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Abstract 
Poly(vinyl chloride) (PVC) is one of the most important polymeric materials available today 

and is used to manufacture many items, ranging from packaging and toys to healthcare 

devices. PVC is per se a rigid material but it is made softer by compounding with 

plasticizers, particularly phthalate esters such as di-(2-ethylhexyl) phthalate (DEHP). In 

flexible plasticizer PVC (P-PVC), phthalates are not chemically bound to PVC and they are 

released into the external environment. In particular, prolonged contact of P-PVC based 

medical devices with body fluids or tissues has been shown to be associated with severe 

health risks. Major concerns regarding the safety of P-PVC in medical plastic items have 

been raised, and several alternatives to phthalates and to P-PVC itself as well as 

chemical/physical treatments of P-PVC to reduce DEHP migration have been proposed. 
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This review outlines recent scientific approaches for preventing DEHP contamination of 

humans by P-PVC medical devices, highlighting the impact of the proposed alternative 

materials on human health and strategies for implementing them. 
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Abbreviations 

Bz-â-CD  2,3,6-per-O-benzoyl-â-cyclodextrin 

Citroflex A-4  Acetyltri-n-butyl citrate 

Citroflex B-6  n-Butyryl-tri-n-hexyl citrate 

CVD   Chemical vapor deposition 

DEHA   Di(2-ethylhexyl) adipate  

DINP   Di-(isononyl phthalate) 

DINCH  Di(isononyl)-cyclohexane-1,2-dicarboxylate 

DEHP   Di-(2-ethylhexyl) phthalate 

DEHT   Di-(2-ethylhexyl) terephthalate  

DOP-SH   Di-(2-ethylhexyl) 4-mercaptophthalate  

isoDOP-SH   Di(2-ethylhexyl) 5-mercaptoisophthalate  

EPA   Environmental Protection Agency 

EVA   Poly(ethylene-co-vinyl acetate) 

GRAS   Generally recognized as safe 

IARC   International Agency for Research on Cancer 

ILs   Ionic liquids 

ISO   International organization for standardization 

LCA   Life Cycle Analysis 

MEHP   Mono(2-ethylhexyl) phthalate 

NIOSH  National Institute for Occupational Safety and Health 
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NTP   National Toxicology Program 

OSHA   Occupational Safety and Health Administration 

PVC   Poly(vinyl chloride) 

PAA    Poly(acrylic acid)  

PBA   Poly(butyl adipates) 

PC   Poly(carbonate) 

PCL   Poly(ε-caprolactone) 

PDMA    Poly(dimethyl acrylamide)  

PDMAEMA  Poly(dimethylaminoethyl methacrylate)  

PE   Polyethylene 

PEG   Poly(ethylene glycol) 

PEO   Poly(ethylene oxide) 

PHEA   Poly(2-hydroxyethyl acrylate)  

PHEMA  Poly(2-hydroxyethyl methacrylate) 

POSS   Polyhedral oligomeric silsesquioxane 

PP   Polypropylene 

PPARα  Peroxisome proliferator-activated receptor alpha  

PU   Poly(urethanes) 

P4VP   Poly(4-vinylpiridine) 

TOTM   Tris(2-ethylhexyl)trimellilate 

TPN   Total parenteral nutrition 
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1. Introduction 

Poly(vinyl chloride) (PVC) is one of the most common thermoplastic materials employed 

today, with applications ranging from packaging to healthcare devices, toys, electrical wire 

insulation, clothes, furniture, packaging, interior decoration, building materials and the car 

industry [1]. PVC possesses the largest share of the medical market constituting 40% of all 

dedicated polymeric materials [2]. It is the first choice for medical applications due to its 

inertness, high transparency, facility of sterilization and strength. However, the inherent 

rigidity of PVC attested by its high glass transition temperature (80 °C)  limits its 

applicability. To extend its versatility PVC is commonly compounded with different 

amounts of plasticizers and is commercially available with different grades of flexibility 

according to the end-user applications (Figure 1). 

 

(Figure 1)   

 

 

PVC can be manufactured in several grades, from rigid (70% market share) to soft and 

flexible (30% market share). In biomedical applications PVC is mostly exploited as flexible 

PVC (P-PVC) whose plasticizer content may reach up to 50% of the total weight 

formulation [3]. Low cost and ease of manufacturing have led to the wide application of P-

PVC in single-use, sterile and disposable blood-contacting devices. About one-third of 

disposable medical devices are manufactured from P-PVC and it is the main thermoplastic 
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material (85%) in pre-sterilized single-use applications [4]. Disposability is a major 

advantage of P-PVC since the use of single-application medical devices is fundamental to 

reducing the occurrence of transfusion-transmitted diseases. P-PVC is mostly used in 

medical devices that interact, both directly or indirectly, with human body fluids or tissues 

(e.g., blood or intravenous storage bags and/or tubing). It is widely employed in the 

storage of blood derivatives due to the ascertained stabilizing effect exerted by this 

material on red blood cells [5]. The massive exploitation of P-PVC in crucial medical 

applications has raised concerns about the safety profile of this material and prompted 

scientists to accurately evaluate its toxicity. P-PVC toxicity could arise both from the 

polymer and the plasticizer since this material is commercially manufactured by 

compounding the polymer with a large amount of this additive (up to 50% w/w). Polyvinyl 

chloride is considered inert and listed as non-carcinogenic by the most important 

environmental and occupational organizations (e.g. OSHA, NIOSH, NTP, IARC or EPA). 

The massive presence of plasticizer in P-PVC prompted scientists to consider the role of 

the additive as a critical key-point for the safety profile of the material and to accurately 

evaluate its effect on  living organisms and environment.  

The most widely used PVC plasticizers are phthalate esters, particularly di-(2-ethylhexyl) 

phthalate (DEHP), which usually represent up to 40-50% of the weight of the plastic items. 

Phthalates account for 80% of all plasticizer production [6] while DEHP is responsible for 

over 50% of worldwide phthalate production [7]. To date DEHP is regarded as the best 

additive for the plasticization and processability of PVC and its competitive costs led 
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biomedical polymer manufacturers to exploit it extensively. A serious drawback of DEHP is  

its ascertained leachability from the medical P-PVC devices upon  contact with body fluids 

or tissues [8-10]. The above shortcoming is  worsened by the large amount of plasticizer 

usually present in the commercial material. To date the use of DEHP is somewhat 

regulated in medical applications but not forbidden, although many studies have proven its 

toxicity [11, 12]. The labelling of products containing DEHP is now mandatory and its use, 

especially in the case of vulnerable users (e.g., long-term transfusion patients, male 

newborns, and pregnant women) is not recommended. The matter regarding DEHP 

toxicity in humans is still an open issue. To date DEHP is not considered carcinogenic to 

humans exclusively by indirect evidence, and its long-term effects are still uncertain.   

In laboratory animals (rodents and primates), both DEHP and its metabolite hemiester 

[mono(2-ethylhexyl) phthalate (MEHP)]  produced toxic effects in multiple organ systems 

including the liver, reproductive tract (testes, ovaries),  kidneys, lungs, and heart [11, 12]. 

