1
n ðhn−1d

−1
n−1 − 1ÞÞ

mn−2ðhn−2d
−1
n−2 − 1Þðkn−2d

−1
n−2 − 1Þd−2

n−1;
ci;i−1ci−1;i ¼ ð1þ himiðkid−1

i − 1Þðd−1
iþ1 þ

P
n−1
r¼iþ1 d

−1
rþ1

Q
r
j¼iþ1 mjhjkjd

−1
j ÞÞ

ð1þ kimiðhid−1
i − 1Þðd−1

iþ1 þ
P

n−1
r¼iþ1 d

−1
rþ1

Q
r
j¼iþ1 mjhjkjd

−1
j ÞÞ

mi−1ðhi−1d
−1
i−1 − 1Þðki−1d

−1
i−1 − 1Þd−2

i ; i ¼ n− 2; : : : ; 2:

If we set8>>>>>><
>>>>>>:

t 0n−1 ¼ ð1þ hn−1mn−1d
−1
n ðkn−1d

−1
n−1 − 1ÞÞ;

t 0  0n−1 ¼ ð1þ kn−1mn−1d
−1
n ðhn−1d

−1
n−1 − 1ÞÞ;

t 0i ¼ ð1þ himiðkid−1
i − 1Þðd−1

iþ1 þ
P

n−1
r¼iþ1 d

−1
rþ1

Q
r
j¼iþ1 mjhjkjd

−1
j ÞÞ;

i ¼ n− 2; : : : ; 2;
t 0  0i ¼ ð1þ kimiðhid−1

i − 1Þðd−1
iþ1 þ

P
n−1
r¼iþ1 d

−1
rþ1

Q
r
j¼iþ1 mjhjkjd

−1
j ÞÞ;

i ¼ n− 2; : : : ; 2;

4When some of the xi or yi are zero, we need to work with the full set of parameters since the invariants hi
and ki cannot be computed. In that case we have different formulas, with a higher computational cost, not
described here because they are too complicated. However, new formulas can be obtained following the same
reasoning and using similar techniques as those employed in this section.
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all products ci;i−1ci−1;i can be computed according to the following scheme with 18n
flops:

8>>>>>>>><
>>>>>>>>:

t 0n−1 ¼ ð1þ hn−1mn−1d
−1
n ðkn−1d

−1
n−1 − 1ÞÞ;

t 0  0n−1 ¼ ð1þ kn−1mn−1d
−1
n ðhn−1d

−1
n−1 − 1ÞÞ;

t 0i ¼ hiþ1miþ1diþ2ð1þ t 0iþ1kiþ1diþ2Þ; i ¼ n− 2; : : : ; 2;
t 0  0i ¼ kiþ1miþ1diþ2ð1þ t 0 0iþ1hiþ1diþ2Þ; i ¼ n− 2; : : : ; 2;
zn−1 ¼ d−2

n ;
zi ¼ ð1þ t 0iþ1ðkiþ1d

−1
iþ1 − 1ÞÞð1þ t 0 0iþ1ðhiþ1d

−1
iþ1 − 1ÞÞ; i ¼ n− 2; : : : ; 1;

ci;i−1ci−1;i ¼ zi−1mi−1ðhi−1d
−1
i−1 − 1Þðki−1d

−1
i−1 − 1Þ; i ¼ n; : : : ; 2:

The sums ϵj ¼
P

n
i¼jþ2 cijcji, j ¼ n− 2; : : : ; 1, can be computed in this way:8<

:
wn−1 ¼ 0;
wj ¼ ðwjþ1 þ zjþ1Þmjþ1hjþ1kjþ1d

−2
jþ1; j ¼ n− 2; : : : ; 1;

ϵj ¼ wjmjðhjd−1
j − 1Þðkjd−1

j − 1Þ; j ¼ n− 2; : : : ; 1:

