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 25 

Abstract 26 

 27 

In organic agriculture, soil fertility and productivity rely on biological processes carried out by soil 28 

microbes, which represent the key elements of agroecosystem functioning. Arbuscular mycorrhizal 29 

fungi (AMF), fundamental microorganisms for soil fertility, plant nutrition and health, may play an 30 

important role in organic agriculture, by compensating for the reduced use of fertilizers and 31 

pesticides. Though, AMF activity and diversity following conversion from conventional to organic 32 

farming is poorly investigated. Here we studied AMF abundance, diversity and activity in short- 33 

and long-term organically and conventionally managed Mediterranean arable agroecosystems. Our 34 

results show that both AMF population activity, as assessed by the mycorrhizal inoculum potential 35 

(MIP) assay, the percentage of colonized root length of the field crop (maize) and glomalin-related 36 

soil protein (GRSP) content were higher in organically managed fields and increased with time 37 

since transition to organic farming. Here, we showed an increase of GRSP content in arable organic 38 

systems and a strong correlation with soil MIP values. The analysis of AMF spores showed 39 

differences among communities of the three microagroecosystems in terms of species richness and 40 

composition, as suggested by a multivariate analysis. All our data indicate that AMF respond 41 

positively to the transition to organic farming, by a progressive enhancement of their activity, that 42 

seems independent from the species richness of the AMF communities. Our study contributes to the 43 

understanding of the effects of agricultural managements on AMF, which represent a promising tool 44 

for the implementation of sustainable agriculture. 45 

 46 

Key Words: Organic agriculture; Arbuscular mycorrhizal fungi; Glomalin-related soil protein; 47 

Mycorrhizal inoculum potential; Soil fertility 48 
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 51 

Introduction 52 

 53 

Organic agriculture, defined as “a production system that sustains the health of soils, ecosystems 54 

and people” by the International Federation of Organic Agriculture Movements 55 

(http://www.ifoam.org/growing_organic/definitions/doa/index.html), is a broad group of farming 56 

systems characterized by strict limitation of chemical fertilizers, herbicides and pesticides, by soil 57 

management through addition of organic materials and by the use of crop rotation (IFOAM, 2006). 58 

As a consequence, soil fertility and productivity of organic farming systems largely rely on 59 

biological processes carried out by soil microbes, which represent the key elements of 60 

agroecosystem functionality and, therefore, a critical factor for the success of organic agriculture 61 

(Lampkin 1990; Gosling et al. 2006).  62 

Arbuscular mycorrhizal fungi (AMF) are considered the most important soil organisms for agro-63 

ecosystem sustainability, as they establish root symbioses with most crop plants and, acting as a 64 

living interface between plant roots and soil, translocate mineral nutrients - mainly P, N, Zn, Ca, Cu 65 

- from soil to plants by the large extraradical mycelial network spreading from mycorrhizal roots 66 

into the surrounding environment (Giovannetti and Avio 2002; Smith and Read 2008). AMF also 67 

affect soil quality, improving soil structure by promoting the accumulation of the extracellular 68 

proteinaceous substance named glomalin-related soil protein (GRSP), which largely contributes to 69 

the formation of water stable macroaggregates of soil particles (Wright and Upadhyaya 1998; Rillig 70 

2004; Bedini et al. 2009). Recently, a role of AMF in the synthesis of plant secondary metabolites 71 

has been reported, contributing to the production of safe and high-quality food (Ceccarelli et al. 72 

2010; Giovannetti et al. 2012). 73 

Intensive agricultural practices, such as monocropping, deep ploughing, chemical fertilization 74 

and pesticide use are detrimental to soil microbial linkages (Matson et al. 1997; Mäder et al. 2002; 75 

Tilman et al 2002), negatively affecting AMF populations in terms of biodiversity (Sasvári et al. 76 
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2011; Daniell et al. 2001; Douds and Johnson 2007), activity - evaluated as colonization ability 77 

(Mozafar et al. 2000; Ryan et al. 2000) - and GRSP production (Wright et al. 1999; Wright and 78 

Anderson 2000; Bedini et al. 2007, 2009; Wilson et al. 2009). On the other hand several studies 79 

showed that AMF diversity (Oehl et al. 2003, 2004; Verbruggen et al. 2010), root colonization 80 

(Mäder et al. 2000; Smukler et al. 2008) and spore abundance (Galvez et al. 2001; Oehl et al. 2003, 81 