The observed toxicity is assumed to be induced by DEHP and related metabolites through 

peroxisome proliferation. The above represents a threshold-based mechanism that leads 

to an uncontrollable activation of specific nuclear receptors (peroxisome proliferator-

activated receptor PPARα) that are physiologically involved in the regulation of lipid 

metabolism and glucose homeostasis [13]. The uncontrollable activation of this process is 

known to trigger liver cancer in rodents but its role is still uncertain in humans [14]. The 

possible lack of carcinogenicity of DEHP in humans is mostly supported by indirect 

evidence such as the lower expression of PPARα in human liver [15] and the differences in 
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the receptor functions between rodents and mammals [14]. The debate is still open and 

requires additional study  to clarify the mechanisms of interactions between DEHP and the 

host organisms. Peroxisome proliferation has not been established as the exclusive step in 

the toxicity of DEHP [16], and alternative routes for its carcinogenicity have been 

postulated [16, 17].  

The few studies carried out on humans proved that DEHP exposure is associated with 

severe diseases such as bronchopulmonary dysplasia, cholestasis and deep venous 

thrombosis [18-21]. The above findings are of particular concern for vulnerable and long-

term users. High-risk newborns undergoing intensive therapeutic medical interventions 

proved to be exposed to high concentrations of DEHP [22, 23], indicating that they are at 

the highest risk to adverse health outcomes after exposure to DEHP [24, 25]. A further 

study revealed that DEHP is released from P-PVC endotracheal tubes mostly during initial 

contact with the physiological fluids of the host organisms [10]. Accordingly, the recurrent 

applications of disposable P-PVC devices during intensive medical therapies would result 

in higher absorption of DEHP and might increase risks related to their use.  

The questionable safety of DEHP and the consequent pressing call for its banning 

triggered scientists to investigate  valid substitutes. The alternatives  need to maintain the 

high performance characteristics of DEHP in plasticizing and processing PVC while not 

inducing adverse effects on living organisms. Phthalates containing different aliphatic 

substituents were scrutinized first due to their structural similarities with DEHP. Their 

safety profile is even more uncertain than that of DEHP since they have been studied less. 
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On the whole, these chemicals cannot be claimed as valid alternatives to DEHP since their 

metabolism would likely follow similar pathways and their use is forbidden in other P-PVC 

applications (e.g., toys and baby-care products). However, a description of the most 

promising phthalates is reported in this review to provide an exhaustive perspective on the 

alternative plasticizers to DEHP. 

The widespread use of P-PVC in crucial fields such as biomedical devices and child-

contact items led to an upsurge of interest in finding new strategies for overcoming toxicity 

concerns. All the approaches are aimed at preventing the toxicity of the plasticizer since it 

is widely accepted as the exclusive cause of concern of P-PVC. To address this problem 

three main strategies have been pursued by researchers, namely the development of safe 

plasticizers alternative to DEHP, reduction of the leaching aptitude of plasticizers and the 

substitution of P-PVC with alternative safe polymers.  

Here we present a comprehensive review of the currently available approaches, including 

their detailed descriptions and a critical evaluation of their feasibility in biomedical 

applications. However, identifying the best alternatives would require an exhaustive 

assessment of their advantages and drawbacks through a detailed life-cycle analysis 

(LCA). The LCA would provide valid criteria to determine the environmental impacts and 

costs of the envisaged approaches and an overall perspective of their risks and benefits 

from the extraction of the raw materials to the final disposal of the end products. Such a 

complex analysis still lies beyond the aim of this review, whose scope is to offer a 
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perspective on the feasibility of current approaches in solving P-PVC concerns in the 

medical field. 

  

2. Alternatives to DEHP plasticized PVC 

At present different strategies have been used to develop a material alternative to the 

conventional DEHP plasticized PVC (Figure 2). 

 
(Figure 2)  

 

 

All the approaches converged to limit the harmful effects of the plasticizer either by 

improving its safety or by preventing its release into  physiological fluids. The replacement 

of PVC with suitable alternative materials is taken into account as a valid opportunity to 

avoid the use of plasticizers. This strategy is particularly attractive due to the combined 

possibility of using a safe polymer without any added plasticizer, but it is highly challenging 

since PVC is still one of the best biomaterials in terms of inertness, cost and function. 

Different strategies have been undertaken to limit the plasticizer concerns and extend the 

use of PVC in medical applications. The use of DEHP is still envisaged due to its high 

performing properties in terms of plasticization and processing of the polymeric matrix. 

Accordingly, researchers investigated the chemical and physical modification of PVC as a 

valuable strategy to definitely entrap DEHP into the PVC matrix, thus drastically reducing 
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its release upon contact with biological fluids. The research for alternative plasticizers to 

DEHP is one of the most currently investigated approaches to overcoming the P-PVC 

concerns, but the main challenge is identifying plasticizers having competitive all-around 

performance comparable to that of DEHP.    

In general, any valid alternative should fulfil the essential regulatory requirements and 

have a competitive all-round performance comparable to that of P-PVC. A brief survey of 

the advantages and drawbacks of the currently investigated approaches is reported in 

Table 1. A more comprehensive discussion of their feasibility in the substitution of 

conventional P-PVC formulations will be debated in the following paragraphs. 

(Table 1)  

    

2.1. Plasticizer alternatives to DEHP 

The use of PVC in medical devices is still widespread due to its cheapness, ease of 

manufacturing and inertness. Its future exploitation has been exclusively questioned due to 

the toxicity and leaching aptitude of the plasticizer used in commercial P-PVC 

formulations. The research of alternative plasticizers with favorable toxicity profiles would 

be a valid strategy for extending the use of PVC in medical applications. Biocompatibility of 

the plasticizer and any relevant degradation products are an indispensable requirement for 

safely fulfilling the crucial applications of P-PVC. However, biocompatibility is not the 

exclusive criterion for a suitable substitution of DEHP in P-PVC. The overall performance 

of DEHP in terms of plasticization and processability of the polymer should be properly 
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matched in order to maintain the advantages of conventional P-PVC. A valid alternative to 

DEHP should also be suitable for maintaining the mechanical properties of the material 

during its entire working life. Most plasticized materials typically lose their flexibility upon 

recurrent application due to the volatilization and leaching of the plasticizer into the nearby 

environment. Performance of P-PVC is greatly affected by the above phenomena due to 

its large plasticizer content and the leaching aptitude of DEHP. The loss of plasticizer is a 

cause for concern, especially in medical applications where the persistent flexibility of the 

device material is strictly required for encouraging patient compliance (e.g., catheter care). 

To address this concern and reduce P-PVC toxicity, research has been focusing on the 

development of novel plasticizers with reduced leaching aptitude. However the leaching 

behavior of the plasticizer is strongly affected by the chemical nature of the surrounding 

liquid and cannot be universally optimized for each application. Most of the candidates 

investigated are of synthetic origin and their safety profile has been underestimated, 

especially regarding long-term periods. Exploiting plasticizers of natural origin would 

somewhat overcome  concerns related to their biocompatibility but nowadays it is 

hampered by economic reasons. Waste and renewable resources could supply cheap and 

safe plasticizers, as the best solution to P-PVC concerns. The following paragraphs report 

several classes of chemicals that have been investigated as potential alternatives to DEHP 

in medical devices. The candidates are classified according to their molecular weight as 

(a) low molecular weight plasticizers and (b) polymeric plasticizers. 
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2.1.1 Low molecular weight plasticizers 

Low molecular weight PVC plasticizers such as citrates, adipates, trimellitates, azelates, 

sebacates etc (Figure 3), are currently under investigation and are slowly conquering 

market shares traditionally pertaining to DEHP. However, their overall consumption is still 

only a small fraction of the total consumption of phthalates.  