Finally, the sum
P

n−1
j¼1

P
n
i¼jþ1 cijcji, which is required to complete the computation of

s2, can be expressed as

Xn−1

j¼1

Xn
i¼jþ1

cijcji ¼ cn;n−1cn−1;n þ
Xn−2

j¼1

ðϵj þ cjþ1;jcj;jþ1Þ

¼
Xn−1

j¼1

ðwj þ zjÞmjðhjd−1
j − 1Þðkjd−1

j − 1Þ;

and it costs 9n flops more.
In the case where we deal with a restricted class of matrices, for example, when

dealing with tridiagonal or semiseparable matrices, we can simplify this procedure
and compute the shift with a lower number of operations. In section 7, for example,
we simplified the computation of the shift when our method is applied to tridiagonal
matrices, obtaining the Laguerre shift with a lower number of flops.

5. Stability and computational cost. In sections 4.1 and 4.2 we described the
implicit LR algorithm acting on the Neville representation of the matrix, assuming that
the algorithm proceeds without incurring in situations requiring the algorithm to stop.
However, it is well known [27] that the LR process can break down if, at step k, the
matrix AðkÞ is no more LU -factorizable. In practical cases, to overcome this situation
and resume the iterative process, one can change the value of the shift σk, and hopefully
the problem is not present in the new matrix. When our method is applied, however, as
observed in section 4.1, we can have that the process halts also because one of the quan-
tities appearing in the denominator of the recurrences in sections 4.1 or 4.2 becomes zero.
We will refer to this anomalous situation as a breakdown, too.

In this section we first show that the class of Neville-representable quasiseparable
matrices is closed under shifted LR steps. Then we analyze stability and structure pre-
servation of the method when applied to TN matrices. Moreover, we show that both
breakdown situations do not occur when the algorithm is applied to TN matrices.

In Theorem 10 it is proven that the quasiseparable structure is preserved under LR
steps. The next corollary proves that, if no anomalous situations happen, also the sub-
class S is closed by LR steps.
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COROLLARY 12. Let A ∈ S; if breakdown does not occur at each LR step, then each
AðkÞ in (4.1) is still in S.

The proof is based on the observation that if breakdowns do not occur at each step,
then we can construct a matrix Aðkþ1Þ similar to AðkÞ − σkþ1I , by means of updating the
parameters involved in the Neville representation as described in section 4.1 or 4.2.

The natural class to which the proposed algorithm can be applied is the class of TN
matrices.

THEOREM 13. Let AðkÞ be a TN quasiseparable matrix represented as in Definition 4
with di > 0, then the qd-type methods described in sections 4.1 and 4.2 without shift or
with a shift which preserves the positivity of the eigenvalues have the following properties:

1. They are breakdown-free, and the updated parameters involved in the represen-
tation are all nonnegative.

2. The new matrix Aðkþ1Þ produced is still quasiseparable TN, with di > 0.
3. They do not contain subtractions (except a subtraction for the shift).
Proof. For a TN matrix AðkÞ, from Theorem 8 we know that xi, yi ≥ 0, ai, bi ≤ 0. If

we assume xi, yi ≠ 0, we have equivalentlymi > 0, hi, ki ≤ 0. The shift σkþ1 is such that
0 < σkþ1 < μn, where μn is the smallest eigenvalue of AðkÞ.

1. Consider the recurrences (4.9); we see immediately, by induction on i, that
e−1
i ≥ αi > 0, where αi are the auxiliary variables defined by (4.8). As a con-

sequence, considering the other recurrences in section 4.1, we have x̄i, ȳi ≥ 0,
βi, γi ≥ 1, f i, gi > 0, ¯̄xi, ¯̄yi ≥ 0, āi, b̄i ≤ 0. Similarly, if we assume xi, yi ≠ 0 and
we refer to the formulation introduced in section 4.2 and used in Algorithm 1,
we find that pi ≥ 1 and ¯̄mi ≥ 0.
If there is no shift, then ¯̄di ≥ δi > 0, i ¼ 1; : : : ; n− 1, again by induction on i,
and, as a consequence, ¯̄ai,