2004) were higher in organically managed soils, suggesting that AMF may play an essential 82 

functional role in the maintenance of soil biological fertility and structure, compensating for the 83 

reduced use of chemical fertilizers and pesticides (Galvez et al. 2001; Lekberg and Koide 2005; 84 

Gosling et al. 2006; Ryan and Tibbet 2008).  85 

The conversion from conventional to organic management, with the resulting changes in AMF 86 

communities, is a slow and gradual process (Göllner et al. 2005); in particular, in Mediterranean 87 

and semi-arid soils, such a process may be even longer, as a result of the low content and high turn-88 

over of organic matter (Raviv 2010). Besides, most of the mycorrhiza-related literature originates 89 

from temperate regions and little is known about the effects of long-term organic management on 90 

AMF communities of arable soil in the Mediterranean area, where about 5 million hectares are 91 

organically managed, one of which in Italy (ISMEA 2008). Investigations on the effects of organic 92 

farming on AMF communities in Mediterranean arable soils could contribute to the understanding 93 

of the behaviour of these symbiotic fungi and their role as provider of ecological services in 94 

sustainable agriculture. 95 

In this work we utilized different parameters to evaluate AMF abundance, diversity and activity 96 

in arable soils of Central Italy, 6 and 16 years after conversion from conventional to organic 97 

farming. We assessed: i) AMF activity in the soil by the mycorrhizal inoculum potential (MIP) 98 

bioassay; ii) AMF colonization of the crop plant (maize); iii) soil GRSP content; iv) correlations 99 

between GRSP and different AMF activity parameters; v) AMF spore number, biomass and 100 

diversity. 101 
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Materials and methods 103 

 104 

Description of the long term experiment 105 

 106 

The Montepaldi Long Term Experiment (MOLTE) is active since 1991 in the farm of the 107 

University of Florence (San Casciano Val di Pesa, 11° 09’ 08’’E, 43° 40’ 16’’ N, 90 m a.s.l.), 108 

covering a slightly sloping surface of about 15 hectares (Vereijken 1994, 1997, 1999; Migliorini 109 

and Vazzana 2007). MOLTE includes three microagroecosystems: 110 

a)  “Old Organic” (OldO) with an area of 5.2 ha, divided into 4 fields under organic 111 

management (former EC Regulation 2092/91 and now EC reg. 834/07) since 1991; 112 

b) “Young Organic” (YngO) with an area of 5.2 ha, divided into 4 fields under EC regulations 113 

2078/92 (integrated farming) from 1991 to 2000 and converted into organic management since 114 

2001; 115 

c) “Conventional” (Conv) with an area of 2.6 ha divided into 2 conventional fields, where 116 

farming techniques were those normally used in the territory of the study area for conventional 117 

management. 118 

A four-year crop rotation has been adopted in OldO and YngO since 2001: green manure+spring 119 

crop (maize or sunflower)/winter cereal (barley or wheat)+red clover/red clover II/winter cereal 120 

(barley or wheat). A biennial rotation has been adopted in Conv: spring crop (maize or 121 

sunflower)/winter cereal (barley or wheat).  122 

Fields (260 x 50 m) were tilled by ploughing at 25-30 cm of depth. The crops were rainfed. The 123 

mineral and organic fertilizers used in OldO and YngO systems were: guano (N:P:K ratio, 124 

06:15:03), chicken dung (N:P:K ratio, 4:4:0), organic N fertilizer in pellets of diverse origin. The 125 

mineral and synthetic fertilizers used in Conv were: liquid fertilizer (N:P:K ratio, 30:0:0), 126 

ammonium polyphosphate (N:P:K ratio, 10:34:0), urea (N:P:K ratio, 46:0:0), triple superphosphate 127 

(N:P:K ratio, 0:46:0), ammonium nitrate (N:P:K ratio, 27:0:0) and diammonium phosphate (N:P:K 128 
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ratio, 18:46:0). Since 2001, the fertilization rate (N-P2O5, kg ha-1y-1) was: OldO 12-13 for winter 129 

cereals and 18-20 for spring crops; YngO 17-20 for winter cereals and 14-2 for spring crops; Conv 130 

120-70 for winter cereals and 95-65 for spring crops. In organic fields weed control was performed 131 

by mechanical cultivation and plant diseases were controlled by indirect means (crop rotation and 132 

ecological infrastructures represented by natural and planted vegetation in mixed hedgerows and 133 

grass strips), while in the conventional field weeds control was performed using the chemical 134 

herbicides Zodiac Dicuran (AI: Diflufenican 0.06 and Clortoluron 1.36 Kg ha-1) and Primigran TZ 135 