 

(Figure 3) 

 

The main drawback of low molecular weight additives is their tendency to leach from the 

polymer matrix. The loss of plasticizer occurs typically by a two-step mechanism, namely  

migration of the additive to the interface with the medium and subsequent dissolution. 

Parameters such as polarity of the medium and plasticizer and the affinity between the 

plasticizer and the polymer strongly affect the rate of leaching. Normally, a good PVC 

plasticizer should contain both polar and non-polar fragments. The polar groups are 

needed to provide affinity for the polymer while the non-polar part is responsible for 

plasticization [6]. The hydrophobic part commonly constitutes the major fraction of a valid 

PVC plasticizer. The leaching behaviour of the plasticizer cannot be universally predicted 

since it depends on the nature of the surrounding media as well. In aqueous medium, the 

dissolution of the plasticizer is the rate-determining step of the leaching process. In more 

non-polar media the diffusivity of the plasticizer in the polymer matrix mostly controls its 

leaching rates [26]. As a consequence, when a plasticizer is investigated as a suitable 
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alternative, considerations must include the plasticizer’s compatibility with PVC, its 

tendency to leach into the surrounding media, the amount of plasticizer required to achieve 

the desired flexibility, and its toxicity in terms of accumulation risk and its long-term effects 

on humans. The critical applications of P-PVC would require additional research towards 

the assessment of biocompatibility of the additives. To date the safety profiles of all the 

investigated plasticizers are still ambiguous, since most of the research has been focused 

on DEHP. The lack of toxicological data especially referring to long-term effects and 

human exposure is shown in Table 2.  

 

(Table 2) 

 

 

The ambiguous toxicological profiles of the selected plasticizers require careful 

consideration to establish whether they can be envisaged as Generally Recognized As 

Safe (GRAS) products in medical devices. To date their behavior can be mostly predicted 

indirectly based on their chemical structure and the knowledge of the mechanisms of 

leaching and toxicity in animal models. The currently available toxicological data will be 

reported in the following paragraphs to provide a more objective tool for comparative 

evaluation.  
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2.1.1.a Phthalates 

The excellent performances of DEHP in the plasticization and processing of PVC 

prompted scientists to first investigate the class of phthalates as a resource of alternative 

plasticizers. The strategy was to adjust the chemical nature of the lateral alkyl chains in 

order to reduce the leaching of the plasticizers into the surrounding medium. Major 

concerns  persist and are related to the toxicological profile of these additives, since their 

metabolism would likely be similar to that of DEHP. Indeed, current legislation strictly limits 

the use of phthalates in  crucial applications such as toys and child-care products. High 

molecular weight phthalates such as di-isononyl phthalate (DINP), di-isodecyl phthalate 

(DIDP) and di-n-octyl phthalate (DNOP) are allowed at concentrations lower than 0.1 % by 

mass of the plasticized material only in children’s articles that cannot be placed in the 

mouth. Low molecular weight phthalates including (2-ethylhexyl) phthalate (DEHP), di-n-

butyl phthalate (DBP) and butylbenzyl phthalate (BBP) are no longer allowed as 

plasticizers in any kind of toys or childcare articles. 

In the medical device market, two of the main alternatives to DEHP are the phthalate 

derivatives di-(isononyl phthalate) (DINP) and di-(2-ethylhexyl) terephthalate (DEHT).  

 DINP is a mixture of isomers that have alkyl chains from eight to ten carbons long, 

but the largest portion of the mixture has chains composed of nine carbons in various 

isomeric configurations. It is basically used as a plasticizer in PVC toys for children, but 

currently it is widely used in the production of medical tubing devices. 
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Only a limited number of studies regarding the toxicological aspect of DINP are available 

[27-30], showing a toxicity profile similar to that of DEHP, but at higher exposure levels. No 

adverse effects have been reported on the fertility of animals. Rodents exposed to high 

doses of DINP were reported to suffer from skeletal and genitourinary abnormalities during 

embryo-fetal development [29]. In chronic/carcinogenicity studies with DINP, prolonged 

administration of the plasticizer caused significant increases in liver tumors in rats and 

mice, but no peroxisome proliferation in the liver of monkeys was observed.  

  DEHT is an isomer of DEHP based on terephthalic acid (Figure 3). The structural 

differences from DEHP (the two carboxylic groups of DEHT are located in the para-

position while in DEHP they are located in ortho-position) have important implications for 

the toxicological profile of the compound [31]. The different behavior is attributed to their 

different metabolic end-products. In vitro and in vivo studies of DEHT metabolism showed 

the complete hydrolysis of both ester linkages to two non-toxic products: 2-ethylhexanol 

and terephthalic acid [32]. In the case of DEHP only a partial hydrolysis of the ester 

linkage occurs and the formation of its metabolite MEHP is observed. Several studies have 

shown that many of the toxicological effects of DEHP are induced by MEHP [33-36]. 

Recently, the toxicity of DEHT in terms of acute, geno, subchronic, chronic, reproductive 

and developmental toxicity has been assessed [31, 36-39]. These studies showed low 

acute toxicity by oral route in rats with LD50 reported at > 5000 mg/kg for male rats and 

5000 mg/kg for male mice [40]. Dermal LD50 in male guinea pigs was found to be > 19670 
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mg/kg [39]. Slight dermal irritation in guinea pigs was observed, while no skin irritation was 

detected in humans and guinea pigs.  

Deyo et al. [31] investigated chronic toxicity and carcinogenicity induced by dietary 

exposure to DEHT for 2 years at levels up to 12,000 ppm in Sprague-Dawley rats.  

The authors found that DEHT had no tendency to induce tumors and it showed low levels 

of toxicity.  Developmental and reproductive toxicity of DEHT were also evaluated in 

Sprague-Dawley rats [36-38]. The studies showed no evidence of teratogenesis in the 

investigated species following dietary exposure to dose levels of DEHT between 747 and 

1382 mg/hg/day.  

In order to evaluate DEHT reproductive toxicity, a two-generation test was performed [38]. 

Results showed that the consumption of diets containing up to 1.0% DEHT did not affect 

male or female fertility in animals over two generations. Moreover, a preliminary human 

study on dermal application of DEHT showed no skin irritation or sensitization under the 

adopted experimental conditions [27]. 

According to the above findings and considering the competitive cost of DEHT [41] this 

plasticizer can be considered one of most promising alternatives among phthalates. 

However, its use in medical devices should be carefully considered due to rising worry 

about the adverse effects of phthalates.  
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2.1.1.b Citrates 

  Citrate derivatives are an appealing class of plasticizers since they are obtained 

from citric acid, a common metabolite of plants and animals. Citrates are relatively 

expensive and do not display any outstanding technical advantages over phthalate 

plasticizers. However, their natural origin and overall fair performances prompted scientists 

to assess their feasibility in the substitution for DEHP in P-PVC. Indeed, they have been 

available for years as plasticizers in medical devices, especially for blood storage bags. 