¯̄bi ≤ 0.
In the case of a shift, we have by hypothesis that at each step σkþ1 is such that
0 < σkþ1 < μn. We have to show also that in this case ¯̄di > 0. We know that

Aðkþ1Þ ¼ LðkÞAðkÞLðkÞ−1 − σkþ1I ¼ ¯̄LsT
¯̄Rs;

where T ¼ FR̄1L̄1G − σkþ1
¯̄L
−1
s

¯̄R
−1
s is tridiagonal. Now, let Tj be the jth lead-

ing principal minor ofT , observe that for each j, detðTjÞ > 0, since Tj is similar
to AðkÞ

j − σkþ1I j, where A
ðkÞ
j is the jth leading principal minor of AðkÞ. From the

interlacing property for TN matrices (Theorem 9), we have that

0 < μn − σkþ1 ≤ μ
ðjÞ
i − σkþ1, where μ

ðjÞ
i is an eigenvalue of AðkÞ

j . This means

that detðTjÞ > 0, so T is strongly nonsingular, and in its LU factorization T ¼
¯̄L1

¯̄D ¯̄R1 the entries
¯̄di are all positive. Moreover, ¯̄ai,

¯̄bi ≤ 0, as shown by (4.15)
and (4.16).
No breakdown happens, because no division by zero can occur in computing the
quantities αi, f i, gi, pi, δi.

2. Aðkþ1Þ is still TN, because it is Neville-representable with nonnegative para-
meters. In particular, all ¯̄di are positive.

3. It is easy to check that the updating formulas in section 4.1 and Algorithm 1
described in section 4.2 do not contain subtractions when applied to TN ma-
trices, with the exception of a subtraction for the computation of δiþ1. In fact,
e−1
i , βi, γi are sums of nonnegative quantities, and pi in the second loop of

Algorithm 1 is the product of sums of nonnegative quantities, since ki,
hi ≤ 0, and the other factors are positive. Moreover, by induction we can prove
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that, in case no shift is applied, δi > 0, and hence each ¯̄di is obtained (see (4.14))
as the sum of two nonnegative quantities, δi and āib̄if igi, or kihimi ∕ ðdie−1

iþ1Þ in
Algorithm 1.
In the case of a shift, assume by contradiction that, for a given i, δi ≤ 0. It is
easy to see that, if this is the case, δj ≤ 0 for all j > i, since δiþ1 is computed as
the sum of two negative quantities in (4.14) and in the third loop of Algorithm 1
as well. But this is a contradiction since ¯̄dn ¼ δn > 0, as already proved. The
updating of the invariants does not involve subtractions since hi, ki ≤ 0 and
σkþ1 > 0. ▯

The approximation of distinct eigenvalues in increasing order is a well-known prop-
erty of LR convergence in the real positive case if the shift strategy preserves the order-
ing, as for Laguerre shift. In more detail, for nonsingular quasiseparable TNmatrices the
Laguerre shift σkþ1 is such that 0 < σkþ1 ≤ μn. Furthermore, the shift computed in fi-
nite precision arithmetics is generally multiplied by a factor slightly less than one, also to
prevent the effect of rounding errors which could destroy the TN structure.

As a consequence of the shift strategy the eigenvalues are computed in increasing
order, so the deflation criterion is based only on the magnitude of the off-diagonal entries
in the last row and column of AðkÞ.

The cost of Algorithm 1 is about 17n flops without shift and about 27n in the case a
shift strategy is applied. The cost doubles if one works without invariants, and it de-
creases if one deals, for example, with tridiagonal matrices, because the parameters xi
and yi are not needed.

6. Reduction to tridiagonal form. The Neville representation of quasiseparable
matrices makes it easy to describe also an Oðn2Þ algorithm for the reduction into tri-
diagonal form of a matrix in S. A tridiagonalization procedure for TN matrices with the
generalized quasiseparable structure has been described by Gemignani in [14] and is
inspired by the algorithm of Koev designed for a generic TN matrix [15].