(AI: Terbuthylazine 0.9 and Metolachlor 1.8 Kg ha-1). 136 

The microagroecosystems were surrounded by ecological infrastructures such as natural and 137 

artificial hedges, in order to minimise interaction effects and cross-contaminations among the 138 

differently managed fields.  139 

Soil sampling was carried out in the fields where maize was grown. 140 

 141 

Climate and soil characteristics 142 

 143 

Climatic conditions of the experimental area are typical of the Mediterranean sub-Apennines zone. 144 

The annual rainfall is about 770 mm with maximum in autumn and spring and minimum in the 145 

period June-August. The annual mean temperature was 14°C with maximum above 30°C in 146 

summer and minimum about -1°C in winter, in the period 1992-2008. 147 

The soil of MOLTE is composed of parent rock material derived from Pliocene sediments (slope 148 

zones) and river Pesa fluvial deposit from Holocene (plane zones), classified as Fluventic 149 

Xerochrepts (Lulli et al. 1980). Texture varies from “silty clay loam” to “clay loam”. Soil samples 150 

for chemical analyses were collected in October 2007, after maize harvest, from the OldO, YngO 151 

and Conv fields where maize was grown. Four samples were collected at 0-25 cm depth from each 152 

field, air-dried, crushed and passed through a 2-mm sieve. Chemical soil characteristics were 153 

analysed as follows: pH in a 1:2.5 (w/v) soil water ratio, total organic C by the Walkley-Black 154 
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method (Nelson and Sommers 1996), total N by Kjeldahl digestion (Bremner 1996), available P 155 

(Olsen P) by extracting soil with 0.5 M NaHCO3 at pH 8.5 (Olsen and Sommers 1982), 156 

exchangeable K using ammonium nitrate method (Mehlich, 1984), following official methods (DM 157 

13/09/1999 SO - GU n°248 21/10/1999 Met III.1) in an external laboratory (accredited by SINAL, 158 

www.accredia.it).  159 

 160 

Field sampling for mycorrhizal assessment 161 

 162 

After maize harvest, in October 2007, 4 plots (plot size, 130 x 25 m) were sampled within each 163 

maize field in each microagroecosystem. Each sample was obtained by combining four sub-164 

samples, collected from each plot, 25 m apart, using a soil corer (5 cm diameter, 20 cm deep). Then, 165 

soil samples (12), containing also maize roots, were transferred to the laboratory in individual 166 

polyethylene bags, carefully ground by hand, and after separating maize roots, were air dried and 167 

kept at 4 °C until analysed. 168 

 169 

Mycorrhizal root colonization  170 

 171 

AMF colonization was assessed on maize roots and percentage of colonized root length was 172 

determined after root staining with 0.05% Trypan blue in lactic acid (Phillips and Hayman 1970), 173 

using the gridline intersect method (Giovannetti and Mosse 1980). 174 

 175 

Mycorrhizal Inoculum Potential bioassay 176 

 177 

Mycorrhizal Inoculum Potential (MIP) of the experimental field soils was assessed using Cichorium 178 

intybus L. as host plant. C. intybus seeds were sown in 50 mL sterile plastic tubes filled with 40 mL 179 

of each soil sample. Three replicate tubes per soil sample were prepared. Five days after emergence, 180 
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C. intybus plants were thinned to 2 individuals per tube. Ten, 20 and 30 days after emergence, 181 

plants were removed from tubes and root systems were washed, stained and mounted on 182 

microscope slides. Root length and colonized root length were measured on stained roots at 183 

magnification of x40 using a grid eyepiece under a dissecting microscope (Wild, Leica, Milano, 184 

Italy). Number of entry points were assessed on stained 10 and 20 days old roots at magnification of 185 

x125 and verified at magnification of x500 under a Polyvar light microscope (Reichert-Jung, 186 

Vienna, Austria). 187 

 188 

Analysis of GRSP 189 

 190 

Glomalin-related soil protein was extracted following Wright and Upadhyaya (1998). Easily 191 

extractable GRSP (EE-GRSP) was extracted from 1 g of 2 mm sieved dry soil for each sample 192 

using 8 ml of a 20 mM citrate solution, pH 7.0 at 121°C for 30 min. The extracts were centrifuged 193 

at 5000 g for 20 min to pellet soil particles and the supernatant was decanted and stored at 4°C until 194 

analysed. Total GRSP (T-GRSP) was extracted after EE-GRSP from the same samples by repeated 195 

cycles of extraction with 50 mM citrate, pH 8.0 at 121°C for 60 min. Extraction of T-GRSP 196 