Due to their unique aliphatic structure containing three carboxylic functional sites available 

for esterification, a wide variety of citrate esters have been produced. In this review we will 

focus on three citrate esters that have been widely used in the production of PVC DEHP-

free medical devices under the trade name of Citroflex (Figure 3).  

 Citroflex A-4, an acetyltri-n-butyl citrate (ATBC), consists of citrate with three ester 

bonded butyl groups and one acetyl group bonded to the tertiary hydroxyl group (Figure 3). 

It is currently employed in aqueous pharmaceutical coatings and extra-corporeal tubing 

production [42]. Safety assessment of ATBC provided by the U.S. EPA HPV program [42] 

indicated that it did not induce adverse toxicological effects on animals. ATBC showed low 

acute toxicity by oral route in rats and mice, with LD50 values > 30 and > 50 mL/kg, 

respectively. Repeated dose toxicity studies in rats and cats conducted for a period 

ranging from 14 days to 2 years showed low levels of subchronic toxicity. No adverse 

responses were obtained from genotoxicity, reproductive and developmental toxicity tests 

as well [43] and a low level of cytotoxicity was induced by ATBC in HeLa cell cultures [43]. 
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A comparison between the toxicity of ATBC and DEHP in animals has been described in 

the report by SCENIHR on “The safety of medical devices containing DEHP plasticized 

PVC or other plasticizers on neonates and other groups possibly at risk” [27]. The authors 

found that ATBC showed a "No Adverse Effect Level (NOAEL)" value 20 times higher in 

comparison to DEHP. One of the major drawbacks of ATBC is its ease of leachability from 

PVC. The leaching rates of ATBC and DEHP from PVC items were compared by 

interfacing them with different feeding solutions [27]. ATBC showed a leaching rate ten 

times higher than DEHP, thus posing some concerns about its use in recurrent long-term 

applications.  

 Citroflex A-6 is an acetyl-tri-n-hexyl citrate with three ester bonded hexyl groups and 

one acetyl group bonded to the fourth available oxygen atom (Figure 3). Preliminary 

studies were undertaken by Hull et al. [44, 45] in order to provide a new citrate derivate 

with improved properties in terms of toxicity and leachability. The authors evidenced a 

reduced leaching of this plasticizer into various mediums and a low acute toxicity. It proved 

to cause no skin and ocular irritation and its oral administration produced no signs of 

systemic toxicity, and no adverse responses were evidenced from genotoxicity assays.  

 Citroflex B-6, n-butyryl-tri-n-hexyl citrate (BTHC), is a citrate with three ester bonded 

hexyl groups and one butyryl group bonded to the tertiary hydroxyl group (Figure 3).  

It represents the major alternative plasticizer to DEHP in the production of blood storage 

containers. Studies have suggested that transfusing platelets stored in BTHC containing 

bags is safe [46]. Its leachability into plasma is much lower than that of DEHP and in 
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contrast to DEHP, it is metabolized to physiologic compounds as citric acid, butyric acid 

and hexanol. 

The toxicological aspects of this plasticizer have been recently reviewed by SCENIHR 

[27].  

Toxicology testing has shown that BTHC has low acute toxicity and a low irritation and 

sensitization potential. No mutagenic or genotoxic effects were observed in several 

bacterial tests, either with or without the presence of a metabolic activation system [27].  

Citrate-based plasticizers could be a promising alternative to DEHP in view of their 

inherent biocompatibility. The optimization of their chemical structure as in the case of 

BTCH could overcome their leaching aptitude and possibly improve their technical 

performance as well. In absence of valid alternatives, the higher costs related to the use of 

citrates in P-PVC could be overcome by their use in added-value applications, such as in 

biomedical items. 

2.1.1.c Trimellitates 

 Tris (2-ethylhexyl) trimellitate (TOTM), an ester of trimellitic acid, is commonly used 

as a plasticizer in medical devices in Japan [47]. This material is produced by the 

esterification of octyl alcohols with trimellitic anhydride (TMA), which shares a structure 

similar to that of phthalic acid with the exception of a third carboxylic functionality on the 

aromatic ring (Figure 3). This difference in chemical structure from that of DEHP leads to 
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significant differences in terms of extraction and migration resistance of the material [27, 

47, 48].  

Kambia et al. [48] evidenced a lower leaching of plasticizers from new hemodialysis tubing 

plasticized with the combination of TOTM-DEHP in comparison to DEHP alone. The 

leachability of TOTM from PVC tubes was also investigated by Ito et al., by interfacing 

them with different intravenous preparations [47]. The authors described a new method for 

the determination of TOTM released from PVC medical devices based on liquid 

chromatography-tandem mass spectrometry. The results showed that the amount of 

TOTM released into lipophilic intravenous preparations was approximately 10 times lower 

than that of DEHP. The effects of gamma-ray sterilization on TOTM P-PVC were also 

investigated, indicating a lower release of plasticizer in comparison to the un-sterilized 

one. A similar behavior was observed by the same authors in the case of PVC-DEHP 

tubes. The formation of degradation products upon gamma irradiation was found to 

depend on the plasticizer used. A considerable production of MEHP was observed during 

the sterilization of DEHP P-PVC tubes compared to the unsterilized control [49, 50]. The 

absence of degradation products was revealed by analysis of TOTM plasticized PVC 

samples indicating the resistance of the additive to irradiation [47]. 

Very little information is available about the toxicity of TOTM. It has been reported that 

TOTM was estrogenic in both estrogen receptor alpha and beta cells [51] and showed 

weaker hepatoxicity than DEHP [52]. David et al. [53] carried out a human repeated insult 

patch test in order to determine whether alternative plasticizers to DEHP pose undue risk 



24 

 

 

 

 

 

for human sensitization. The results pointed out that TOTM displayed low potential for 

sensitization in humans and that it could be a suitable substitute for o-phthalate. However, 

according to Kambia’s criticism [48], additional studies on TOTM would be required 

focusing on the toxicity, metabolism and long-term effects on humans. New generation P-

PVC include PVC plasticized with TOTM since this plasticizer is reported to leach from the 

plastic to a lesser extent in comparison to DEHP, most likely due to its higher molecular 

weight [3]. A prominent advantage of TOTM P-PVC materials is their improved gas 

exchange capacity, which is beneficial for platelet survival [3]. For this reason DEHP has 

been almost fully replaced by TOTM in the plasticization of bags devoted to platelet 

storage [3]. TOTM proved to be unsuitable for red cell storage, while DEHP and citrates 

have been shown to have a stabilizing effect on red blood cell membranes [3]. The above 

findings led to the formulation of different P-PVC materials according to the applications 

envisaged.  

Trimellitates are a promising class of plasticizers in terms of overall technical performance, 

closely matching that of DEHP [26]. However, their chemical resemblance to DEHP poses 

some concerns regarding their toxicological profile. 

2.1.1.d Ionic liquids 

 Ionic liquids (ILs) were recently suggested as alternative plasticizers in PVC 

formulations [54, 55] (Figure 3). ILs are salts in which the ions are poorly coordinated and 
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as a consequence these solvents are liquid below 100°C, or even at room temperature 

(room temperature ionic liquids, RTIL's).  

It has been found that several ILs, based on ammonium, imidazolium and phosphonium 

actions, did impart significant flexibility to PVC and showed better leaching and migration 

resistance than the traditional plasticizers [55]. Studies of leaching carried out on PVC-ILs 

plasticized items upon UV irradiation did not evidence any weight loss and exudation of 

the plasticizer [55].  