ALGORITHM 2. TRIDIAGONALIZATION PROCEDURE.
x̂←x; ŷ←y, â←a; b̂←b; d̂←d;
for j ¼ 1 to n− 1 do
for i ¼ n− 1 to j do
½x̂; ŷ; â; b̂; d̂�←swap ðx̂; ŷ; â; b̂; d̂; iÞ; fAnnihilates row ig
½x̂; ŷ; â; b̂; d̂�←swap ðŷ; x̂; b̂; â; d̂; iÞ; fAnnihilates column ig

end for
end for

However, it is possible to see that the algorithm can be extended also to matrices not
TN but belonging to the class S. In the case where the tridiagonalization process is ap-
plied to TN matrices, the stability of the process is guaranteed since it is subtraction-
free, and breakdown cannot occur since there are no divisions by zero. Let us describe the
process of tridiagonalization of a matrixA ∈ S using the representation in terms of para-
meters xi, yi, ai, bi, di. The algorithm can be described as follows.

To understand the tridiagonalization procedure, note that each time we apply the
swap procedure with parameter i, we annihilate the entry xi or yi appearing in the
representation of the quasiseparable matrix. We need to annihilate each xi several times,
since the swap procedure creates a bulge that has to be removed with more Gauss trans-
formations. In particular, we have to apply swap on row i for each column, and then we
have a total of nðn− 1Þ calls to swap. The swap function, with parameter i, acts on
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rows i, iþ 1 and annihilates xi, multiplying by a Gauss elementary matrix Gi

on the right and by its inverse on the left. We have G−1
i AGi ¼ G−1

i LsL1DR1RsGi,
where Gi ¼ I i−1

L
E
L

I n−i−1 and E ¼ ½ 1
xðiÞ

0
1�. Reasoning similarly to what is done

for deriving the recurrences in section 4.1, the Gauss transformation Gi acting on

ALGORITHM 3. �x̂;ŷ;â;b̂;d̂�←swap�x;y;a;b;d;i� .
Require: i <¼ n− 1
α←xðiÞ {E ¼ ½ 1

α
0
1� is the transformation on rows i and iþ 1}

x̂←x, ŷ←y, â←a, b̂←b, d̂←d; {Parameter initialization}

x̂ðiÞ←0;
w←1þ αyðiÞ; {Eð1Þ ¼ ½w

α
0

1 ∕ w� is the transformation acting on the left of Rs}

ŷði− 1Þ←wyði− 1Þ, ŷðiÞ←yðiÞ ∕ w;

k←w− αbðiÞ {Eð2Þ ¼ ½k
α

0
1 ∕ k � is the transformation acting on the left ofR1}

b̂ði− 1Þ←wbði− 1Þ; b̂ðiÞ←kbðiÞ ∕ w;
if i ≠ n− 1 then
b̂ðiþ 1Þ←kbðiþ 1Þ

end if
d̂ðiÞ←kdðiÞ; d̂ðiþ 1Þ←dðiþ 1Þ ∕ k;
âðiÞ←aðiÞ− ðαdðiþ 1Þ∕ dðiÞÞ;
if i ≠ n− 1 then
δ←ðαdðiþ 1Þ ∕ dðiÞÞaðiþ 1Þ ∕ aðiÞ, {Eð3Þ ¼ ½1

δ
0
1� is the transformation acting

on rows iþ 1, iþ 2 on the left of L1}
âðiþ 1Þ←aðiþ 1Þ þ δ;

end if
if i ≠ n− 1 then
x̂ðiþ 1Þ←δ− xðiþ 1Þ

end if

the right is moved inside as follows:

G−1
i AGi ¼ G−1

i LsL1DR1ðRsGiÞ ¼ L
ð1Þ
s L1DR1G

ð1Þ
i R̂s

¼ L
ð1Þ
s L1DðR1G

ð1Þ
i ÞR̂s ¼ L

ð1Þ
s L1DG

ð2Þ
i R̂1R̂s

¼ L
ð1Þ
s G

ð3Þ
iþ1L̂1D̂R̂1R̂s ¼ L̂sL̂1D̂R̂1R̂s:

In particular, with the same notation of the pseudocode in Algorithm 3, we have Gð1Þ
i ¼

I i−1

L
Eð1Þ L I n−i−1 with Eð1Þ ¼ ½ w

xðiÞ
0

1 ∕ w�, Gð2Þ
i ¼ I i−1

L
Eð2Þ L I n−i−1 with Eð2Þ ¼

½ k
xðiÞ

0
1∕ k�, and finally G

ð3Þ
iþ1 ¼ I i

L
Eð3Þ L I n−i−2 with Eð3Þ ¼ ½1

δ
0
1�. Since G

ð1Þ
i Ls has only

the effect of annihilating the ith row, when we multiply on the right by G
ð3Þ
iþ1, this will

only update the entry iþ 1 of the vector describing L
ð1Þ
s .

The swap procedure costs 19 flops; hence the cost of the tridiagonalization proce-
dure is 19n2. Once the tridiagonal matrix is available, one can apply one of the well-
known techniques for tridiagonal matrices. For example, since we already have the
LU factorization, we can proceed by applying our method described in section 4.1
pruned of the unnecessary recurrences related to the updating of the parameters xi

1
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and yi that now are zero. Similarly, one can apply the dqds algorithm [17]. Another
possible way is to symmetrize the tridiagonal matrix first, and then apply the QR or the
LLH method. The cost of the dqds algorithm is about 6n flops plus the cost of the shift,
that is, 31n if the Laguerre shift is applied using a simplified version of the formulas
proposed in section 4.3.

7. Numerical experiments. In this section we report some numerical results ob-
tained using our methods for the computation of all eigenvalues of a possible unsym-
metric quasiseparable matrix. The experiments were done using MATLAB 2006B on a
Mac Powerbook, running OS X.5.

We denote by λ ¼ ½λ1; λ2; : : : ; λn� the vector containing the exact eigenvalues and by
~λ ¼ ½~λ1; ~λ2; : : : ; ~λn� the vector of the computed ones, sorted in such a way that ~λi is an
approximation of λi. For the purpose of estimating the relative error, we will consider the
results of MATLAB’s eig as the exact eigenvalues, that is, λ ¼ eigðAÞ. Accuracy is
measured considering the absolute and relative error, that is,

EðabsÞ ¼ kλ− ~λk∞ ¼ max
i

fjλi − ~λijg; EðrelÞ ¼ max
i

�jλi − ~λij
jλij

�
:

By QS-qd (for quasiseparable-qd) we denote the implementation of Algorithm 1
endowed by Laguerre shift as described in section 4.3. TridLR denotes the implementa-
tion of the tridiagonalization procedure described in Algorithm 2 followed by steps of the
dqds method, as described in [17].

In our experiments we compared the eigenvalues computed with QS-qd with
MATLAB eig, using a cutting criterion of 10−16 as deflation tolerance. It is well known
that, for rank-structured matrices, it is often more convenient to compute the eigenva-
lues, by applying directly an iterative method without the preliminary reduction to tri-
diagonal or Hessenberg form [25]. In fact, the possibility of representing the matrices
with a low number of parameters, and the closure under GR-type [26] steps, makes
it convenient to apply directly an implicit method acting on the representation of
the rank-structured matrix. The overhead of the computation of the tridiagonal struc-
ture is, in fact, not rewarded by the efficiency of the tridiagonal eigensolver. The purpose
of our experimentation is to show that good accuracy and efficiency can be obtained by
applying QS-qd directly on the representation of a quasiseparable matrix. The experi-
mentation has three main goals. The first goal is a comparison with the specialized tools
for eigenvalues computation of symmetric semiseparable plus diagonal (SSPD) ma-
trices, both TN and not. To this extent, the results obtained with our solver both in
terms of accuracy and CPU time are compared with the results obtained by using
the QR solver implemented by the routine EIGSSD5 which represents the state of
the art of the QR implementation for SSPD matrices.