continued until the supernatant content of GRSP was under the method detection limits (ca. 2 mg 197 

ml-1). Extracts of T-GRSP from each cycle were pooled and centrifuged at 10000 g for 10 min to 198 

remove residual soil particles. Glomalin-related soil protein content was determined by Bradford 199 

assay (Sigma-Aldrich, Inc.) with bovine serum albumin as the standard. 200 

 201 

Fungal spore extraction and identification 202 

 203 

Spores and sporocarps of AMF were extracted from duplicate sievings of 25 g of each sample, by 204 

wet-sieving and decanting, through a set of nested sieves (Gerdemann and Nicolson 1963). Spores 205 

and sporocarps retained on sieves of pore size 400, 250, 100 and 50 µm were flushed into Petri 206 
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dishes, examined under a dissecting microscope (Wild, Leica) at magnifications up to x50 with 207 

illumination by incident light from a fibre-optic quartz-halogen light source. When present, 208 

sporocarps were dissected with forceps and the released spores were counted. Spores were manually 209 

isolated using capillary pipettes according to their morphology and colour, mounted on microscope 210 

slides in polyvinyl alcohol lactoglycerol (PVLG), and examined under the Polyvar light 211 

microscope. For taxonomical identification, which was morphologically based, spores were 212 

mounted both in PVLG and in PVLG + Melzer’s reagent (1:1, v:v) as media. Qualitative spore 213 

traits (spore shape, colour and size, spore wall ornamentation, wall structure and shape, colour and 214 

size of the subtending hypha) were examined on at least 20 spores for each morphotype, except for 215 

Glomus badium, Glomus spp. 3 and 5 and Acaulospora sp., which were found in low number. Spore 216 

morphotypes were compared with original diagnoses of AMF species and with the reference culture 217 

descriptions at http://invam.caf.wvu.edu/fungi/taxonomy/speciesID.htm and 218 

http://www.agro.ar.szczecin.pl/ ~jblaszkowski/index.html. Since important changes of AMF 219 

nomenclature have been recently proposed by different authors (Oehl et al. 2011; Krüger et al. 220 

2012), with some taxa differently named, we utilised the new binomials only for consistent species 221 

names and maintained the previous ones for the others.  222 

Total spore densities were determined as spore number 100 g-1 soil. Abundance of each species 223 

was then converted into biovolume, calculated as V = 1/6πD3 (D = spore diameter) for species with 224 

spherical spores, or as V = 1/6πD1D2
2 (D1 = larger diameter; D2 = smaller diameter) for species 225 

with elongated spores. Total spore biovolume per sample was obtained by summing spore 226 

biovolumes of all species recorded in the sample. Relative abundance was calculated as the spore 227 

biovolume of an individual AMF taxon divided by the total spore biovolume within a sample. 228 

Species richness was measured as the number of AMF species recorded in each sample, and 229 

Shannon diversity index (H) and equitability (E = H divided by the logarithm of number of taxa) 230 

and Simpson index of diversity (D) were calculated on spore number data using PAST 1.99 231 

software (Hammer et al. 2001). 232 
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 233 

Statistical analyses 234 

 235 

Data of all experiments were analysed by one-way analysis of variance (ANOVA) using 236 

management treatment as factor. The data were logarithm or arcsine transformed when needed to 237 

fulfil the assumptions of the ANOVA. Analyses were performed with the SPSS 18.0 software 238 

(SPSS Inc., Chicago, IL, USA). Means and standard errors (S.E.) given in tables are for 239 

untransformed data. 240 

Principal component analysis (PCA) was performed to show the abundance of AMF species in 241 

the different microagroecosystems, using spore numbers after logarithmic transformation, with the 242 

PAST software. Species occurring only in one sample and with a spore number lower than 1% of 243 

total spores, were excluded from the analyses. 244 

 245 

Results 246 

 247 

Soil characteristics 248 

 249 

Soil chemical analyses showed that in the experimental area the pH was moderately alkaline with a 250 

low level of organic matter, total N and available phosphate content and a normal content of 251 

exchangeable potassium. No significant differences were observed among the three 252 

microagroecosystems except for organic C content, which was significantly higher in YngO than in 253 