To date ILs  have not been introduced on the medical market, due to the high cost of the 

materials and the overall lack of data regarding their potential toxicity.  

2.1.1.e Cyclohexane derivatives 

A promising alternative plasticizer is currently produced by BASF under the trade name of 

Hexamoll DINCH. This plasticizer is a di(isononyl)-cyclohexane-1,2-dicarboxylate (Figure 

3) obtained by  substitution of the benzene ring of DEHP with a cyclohexane ring. This 

substitution strongly affects the properties of the derived plasticizer both for electronic and 

sterical reasons. In a comparative study between different plasticizer added to PVC the 

leaching behavior of DINCH was found to be far less pronounced [56].  By comparing the 

leaching behavior in different feeding solutions, DINCH showed a tendency to migrate that 

was three to ten times lower than that recorded for DEHP [27].  

The higher leaching rate of DEHP can be attributed to the higher polarity induced by the 

aromatic ring on the molecule that would eventually promote its dissolution in the aqueous 
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media. A prominent advantage of DINCH is related to its physical behavior, similar to that 

displayed by DEHP. In a comparative study [57], the authors showed that the two 

plasticizers have similar viscosities and suggested that the relevant P-PVC formulations 

would not require significant changes in the plasticizer content and viscosity modifiers. 

This makes  processing  P-PVC with  existing equipment potentially feasible.  

DINCH was recently introduced on the market and it is suggested as an alternative to 

DEHP for the production of blood tubes and packaging for nutrient solutions. With this aim, 

a formulation based on commercial PVC resin plasticized with DINCH was subjected to 

repeated sterilization processes by contact with ethylene oxide (EO) at low pressure and 

temperature and (ii) water vapor with 2 wt% of formaldehyde and subsequently analyzed 

[58]. The effects of the sterilization processes were thoroughly  investigated since the 

above treatments could cause the loss of the mechanical and physical properties of the 

materials and the formation of products of degradation detrimental for patient compliance 

[49, 59-61]. The results evidenced only slight structural modifications of the analyzed 

samples and insignificant surface modification, without any proof of serious degradation.  

Some toxicological aspects of DINCH were provided by the manufacturer [62] and recently 

reviewed by SCHENIR [27]. Data revealed that DINCH induced very low acute toxicity in 

rats after oral and dermal administration and a 28-day feeding study gave no indication of 

effects on the testicles or ovaries. Studies on prenatal development and two-generation 

effects were carried out as well and the results showed that DINCH did not induce any 

reproductive toxicity. Exposure to DINCH was not found to induce mutagenicity or 
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genotoxicity. An increased thyroid weight in rats was observed in a 2-year combined 

chronic toxicity/carcinogenicity study, but the effect was interpreted as due to the 

secondary mechanisms via liver enzyme induction, which is considered not relevant for 

humans.  

To date DINCH could be considered the most promising candidate for the substitution of 

DEHP in P-PVC. It has been shown to have low environmental persistence and high 

biodegradability compared to DEHP, and the preliminary toxicity tests are promising [62]. 

Accordingly, the above findings merit further confirmation, especially if carried out by 

independent research groups, in order to elect DINCH as the best alternative to DEHP. 

2.1.1.d Adipates, azelates 

 These classes of plasticizers are characterized by a similar chemical structure 

generally composed by a linear aliphatic chain terminated with two carboxylic ester groups 

(Figure 3). 2-ethyl hexyl alcohol is the chemical most often used for the esterification of the 

commercial plasticizers. Their low inherent viscosity given by their flexible linear molecular 

structure provide them with good low-temperature plasticizing performance [26]. Adipates 

have been historically exploited as plasticizers of PVC in food packaging applications [3] 

Their higher extractability in comparison with DEHP mainly hampered their use in medical 

P-PVC [3]. The use of azelates could overcome the leaching concerns related to adipates 

since they contain a more hydrophobic aliphatic core but their exploitation in medical P-

PVC is limited to date. A recent study carried out on the toxicological profiles of  selected 
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plasticizers revealed that some metabolites of the most representative adipate (di(2-

ethylhexyl) adipate (DEHA)) could trigger peroxisome proliferation as in the case of DEHP 

[17]. The above finding poses some concern about the possible future exploitation of this 

class of plasticizers in medical P-PVC.   

2.1.1.e Minor plasticizers 

In addition to the low molecular weight plasticizers described so far, studies in literature 

report the possible use of benzoate ester [63] and of ester of aconitic acid [64] as 

alternative PVC plasticizers. However, no toxicological properties have been reported so 

far and only preliminary data regarding their thermal and mechanical properties are 

available in literature [57, 58]. 

 

2.1.2. Polymeric plasticizers 

 A promising and appealing way to obtain safe plasticized PVC grades is to 

substitute phthalates and low molecular weight plasticizers, with analogous compatible 

and non-toxic polymeric plasticizers, thus generating a kind of “polymeric alloy”. Due to 

their molecular dimensions and intrinsic compatibility, the polymeric plasticizer shows no 

tendency to de-mix and migrate to the surface of PVC products. Leaching and volatility 

issues have been significantly improved over traditional plasticizers and the flexibility of the 

blended plastics lasted for extended lifetimes [26]. 
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Major drawbacks of these plasticizers are their low performance in terms of processing 

and mixing with the polymer resin and a reduced plasticizing efficiency with respect to the 

low molecular weight counterpart. The increase in tensile strength and reduced elongation 

at break are usually reported for this kind of “polymeric alloy”, thus confirming a general 

stiffening upon formation [65]. While polymeric plasticizers may cause  reduced flexibility in 

plastic materials, they can also be used in combination with traditional plasticizers to 

improve leaching resistance of the latter. The molecular weight of the polymeric plasticizer 

deeply affects both the flexibility of the polymeric matrix and the diffusivity of additionally 

incorporated additives. Polymeric plasticizers with higher molecular weight would impart 

less flexibility to the matrix but result in exceptionally good resistance to extraction, 

migration and volatile loss [3].  

Figure 4  reports the structures of the most common polymeric plasticizers used both in 

combination with DEHP and as a unique plasticizer in PVC products. 

 

(Figure 4) 

 

All the investigated polymeric plasticizers suffer from lack of toxicological data referring to 

their use in medical P-PVC. The absence of leaching usually found during the experiments 

does not justify the above deficiency since the plasticizers could degrade during their 

exposure in the working media. The products of degradation of the polymeric plasticizers 

could cause some concerns and their assessment would be worth further investigation. 
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The low grade of plasticization of these additives would require a greater  amount of 

material to achieve the same performance as DEHP, thus increasing the risk related to 

their use. The exploitation of biocompatible polymeric additives whose products of 

degradation are known to be safe (e.g., polycaprolactone or polyhydroxyalkanoates) could 

efficiently overcome the problem. 

2.1.2.a Elastomers 

 The use of elastomers aimed to overcome the limited plasticization efficiency typical 

of polymeric plasticizers. Three elastomers, namely nitrile rubber, carboxylated nitrile 

rubber and epoxidized natural rubber, have been evaluated as plasticizers of P-PVC in 

combination with DEHP [66]. The study evidenced a decrease in the DEHP migration from 

PVC correlated to the amount and nature of the elastomers employed. Nitrile rubber was 

found to provide greater resistance to leaching of DEHP. Overall the study showed that 

migration of the DEHP can be reduced significantly without affecting the useful mechanical 

properties of the polymer [66]. 