In the case of non-TN matrices (Table 7.1), our algorithm performs a little worse
from the point of view of accuracy, but it is faster, requiring almost half the time re-
quired by the QR routine. To make a fair comparison, the time for the conversion from
our representation to the Givens-vector representation used by the EIGSSD routine is
not accounted for. In the case the matrix is TN, our algorithm performs better also in
terms of accuracy, and we gain a digit over the QR implementation (see Table 7.2).

The second goal is to show the effectiveness of our method on (possibly) unsym-
metric TN matrices. Table 7.3 reports the results obtained by our method on instances

5EIGSSD is a function included in the MATLAB package SSPACK accompanying the book [25], and it is
available online at http://www.cs.kuleuven.be/~mase/.
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of random generated TN matrices of different sizes. The time in seconds of our
implementation is reported as well. We see that the absolute and relative errors are quite
good, and the increase of time with respect to the size shows, as expected, a quadratic
behavior.

The third goal consists of testing our QS-qd implementations on some “difficult”
problems to see how accuracy is affected.6 In Table 7.4 the results on a TN matrix with
a small eigenvalue equal to α are reported. We see that, when the eigenvalue α becomes
of the order of the machine precision, the results are meaningless because EðrelÞ is of order
10−1. Looking at the plot in logarithmic scale in Figure 7.1 of relative errors of each

TABLE 7.1
Random SSPD matrix. Comparison with QS-qd and EIGSSD.

n EðabsÞ EðrelÞ QS-qd (sec) EðabsÞ EðrelÞ EIGSSD (sec)

10 2.7732e-15 1.0333e-15 0.08 1.0151e-14 3.7824e-15 0.14
50 4.6343e-13 7.5474e-14 0.39 7.4737e-14 1.2172e-14 0.94
100 2.7996e-13 3.1850e-14 1.36 2.7323e-13 3.1085e-14 3.29
200 3.0727e-12 2.3750e-13 5.25 1.0149e-12 7.8444e-14 12.59
300 2.4134e-12 1.4828e-13 14.80 8.9760e-12 5.5147e-13 32.64
500 6.9054e-12 3.5405e-13 35.29 2.6940e-12 1.3812e-13 78.63

TABLE 7.2
Comparison for TN SSPD matrices between QS-qd and EIGSSD.

n EðabsÞ EðrelÞ QS-qd(sec) EðabsÞ EðrelÞ EIGSSD (sec)

10 1.8438e-14 1.8196e-15 0.10 2.4170e-14 2.3852e-15 0.17
50 7.5067e-14 4.2194e-15 1.98 1.4532e-13 1.2172e-14 4.39
100 6.4859e-14 3.0592e-15 6.40 2.0281e-12 9.5658e-14 16.66
200 3.5978e-13 9.3222e-15 10.05 1.5309e-12 3.9668e-14 31.09
300 4.4886e-13 8.2383e-15 10.71 1.2081e-12 2.2174e-14 22.60
400 4.6996e-13 8.9675e-15 21.38 1.6238e-12 3.0985e-14 48.55
500 6.4709e-13 1.0402e-14 39.42 6.0125e-10 9.6647e-12 76.97

TABLE 7.3
Results for TN random matrices.

n niter EðabsÞ EðrelÞ QS-qd (sec)

10 37 3.3526e-15 4.8898e-16 0.38
50 239 5.6901e-14 3.5140e-15 0.56
100 488 1.3217e-13 6.0148e-15 1.65
200 993 2.2589e-13 7.3909e-15 4.62
300 1546 3.1303e-13 8.7152e-15 10.61
400 2080 3.0187e-13 7.6370e-15 19.29
500 2576 3.8896e-13 8.6375e-15 33.69
700 3812 6.1653e-13 1.1881e-14 68.83
1000 5689 9.5412e-13 1.4728e-14 135.19

6We wish to thank one of the anonymous referees for suggesting we perform this group of experiments.
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eigenvalue approximated, we see, however, that the other eigenvalues are approximated
very well. As we pointed out in section 5, the stability of QS-qd is not guaranteed for a
generic symmetric matrix. However, the potentially dangerous subtraction of
Algorithm 1 can only occur in the computation of the pi at early steps of the process,
since at convergence mi goes to zero. In Table 7.5 the results obtained on a particular
arrowhead matrix, with well-distributed eigenvalues, are reported. The algorithm in this
case is fast and accurate despite the fact that the matrix is not TN.