Conv soil (Table 1). 254 

 255 

Mycorrhizal root colonization 256 

 257 
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Percentages of maize colonized root length at the end of the cultivation cycle were significantly 258 

different among the management systems (F2,7 = 5.94, P = 0.031) and were 60.2 ± 2.8, 50.3 ± 5.2 259 

and 43.4 ± 3.9 in OldO, YngO and Conv fields, respectively. Tukey HSD Post hoc test showed a 260 

clear separation between OldO and Conv values (P < 0.05). 261 

 262 

Mycorrhizal Inoculum Potential bioassay  263 

 264 

Mycorrhizal Inoculum Potential was significantly different among the three microagroecosystems. 265 

Fungal entry points in C. intybus roots were significantly higher in OldO and YngO soils (0.59 ± 266 

0.05 and 0.60 ± 0.10 mm-1, respectively), than in Conv soil (0.23 ± 0.04 mm-1), 20 days after 267 

emergence  (F2,9 = 4.964; P < 0.05). A similar pattern was observed for mycorrhizal root 268 

colonization, which showed significant differences among management systems, 30 days after 269 

emergence (F2,9 = 21.436; P < 0.001) (Fig. 1). 270 

 271 

Analysis of GRSP 272 

 273 

The concentration of T-GRSP was significantly higher in organic microagroecosystems (F2,8 = 274 

7.398, P = 0.015). OldO soil showed the highest T-GRSP content, whereas the lowest value was 275 

found in Conv soil (Table 2). On the contrary, no differences were detected in the EE-GRSP content 276 

among the three management systems (F2,8 = 0.033, P = 0.967) (Table 2). Regression analyses 277 

showed a significant positive effect of organic management on T-GRSP content. The time since 278 

conversion from conventional to organic farming explained 58% of the variance in T-GRSP 279 

concentration (R=0.797; P=0.003). Positive correlations were also observed between T-GRSP and 280 

root colonization values of 30 days’ old C. intybus plantlets in the MIP test (R=0.691; P = 0.018) 281 

and between T-GRSP values and the percentage of colonized root length in the host crop, maize 282 

(R=0.485; P=0.155). 283 
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 284 

Fungal spore number and morphotypes 285 

 286 

Spore numbers (spore number 100 g-1 soil) in YngO (542.5 ± 61.2) and Conv fields (395.5 ± 93.1) 287 

were significantly higher (F2,9 = 9.809, P = 0.005) than in OldO (136.0 ± 23.2). Total spore volume, 288 

ranging from 220 ± 27 to 296 ± 10 nL, did not differ significantly among management treatments 289 

(F2,9 = 3.396, P = 0.08). 290 

Overall, in the three microagroecosystems fifteen AMF spore morphotypes were identified, 291 

belonging to Acaulospora, Claroideoglomus, Funneliformis, Glomus, Pacispora, Scutellospora. 292 

Five Glomus morphotypes were not assigned to any described species, as well as the morphotypes 293 

belonging to Acaulospora, Pacispora and Scutellospora. The number of AMF species was 294 

significantly higher in YngO than in OldO and Conv (F2,9 = 9.300, P = 0.006). Diversity indices 295 

differed among management systems (F2,9 = 5.866, P = 0.023; F2,9 = 5.527, P = 0.027; F2,9 = 8.883, 296 

P = 0.007, Simpson’s, Shannon’s index and equitability, respectively), OldO showing the highest 297 

value (Table 3). 298 

Glomus viscosum was the most abundant species in terms of spore number (Table 4), while 299 

Funneliformis geosporus was the most abundant morphotype in terms of biovolume (data not 300 

shown). Overall, 7 different species were common to the three microagroecosystems: 301 

Claroideoglomus claroideum, F. geosporus, Funneliformis mosseae, Glomus sp. 1, Pacispora sp., 302 

Scutellospora sp. and G. viscosum. Glomus sinuosum and Glomus rubiforme were detected only in 303 

Conv, while Acaulospora sp. occurred only in the YngO (Table 4). 304 

We performed PCA analysis to show differences in AMF species abundance. The first two 305 

principal component axes described most of the total variation (77.4%) in the data (Fig. 2). The 306 

PCA biplot showed that the distribution of samples on axis 1 (61.3% of the total variation) is 307 

mainly determined by G. viscosum, whereas on axis 2 (16.1% of variation), samples are mainly 308 
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segregated by abundance of fungal spores belonging to C. claroideum. The third axis explains 309 

mainly Pacispora distribution (10.4% of variation). 310 

 311 

Discussion 312 

 313 

In this work we assessed the differences in AMF activity and diversity among conventionally and 314 

organically managed Mediterranean arable soils. Our work shows that: i) AMF population activity, 315 

assessed as MIP and root colonization, and GRSP content were higher in organic 316 

microagroecosystems and increased with time since transition to organic farming, ii) AMF diversity 317 

was affected by the different managements. 318 

The conversion from conventional to organic management affected AMF activity, as assessed by 319 

soil mycorrhizal potential, indicating a progressive improvement in the activity of the resident 320 