Polysiloxane plasticizers could be conventionally classified as elastomeric materials. 

Oligomeric polysiloxanes could impart flexibility to PVC due to their inherent physical 

properties and low molecular weight. Polyhedral oligomeric silsesquioxane (POSS), a 

hybrid organic-inorganic compound (Figure 4), was investigated in combination with DEHP 

for the plasticization of PVC [67]. POSS consists of a silica cage in the center with 

functional organic groups attached at the various cage corners. Due to its hybrid nature, 
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POSS is more stable and less volatile in comparison to low molecular weight plasticizers. 

The introduction of methacryloyl groups in the POSS structure promotes its covalent 

conjugation to PVC by radical grafting reactions, thus further minimizing possible leaching 

from the matrix. The methacryloyl moieties could also increase the compatibility between 

the siloxane and PVC and the affinity with DEHP. However methacryloyl-POSS was found 

to have limited miscibility with PVC, up to 15%wt, and as a consequence its use alone was 

precluded. The authors showed that the addition of a small amount of DEHP (5 wt%) 

substantially increases the miscibility of methacryloyl-POSS in PVC. It was found that 

POSS/DEHP-plasticized PVC had different mechanical behavior in low rate compression 

and tensile experiments when compared to the DEHP-plasticized PVC with the same 

glass transition temperature (Tg). This result indicated the possibility of employing POSS 

to modulate the mechanical properties of plasticized PVC compounds, but the 

POSS/DEHP-plasticized PVC showed no ability to retain the plasticizers in the compound. 

2.1.2.b Polyesters 

 Saturated polyesters constitute the class of polymeric plasticizers mostly 

investigated nowadays for the substitution of DEHP in P-PVC. Their compatibility with PVC 

is provided mostly by hydrogen bonding interactions between the carboxyl ester group and 

the hydrogen atoms in α or β position with respect to the chlorine atom in PVC. The affinity 

between the two polymers is also enhanced by dipole-dipole interactions between the 

carboxyl ester group and the chlorine atom in PVC  [68]. 
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 At present polyadipates (Figure 4) are the exclusive polymeric plasticizers 

employed in the medical device market. Since the early 1980s they have been used as 

plasticizers in feeding tubes and have been approved by healthcare authorities. 

Commercial PVC-polyadipate tubes, used for feeding infants in the hospital, have 

undergone aging tests and showed that polyadipate was stable in different working 

conditions [69]. Recently PVC nasogastric tubes containing polyadipate were proposed as 

an alternative to conventional devices for short-term applications [70]. Extraction 

experiments of DEHP and polyadipate from the samples have shown that leaching of 

polyadipate was 10 times lower than that recorded for DEHP in the feeding solution and 

100 times lower in the gastric juice. 

 Poly(ε-caprolactone) (PCL) and relevant copolymers have been proposed as valid 

alternatives to phthalate plasticizers due to their biocompatibility. Penco et al. [71] 

suggested the use of multi-block copolymers containing poly(ε-caprolactone) and 

poly(ethylene glycol) (PEG) segments (Figure 4). The study investigated the miscibility 

between PVC and the multi-block copolymers and the degree of compatibility necessary 

for plasticization. Results showed that the presence of poly(ε-caprolactone) blocks 

increases the miscibility of the PEG segments in the PVC matrix. A more detailed study 

was carried out by Ferruti et al. [72] within the framework of a European Project. The 

performance of a wide PCL-PEG copolymer series has been investigated, mainly focusing 

on dynamic mechanical analysis (DMA) and extraction experiments in aqueous media. 

The authors proved that copolymers with the shortest PEG segments, as well as PCL 
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oligomers, had good miscibility with PVC and negligible tendency to be extracted by 

aqueous media. The authors interpreted the promising performances of the analyzed 

copolymers by considering the positive cooperative effects of the two polymeric blocks.  

The PCL blocks provided compatibility with PVC through hydrophobic interactions while 

PEG provided hydrophilic segments with favorable interactions with human tissue. More 

importantly, both polymers have been extensively employed in biomedical and 

pharmaceutical applications and are well known to be non-toxic materials. The authors 

concluded that both PCL oligomer and multiblock copolymers of PCL with low molecular-

weight PEG would be good candidates for a safe substitution of DEHP in soft PVC 

plasticized items.  

Alternative copolymers of poly(ε-caprolactone) were also evaluated as a suitable substitute 

of DEHP [73, 74]. Blends of PVC with poly(ε-caprolactone)-poly(carbonate) block 

copolymers (PCL-PC) (Figure 4) have been investigated in order to assess the long-term 

behavior and release rate of the plasticizer in aqueous environments as well as the 

formation of  degradation products.  The plasticizer was found to be resistant to both 

hydrolysis and migration during the testing period at 37°C. Migration of PCL-PC or its 

oligomers were observed after 70 days of immersion when a working temperature of  

70 °C was used. A large increase in the hydrolysis rate of PCL-PC and the complete 

migration of the plasticizer from the blend was observed when the aging temperature was 

raised to 100 °C.  
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 Most of the desirable properties associated with polymeric plasticizers are achieved 

by increasing their molecular weight. However, this could be partially unfavorable since it 

leads to increased viscosity of the materials and the longer  processing time required to 

attain the blend. A decrease in plasticizer efficiency would also be expected and 

consequently a greater concentration of the plasticizer is required to achieve the desired 

plasticization of the polymer [75].  

 Branched and hyperbranched (HPB) polymers have been proposed as valid 

alternatives to linear polymeric plasticizers, to address the above concerns [68, 76, 77]. 

The unique structural characteristics of these bulk macromolecules provide them with the 

basic requirements for being considered promising alternative plasticizers. The spherical 

structures of HPB and/or the presence of several functional end-groups induced higher 

mobility to the plasticizer, thus improving its plasticization efficiency. At the same time the 

high molar mass and bulkiness of the branched polymer significantly hampers its own 

volatility and diffusivity compared to low molar mass plasticizers, thus drastically reducing 

any leaching concerns.  

Choi and Kwak [76] reported the use of hyperbranched poly(ε-caprolactone) as a non-

migrating alternative plasticizer for phthalates in flexible PVC (Figure 4). The authors 

investigated the effects of some structural parameters on the efficiency of the analyzed 

plasticizer. The corresponding species constituted by shorter linear segments in its 

branching backbone and a large number of branches displayed a plasticization efficiency 

comparable to that of DEHP and excellent migration stability.  
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Similar studies have been carried out on hyperbranched polyadipates [68, 77, 78]. Blends 

of poly(vinyl chloride) (PVC) and poly(butylene adipate) (PBA) with varying degrees of 

branching were analyzed with respect to migration resistance during aging in water, 

preservation of material properties, and thermal stability [78]. Highly branched poly(butyl 

adipate) (PBA) displayed poor miscibility with PVC and increased hydrophilicity, thus not 

representing a favorable plasticizer. Slightly branched PBA exhibited better plasticizing 

efficiency and migration resistance compared to the linear and highly branched polymers 

[68, 77].  