Table 7.6 reports the behavior of the QS-qdmethod on a matrix with a couple of ill-
conditioned eigenvalues. As test matrix we consider the inverse of the tridiagonal with

TABLE 7.4
Relative errors for random TN matrices with the smallest eigenvalue equal to α.

n α ¼ 10−3 α ¼ 10−4 α ¼ 10−5 α ¼ 10−6 α ¼ 10−8 α ¼ 10−16

100 3.0184e-13 2.1717e-12 2.4724e-11 8.8302e-11 8.1036e-09 8.9569e-02
200 4.1395e-13 8.3456e-13 5.5461e-11 1.6362e-10 1.2799e-08 2.3694e-01
300 6.8436e-13 7.4789e-12 3.8750e-11 2.7403e-10 7.9448e-08 4.9603e-01
400 1.7029e-13 2.1902e-12 2.3919e-11 1.4864e-09 1.7421e-08 2.7570e-01
500 4.5175e-13 6.0512e-12 1.0577e-11 3.3654e-10 2.6841e-08 7.9474e-01
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FIGURE 7.1. Plot of the relative errors (in a logarithmic scale) of the computed eigenvalues of a randomly
generated TN matrix of order 500 with an eigenvalue equal to 10−16.

TABLE 7.5
An example of a matrix which is not TN.A ¼ ðonesðnÞ þ diagð0∶n− 1ÞÞ−1. A is an arrowhead symmetric

matrix.

n niter EðabsÞ EðrelÞ QS-qd (sec)

10 39 7.6328e-16 1.7383e-16 0.18
50 222 3.8659e-15 6.5444e-16 0.34

100 444 1.0880e-14 1.6580e-15 1.28
200 883 1.3769e-14 1.9065e-15 4.32
300 1314 1.1747e-14 1.5437e-15 9.56
500 2162 1.3649e-14 1.6849e-15 27.06
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all entries equal to one, except for the entry (n, n− 1) equal to α. For this problem, the
conditioning of the eigenvalues increases with α, but it does not depend on the size of the
matrix. We see that accuracy slightly deteriorates as α increases.

Another interesting numerical experiment concerns the behavior of the method on a
semiseparable matrix with clustered eigenvalues.7 We constructed a 100× 100 sym-
metric semiseparable matrix whose eigenvalues are distributed according to Figure 7.2.
Such a matrix has been constructed first generating a random orthogonal matrix Q and
then constructing A ¼ QDQT , where D is a diagonal matrix whose eigenvalues are dis-
tributed as follows: 20 eigenvalues geometrically distributed between 1 and 10−2, 20
eigenvalues between 5 · 10−3 and 5 · 10−5, and 60 eigenvalues between 2.5 · 10−5 and
2.5 · 10−7. We then reduced A to semiseparable form employing the algorithm proposed
in [3] and available online at http://www.cs.kuleuven.be/~mase/. We then computed,
with MATLAB’s eig, the eigenvalues of the matrix obtained through this procedure,
obtaining the values plotted in Figure 7.2, which differ slightly from the theoretical va-
lues but are still clustered. Applying our method, we obtain a maximum relative error of

TABLE 7.6
A ¼ ðdiagðones½ðn− 2; 1Þ;α�;−1Þ þ diagðones½ðn− 1; 1Þ; 1Þ þ eyeðnÞÞ−1. For different values of the para-

meter α, the behavior of the relative error and of the maximum conditioning of the eigenvalues is reported.