AMF, which, even in YngO - 6 years after conversion - was higher than in conventionally 321 

cultivated soils. Our data contrasts with those obtained by Purin et al. (2006), who did not find 322 

differences in MIP values between conventional and organic apple orchards, 4 years after 323 

conversion. However, our findings fit well with a recent study of Gosling et al. (2010) who found 324 

higher colonization potential, 2-3 years after conversion to organically managed soils, in 11 325 

different farms across England. In MOLTE, a combination of factors could have determined the 326 

higher MIP values of organically managed soils. First, the type of weed control utilized - that 327 

resulted in highest weed diversity in organic microagroecosystems (Migliorini and Vazzana 2007) - 328 

may have led to a higher occurrence of AMF propagules originating from mycorrhizal weeds, 329 

whose control was shown to cause changes in diversity, abundance and functioning of AMF 330 

(Feldmann and Boyle 1999; Kabir and Koide 2000). Accordingly, Purin et al. (2006) suggested that 331 

highest MIP values detected in a native grassland surrounding conventional and organic orchards 332 

could be explained by the higher amount of mycorrhizal plant species in grassland than under the 333 

canopy of the orchards. Gosling et al. (2010) ascribed the increased colonization potential in 334 
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organically managed soils to the two years ley required in UK during the conversion period. 335 

Second, probably AMF colonization levels of the main crop could have played an important role in 336 

soil colonization potential. Our data show that, at harvest, AMF root colonization of maize was 337 

higher in organic than in conventional fields and it correlated well with soil MIP values (R=0.68, 338 

P=0.029). 339 

Higher levels of AMF root colonization detected in maize under organic management are in 340 

agreement with several previous studies on maize and other crops (Ryan et al. 1994; Mäder et al. 341 

2000; Galván et al. 2009; Verbruggen et al. 2010). High AMF colonization in organic fields has 342 

been often attributed to low levels of available soil P (Mäder et al. 2000; Ryan et al. 2000) which, at 343 

high concentrations, negatively affect mycorrhizal establishment (Thingstrup et al. 1998; Kahiluoto 344 

et al. 2000, 2001). However, since in our assessment available soil P concentration was not different 345 

among the microagroecosystems, other factors, such as crop rotation (Gavito and Miller 1998), 346 

cover crops and AMF population diversity (Scullion et al. 1998) could have contributed to enhance 347 

mycorrhizal colonization in organically managed fields. 348 

Along with differences in soil inoculum potential and crop root colonization, we detected 349 

different GRSP concentrations among the different microagroecosystems. The concentration of T-350 

GRSP in MOLTE soils was higher in organically than in conventionally managed plots, but 351 

differences became significant only in the long-term trial (OldO). Consistently with our results, 352 

other studies indicated that, in the short-term, organic farming did not significantly affect GRSP 353 

concentrations. Bedini et al. (2008) did not find significant changes in GRSP concentrations in 354 

organically managed soils (5 years after conversion) compared with conventional fields, while 355 

Purin et al. (2006) obtained contrasting data in GRSP concentration between organic and 356 

conventional apple orchards in Brazil (4 years after conversion).  357 

We detected a strong correlation between GRSP and soil MIP, a moderate correlation between 358 

GRSP and maize mycorrhizal colonisation and no correlation between GRSP and spore number or 359 

biovolume. These findings, obtained in the field, confirm previous pot experiment data showing a 360 
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strong correlation of GRSP with colonized root volume and with soil aggregation (Bedini et al 361 

2009). Bradford assay could be sensitive to polyphenols and humic compounds (Whiffen et al. 362 

2007; Gillespie et al. 2011) and GRSP quantification biased by organic fertilisation (Rosier et al. 363 

2006). However, since no significant differences were found in soil organic matter between Oldo 364 

and Conv (Table 1) as well as in humic and fulvic acids soil content (Canali, personal 365 

communication), the different GRSP concentrations might be ascribed to the symbiotic activity of 366 

AMF, as assessed by MIP and root colonization.  367 

Since GRSP is primarily involved in the formation of water-stable soil macro-aggregates 368 

(Wright and Upadhyaya 1998; Bedini et al. 2009) as well as in soil C storage (Rillig et al. 2003; 369 