 Recently, considerable effort has been devoted to the exploitation of “green” 

plasticizers obtainable from renewable resources in order to reduce the negative impact of 

conventional PVC additives. Cyclic isosorbide derivatives in the polymeric form such as 

oligo(isosorbide adipate) and oligo(isosorbide suberate) have been investigated due to 

their structure similar to traditional phthalate plasticizers [79] (Figure 4). Preliminary 

investigation revealed a plasticizing behavior similar to that of the traditional phthalates, 

thus showing their potential as alternative PVC plasticizers. 

 

2.2 Chemical and physical modifications of PVC 

Along with the research of new and non-migrating plasticizers for replacing DEHP in P-

PVC formulations, several approaches have been developed to reduce DEHP migration. 

This strategy aims at extending the use of conventional P-PVC formulations in medical 
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applications by introducing several chemical modifications to prevent plasticizer leaching. 

Various approaches proved to be effective in reducing plasticizer migration but at the 

same time introduced new chemicals into the P-PVC formulations that could be a cause 

for new concerns. The envisaged modifications could compromise the original properties 

of the material in a unpredictable manner and introduce further chemicals with 

questionable safety profiles. To date, surface modification of PVC by chemical and 

physical processes and covalent binding of the plasticizer to the PVC backbone are the 

most frequently investigated strategies. 

 

2.2.1. Surface Modification of PVC 

Surface modification of polymers has attracted great attention in biomaterial research 

because it can improve the biocompatibility of a polymer without compromising the 

mechanical properties. The biocompatibility of the polymer is almost exclusively affected 

by the chemistry of its surface. The safety profiles of the chemicals used for the coatings 

would be decisive for the final biocompatibility of the materials and their selection require 

thorough evaluation. The chemical and/or physical modification of the surface of PVC was 

developed mainly to reduce leaching of the plasticizer from PVC.  The surface modification 

can be achieved by three main techniques, including surface coating, surface crosslinking 

through chemical and/or physical treatments, and alteration of surface characteristics by 

grafting. 
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2.2.1.a Surface Coating 

Coating a polymer surface with non-migrating material is a promising approach to reducing 

plasticizer migration from the polymer matrix, but usually these coatings are thick and 

often cause a reduced flexibility of the polymeric material. Instead, modification with thin 

coatings  is an effective tool for overcoming  leaching concerns without compromising the 

mechanical properties of the material. The most common techniques employed for their 

preparation are presented and discussed.  

 Chemical vapor deposition (CVD) is an excellent technique usually applied to coat 

structure as fibers or inner surface tubes with very thin films. However, the high 

temperature required for the process makes its application to polymers impossible. To 

overcome this drawback Breme et al. developed a new plasma-activated CVD able to coat 

the polymer with titanium-based layers without damaging the polymer itself [80]. This type 

of coating was found to prevent plasticizer leaching from PVC and improve bio- and blood-

compatibility of the polymer. The drawbacks of this methodology such as high cost and 

loss of transparency limits its application at present.  

Surface coating of PVC has been alternatively performed with an organic-inorganic 

hybrid by a wet chemical process. α,ω-Triethoxysilane terminated poly(ethylene oxide) 

(PEO) was synthesized and used to produce hybrid coatings for PVC medical devices by 

means of the sol-gel approach [81]. The coating was found to greatly reduce the leaching 

of DEHP from PVC, but the authors stated that some processing parameters need to be 

optimized before any application to biomedical devices can be carried out.  
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Heparin coatings have been also reported to reduce the leaching of DEHP from P-PVC. 

Karle et al. [82] did not show any release of DEHP from PVC tubes coated with heparin by 

the Cameda® method both in vitro and in vivo. However, the effects of such coating remain 

controversial. In a recent study, the barrier property to DEHP of three different surface 

coatings containing heparin in different forms (ionically or covalently linked) was examined 

through a Chandler loop model [83].  The results showed that the ionic heparin coatings 

displayed the best barrier property against DEHP extraction. The thin coatings were found 

to reduce DEHP leaching but do not provide a total and absolute barrier to DEHP 

migration when tested in vitro. The presence of MEHP was detected in the blood. and the 

amount was not lower in comparison to that found in blood derived from treatment with the 

uncoated control tubes. Sakurai et al. reported that the heparin-coated tubes did not 

reduce the extraction of DEHP after 30 min of circulation in vitro  [84]. 

 The use of β-cyclodextrin derivatives as PVC coatings was also envisaged in virtue 

of their known sequestering ability towards hydrophobic molecules and improved 

hydrophilicity [85]. This approach proved to be effective in improving the blood 

compatibility of the material but had negligible effects on the leaching of DEHP. A 

decrease in DEHP migration was observed only in media having low compatibility with 

DEHP, such as cottonseed oil. Comparative migration tests conducted with a powerful 

solvent for DEHP such as methanol showed a decrease of DEHP extraction only for a 

short period of treatment.  
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 Better results were observed by directly incorporating β-cyclodextrin derivatives into 

DEHP [86] and by in situ polymerization of β-cyclodextrin with vinyl chloride [87]. 2,3,6-per-

O-benzoyl-β-cyclodextrin (Bz-β-CD) was synthesized in order to introduce benzoyl groups 

in the β-cyclodextrin structure. The presence of benzoyl groups was envisaged to enhance 

the affinity between the β-cyclodextrin and DEHP by further stabilizing the inclusion 

complexes through π-π interactions [86]. The DEHP incorporating Bz-β-CD systems were 

employed in the preparation of PVC plastisol sheets and the systems were subjected to 

DEHP migration tests according to the International Organization for Standardization (ISO) 

method [86]. The results showed the marked efficacy of Bz-β-CD in reducing the level of 

DEHP migration from P-PVC. 

 An effective reduction of DEHP leaching was also obtained by encapsulation of β -

cyclodextrin in the polymer matrix by in situ polymerization with vinyl chloride [87]. β -

cyclodextrin was opportunely modified with 3-(methacryloxy)propyl trimetoxysilane in order 

to introduce functional groups suitable for in situ polymerization with vinyl chloride. The 

covalent linkage between β-cyclodextrin derivative and PVC led to a good dispersion of 

the β-cyclodextrin in the matrix whose effect was considered to be responsible for the 

superior reduction effect on DEHP migration. 

Although the last two strategies did not represent examples of surface modifications they 

have been reported to show both the controversial results obtained with β-CD and how 

profoundly the site of action of β-CD would affect the migratory behaviour of DEHP.   
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2.2.1.b. Surface crosslinking 

Surface crosslinking represents one of the most successful techniques to prevent 

DEHP migration from PVC medical devices. Crosslinking provides a tridimensional 

network of polymeric chains whose covalent linking determines a drastic decrease in their 

motion and flexibility. The crosslinked surface of a polymer behaves as a rigid barrier to 

the interfacial migration of molecules thus possibly intervening positively in the reduction of 

leaching of DEHP from P-PVC.   

 Crosslinking of a polymer surface can occur through physical treatments such as 

plasma or γ-irradiation, or through a previous chemical modification of the polymer surface 

followed by physical treatment. 