n α ¼ 103 α ¼ 104 α ¼ 106 α ¼ 108 α ¼ 109

50 6.8360e-13 4.7427e-12 8.6504e-10 1.2536e-07 2.4598e-06
100 1.6239e-11 6.7904e-12 5.1840e-09 1.4151e-07 1.2406e-06
200 3.7919e-07 3.6445e-07 3.5502e-07 5.8907e-07 1.1434e-06
300 3.8272e-07 3.8317e-07 3.8699e-07 4.3830e-07 1.0376e-05

max(condeig) 15.8272 50.0050 5.0000e+02 5.0000e+03 1.5811e+04
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FIGURE 7.2. Logarithmic plot of the distribution of the eigenvalues of a semiseparable matrix of size 100.

7This example has been taken from [22].
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2.9099e-10, while the mean error for all the eigenvalues was 6.5959e-12, suggesting a
better behavior on the average.

On TN quasiseparable matrices, a comparison with the method (denoted by
TridLR) described in section 6, which first reduces the matrix in tridiagonal form
and then applies the method dqds [17] for tridiagonal matrices, is reported in Table 7.7.
The comparison between the flops required by the tridiagonalization procedure followed
by standard qd technique for tridiagonals (denoted, as mentioned before, as TridLR)
and QS-qd seems to suggest that it is more convenient to first reduce the matrix into
tridiagonal form. However, if one compares the time required by the two algorithms as
reported in Table 7.7, we note that the times obtained are not those expected, while the
accuracy is comparable. This suggests that the comparison of the times is more appro-
priate than flop count since the interpreter or compiler—depending on the language the
code is written in—can optimize the code to get faster execution times when the flop
count would suggest a different behavior.8

8. Conclusions. In this paper two approaches to the computation of the eigenva-
lues of a quasiseparable Neville-representable matrix have been proposed. The first one
is a qd-type algorithm inspired by the qd methods for tridiagonal matrices. The second
idea is to reduce the matrix to tridiagonal form and then apply a method for tridiagonal
matrices, for instance, the same qd algorithm.

We have presented several theoretical results showing that the class of Neville-
representable matrices is closed under LR steps. For TN matrices we proved also that
the proposed algorithms are subtraction-free and breakdown-free, and, if a shift-
preserving positivity is adopted, then each LR step produces a new matrix still TN.

Extensive numerical testing has been performed showing the effectiveness of this
approach.

Acknowledgment. The authors are indebted to the two anonymous referees
whose comments and suggestions helped improve the quality of the presentation.

TABLE 7.7
For TN matrices, comparison between the two approaches proposed in this paper. The TridLR first

applies the tridiagonalization procedure of section 6 and the steps of the dqds algorithm.

n EðabsÞ EðrelÞ TriLR(sec) EðabsÞ EðrelÞ QS-qd (sec)

10 3.3562e-15 7.2967e-16 0.17 6.2538e-15 1.3596e-15 0.10
50 3.7408e-14 3.1866e-15 0.78 3.6114e-14 3.0764e-15 0.38
100 9.8449e-14 4.4702e-15 2.26 1.1809e-13 5.3618e-15 1.35
200 2.1553e-13 7.0867e-15 8.74 2.5090e-13 8.2494e-15 4.69
400 2.4226e-13 6.3467e-15 39.96 3.1101e-13 8.1479e-15 21.79
600 3.3020e-13 6.5145e-15 80.22 4.8100e-13 9.4897e-15 49.92
800 3.9049e-13 7.1229e-15 149.61 7.0710e-13 1.2898e-14 91.31
1000 4.9826e-13 7.8901e-15 263.43 1.0501e-12 1.6629e-14 136.11

8This has been verified executing the same code, using different MATLAB versions and different machines.
In particular, with MATLAB Release 12, the algorithm TridLR is a bit faster than QS-qd, but for all the
subsequent versions we tested, namely, MATLAB R2006B and MATLAB R2011B, the QS-qd outperformed
TridLR.
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