Bedini et al. 2007), our data suggest that long-term organic management may improve soil quality, 370 

by enhancing GRSP production. This represents one of the ecosystem services supplied by AMF, 371 

even in the absence of positive impacts on yields (Ryan and Kirkegaard 2012). 372 

Here, the biodiversity of AMF communities was investigated by counts and identification of 373 

spores occurring in field soil after maize harvest, representing a subset of the entire AMF diversity. 374 

The numbers of AMF species detected were consistent with those previously found in 375 

Mediterranean agroecosystems by spore analyses (Calvente et al. 2004; Bedini et al. 2007, 2008) or 376 

molecular methods (Cesaro et al. 2008; Brito et al. 2012). However, the analysis of AMF spores 377 

showed differences among communities of the three microagroecosystems in terms of species 378 

richness, which in YngO was higher than in the other systems, and in terms of species composition, 379 

as suggested by PCA analysis. Our results compare well with data on microarthropods species 380 

obtained from the same site (Simoni, personal communication). Other authors reported contrasting 381 

effects of organic agriculture on AMF biodiversity. Some studies showed a higher AMF species 382 

richness in organically managed soils (Oehl et al. 2004; Hijri et al. 2006; Verbruggen et al. 2010), 383 

while others found no or only slight differences after 5 years (Bedini et al. 2008) or 15 years of 384 

organic cultivation (Franke-Snyder et al. 2001; Galván et al. 2009), compared with conventional 385 

farming.  386 
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Interestingly, the two AMF G. sinuosum and G. rubiforme were restricted to Conv. Such species 387 

have been reported to occur in grasslands and to disappear in disturbed soils (Oehl et al. 2010; 388 

Sieverding 1989), although sometimes retrieved in conventionally managed soils as spores (Na 389 

Bhadalung et al. 2005; Bedini et al. 2007; Rasmann et al. 2009) or sequences (Alguacil et al. 2008). 390 

In Conv we also found several spores of the genus Scutellospora, which is considered highly 391 

vulnerable to disturbances and agricultural practices (Giovannetti and Gianinazzi-Pearson 1994; 392 

Johnson 1993). The occurrence of such sensitive species in conventionally managed arable soils 393 

may be explained by the dispersal of AMF propagules from natural undisturbed sites close to 394 

cultivated soils, which, dispersed by mammals and wind, may rapidly colonize crop plants growing 395 

nearby (Allen et al. 1989; Püschel et al. 2008; Fracchia et al. 2011). Indeed, MOLTE site includes 396 

ecological infrastructures and is surrounded by woods and riparian areas, which could have 397 

functioned as sources of inoculum. Another species of Scutellospora, S. calospora, was found in 398 

organically and conventionally managed fields in Tuscany, close to a natural site, where such a 399 

species also occurred (Mazzoncini et al 2010; Turrini et al 2008).  400 

Overall, all our data suggest that AMF occurring in conventional agricultural soils respond to the 401 

transition to organic farming by a progressive enhancement of their activity, that seems independent 402 

from the species richness of sporulating AMF communities. The improved GRSP accumulation 403 

indicates that, in organic systems, AMF may provide ecosystem services in sustainable 404 

agroecosystems, in terms of maintaining soil structure, reducing erosion and contributing to below-405 

ground carbon pools. Further long-term studies should be performed in order to assess the 406 

population dynamics of AMF and the specific functional role played by these beneficial soil 407 

organisms in organic agriculture.  408 
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Table 1  

Main soil properties (0 - 20 cm depth) of the three microagroecosystems of the Montepaldi Long 

Term Experiment (mean ± S.E.). OldO, fields converted into organic management since 1991; YngO, 

fields converted into organic management since 2001; Conv, fields under conventional farming 

management. 

 OldO YngO Conv P value 

pH (H2O) 8.23 ± 0.03a 8.08 ± 0.09a 7.98 ± 0.08a 0.075 

Organic C (g kg-1) 10.76 ±0.25ab 11.16 ±0.38b 9.84 ±0.11a 0.021 

Total N (g kg-1)(1) 1.22 ±0.01a 1.14 ±0.02a 1.12 ±0.01a  0.055 

Available P2O5
(2) (mg kg-1) 14.75 ± 2.10a 18.00 ± 3.19a 17.50 ± 0.65a 0.563 

C/N 8.55 ± 0.24a 9.45 ± 0.45a 8.82 ± 0.13a 0.243 

Exchangeable K2O (mg kg-1) 129.50 ± 13.35a 125.75 ± 6.99a 115.50 ± 1.94a 0.530 

(1) Kjeldahl method; (2) Olsen method. Values in row followed by different letters are significantly different (P ≤ 0.05) as determined 

by the Tukey’s HSD test. 
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Table 2  

Glomalin-related soil protein (mg g-1) in the three microagroecosystems of the 

Montepaldi Long Term Experiment (mean ± S.E.). OldO, fields converted into 

organic management since 1991; YngO, fields converted into organic management 

since 2001; Conv, fields under conventional farming management. T-GRSP, Total 

glomalin-related soil protein; EE-GRSP, Easily extractable glomalin-related soil 

protein. 

        OldO       YngO     Conv 

T-GRSP 1.01 ± 0.02a  0.95 ± 0.02 ab 0.89 ± 0.03 b 

EE-GRSP 0.40 ± 0.02a  0.42 ± 0.03a  0.41 ± 0.03a  

Values in row followed by different letter are significantly different (P ≤ 0.05) as 

determined by the Tukey’s HSD test. 
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 632 

Table 3 

Species richness, diversity, and equitability in AM fungi communities of the 

three micro agroecosystems of the Montepaldi Long Term Experiment (mean ± 

S.E.). OldO, fields converted into organic management since 1991; YngO, fields 

converted into organic management since 2001; Conv, fields under conventional 

farming management. 

 OldO  YngO  Conv 

No. observed species    8.0 ± 0.4 a       10.5 ± 0.5 b           7.5 ± 0.6 a 

Shannon index 1.705 ± 0.03 b  1.087 ± 0.13 a 1.422 ± 0.18 ab 

Simpson index 0.772 ± 0.01 b 0.475 ± 0.07 a 0.658 ± 0.09 ab 

Equitability 0.822 ± 0.02 b 0.467 ± 0.07 a 0.705 ± 0.08 ab 

Values in row followed by different letter are significantly different (P ≤ 0.05) as determined by the 

Tukey’s HSD test. 
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 635 

Table 4 

Abundance (mean ± S.E.) of arbuscular mycorrhizal fungal species by spore 

number (spores 100 g-1) from the three micro agroecosystems of the Montepaldi 

Long Term Experiment. OldO, fields converted into organic management since 

1991; YngO, fields converted into organic management since 2001; Conv, fields 

under conventional farming management. 

 

  OldO  YngO Conv 

Acaulospora sp.    1.0 ± 1.0    

Claroideoglomus 

claroideum 

10.0 ± 4.7 7.0 ± 3.1 49.5 ± 14.8 

Funneliformis 

geosporus 

50.5 ± 9.0 46.0 ± 8.3 40.5 ± 7.3 

Funneliformis 

mosseae 

18.0 ± 3.2 53.5 ± 4.6 29.5 ± 4.6 

Glomus badium 1.5 ± 1.5 2.5 ± 0.5    

Glomus rubiforme       25.0 ± 25.0 

Glomus sp1 11.5 ± 3.9 12.5 ± 4.3 2.5 ± 1.5 

Glomus sp2    4.5 ± 1.3 6.5 ± 4.7 

Glomus sp3    1.0 ± 0.6 0.5 ± 0.5 

Glomus sp4 10.0 ± 5.3 2.5 ± 1.0    

Glomus sp5 4.0 ± 1.8 0.5 ± 0.5    

Glomus sinuosum 

Glomus viscosum 

Pacispora sp. 

 

16.5 ± 11.8 

11.0 ± 6.6 

 

390.0 ± 69.1 

5.5 ± 2.5 

25.0 ± 25.0 

200.0 ± 76.7 

2.5 ± 1.0 

Scutellospora sp. 3.0 ± 1.3 16.0 ± 2.2 14.0 ± 3.4 
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Figure captions 638 

 639 

Fig. 1 Percentage of mycorrhizal root length in Cichorium intybus after 10, 20 and 30 days’ growth 640 

in the soil from the three microagroecosystems of Montepaldi Long Term Experiment (MOLTE). 641 

(♦) OldO, fields converted into organic management since 1991; (▲) YngO, fields converted into 642 

organic management since 2001; (●) Conv, fields under conventional farming management.  Bars 643 

represent standard errors of the means (S.E.). 644 

Fig. 2 Principal component analysis (PCA) of AMF spore distribution in the three 645 

microagroecosystems of the Montepaldi Long term Experiment (MOLTE). (♦) OldO, fields 646 

converted into organic management since 1991; (▲) YngO, fields converted into organic 647 

management since 2001; (●) Conv, fields under conventional farming management. The percentage 648 

of the total variance explained by each principal component is indicated in brackets. 649 
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