 Plasma treatment was successfully employed in prevention of DEHP leaching from 

the inner surface of narrow PVC tubes [88]. This versatile technique allows for the surface 

modification of the materials without changing their bulk properties. The effects of the 

argon plasma treatment on DEHP leaching have been investigated as a  function of 

working parameters such as time of treatment, working pressure and applied voltage. The 

plasma treatments produced a considerable decrease in DEHP leachability and the 

migration was found to be hampered by extending the treatment time and decreasing the 

working pressure. The applied voltage did not significantly affect DEHP leaching.  

 Irradiation treatments with UV and γ-rays have been extensively used to crosslink 

the surface of PVC sheets and tubes. These treatments have been applied both on 

unmodified PVC and on chemically modified PVC. 
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 Ito et al. [89] investigated the effect of optical irradiation (UV and  visible light 

irradiation) on the leaching behavior of the plasticizer in PVC medical devices. Samples 

were irradiated by visible light using fluorescent lamps or by UV-rays using UV germicidal 

lamps with different exposure times. Migration tests carried out on the irradiated samples 

revealed that the treatments induced a decrease in the levels of DEHP migration, and the 

PVC products maintained their features, such as flexibility and stability. 

The data have been interpreted by hypothesizing modifications of the superficial layers of 

PVC induced by UV irradiation. The significant leaching resistance of UV irradiated PVC 

devices was attributed to the oxidation and crosslinking occurred during the UV treatment 

as confirmed by ESCA and FT-IR analyses. The same authors investigated the effects of  

γ-ray irradiation on PVC sheets to verify the safety of the sterilization process [49, 50]. 

They revealed a significant increase in the level of MEHP migration from the irradiated 

samples compared to that of the unsterilized control, thus posing some concerns about the 

safety of the irradiation process. The effects of irradiation on PVC and in general on 

polymeric materials is still quite controversial since they depend greatly on the energy of 

the incident light, irradiation doses and time of exposure. Both UV and γ- irradiation may 

trigger crosslinking and/or degradation processes on the polymeric material and the 

additives by radical mechanism. PVC has been reported to undergo  similar processes 

upon irradiation [90]. When PVC is gamma irradiated, crosslinking effects predominate at 

small doses (0–15 kGy), whereas at higher doses (25–100 kGy) main chain scissions are 
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more pronounced [91]. The consequent formation of products of degradation could 

compromise the safety profile of the polymeric material in an unpredictable manner   

 The introduction of photoactive groups on the surface of PVC has been envisaged 

to protect the material from irradiation and favor surface crosslinking. The chemical 

modification has been commonly carried out by nucleophilic substitution of chlorine with 

suitably reactive photoactive groups. Sodium azide [92] and N,N-diethyl dithiocarbamate 

[93] have been conventionally used as nucleophilic species The substitution reactions 

were conducted in aqueous media in the presence of a phase transfer catalyst in order to 

confine the photoactive groups exclusively to the surface of the material.  The photolytic 

instability of the introduced groups was then used to crosslink the PVC surfaces by UV 

radiation as shown in Figure 5.  

 

 

(Figure 5) 

 

The modifications were found to cause  significant reduction of leaching of DEHP from the 

surface-modified PVC. A pronounced change in color of the crosslinked PVC samples 

treated with sodium azide raises several concerns about their possible use in medical 

applications. Indeed, the above behavior reveals the occurring of degradation processes at 

the surface of the irradiated materials interpreted with the dehydrochlorination of the 

polymer.   
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 Alternative surface crosslinking of PVC by chemical modification has been 

attempted by using sodium thiosulphate as well. The thiosulphate groups have been 

selectively introduced into the surface of PVC by performing the nucleophilic substitution of 

chlorine in aqueous media in the presence of tetrabutylammonium hydrogen sulphate as 

phase transfer agent [94]. The thiosulphate dianion can directly react with two chlorines 

from adjacent PVC chains or with one chlorine to afford the alkyl thiosulphate thus 

resulting in R-S-S-R and S-SO3-R crosslinks (Figure 6a). 

 

(Figure 6) 

 

The surface crosslinking of PVC by thiosulphate was found to provoke harmful effects on 

organisms and was reported to cause hemolysis. Nevertheless, the above approach 

revealed a good DEHP migration resistance in the treated materials and the absence of 

side reactions. Sodium sulphide was alternatively used as a crosslinking agent to reduce 

the harmful effects of thiosulphate.  [95]. The chemical crosslinking was carried out by the 

same chemical process encountered with azide and thiosulphate in order to obtain the 

treatment selectively on the surface without the assistance of irradiation technique (Figure 

6b). The above modifications have been successfully applied to medical-grade PVC tubes 

and sheets. The treated samples showed a complete DEHP migration resistance when 

exposed for up to 30 days to hexane at 30 °C and this ability was not altered by subjecting 

them to the sterilization process.  
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The modified materials presented improved cytocompatibility in comparison to the samples 

treated with thiosulphate, but their preparations were usually accompanied by 

discoloration. 

 Poly(azido acrylates) have been alternatively used to coat P-PVC by UV 

crosslinking [96]. This type of treatment was found to induce crosslinking on both the 

surface and the bulk of the treated samples.  

The formation of the crosslinked networks was confirmed by FT-IR spectroscopy analysis 

and was also considered responsible for the arrest of DEHP migration within the PVC 

polymer chain networks. This method appears promising in virtue of the simple preparation 

of the azide polymers and the effective barrier exerted against DEHP leaching. 

2.2.1.c. Surface Grafting 

Surface grafting is also an interesting approach to relieving P-PVC from  plasticizer 

concerns. Its application allows for the formation of a stable covalent linkage between the 

grafted polymeric coating  and the treated polymeric surface, thus ensuring it long-term 

stability. Covalent coatings are generally preferred to physically bound coatings due to  

their minor amount of chemicals released into the surrounding media. The nature of the 

covalent linkage greatly affects the stability of the polymeric coating since it determines its 

aptitude for  degradation. Stable covalent linkages would pose fewer concerns about 

possible coating leaching and could be  the first choice  in the case of medical P-PVC. 

Most of the investigated surface modifications have been attempted with hydrophilic 
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moieties in order to increase the biocompatibility of PVC with the interfaced organisms. 

This strategy has been currently achieved by two different methods classified as “grafting-

from” and “grafting-to” [97]. In the “grafting-from” approach an initiator molecule is 

immobilized on the polymer surface and allowed to react with suitable monomers to form a 

polymerized coating. The “grafting-to” process occurs when preformed end-functionalized 

polymer chains are covalently linked to the polymer surface. 

The "grafting-to" method has been reported for the introduction of PEG moieties onto the 

PVC surface  [98]. The modification was achieved by nucleophilic substitution of the 

chlorine atoms of P-PVC sheets or tubes with an excess of Na-PEG at 70°C according to 

the Willliamson ether reaction. The conjugation of PEG chains onto the surface was found 

to significantly improve the blood compatibility of the P-PVC devices. The treated samples 

showed a pronounced decrease in DEHP migration in hydrophobic solvents such as 

petroleum ether, cottonseed oil and paraffin oil. This effect was attributed to the hydrophilic 

PEG surface that acted as a physical barrier against DEHP leaching. Further investigation 

is  needed to assess the leaching behavior of the treated samples in aqueous media, thus 

reproducing the typical working conditions of P-PVC medical devices.  

 The grafting polymerization of different hydrophilic monomers onto a PVC surface 

was also achieved by a simple two-step grafting-from technique [99]. This procedure was 

based on a preliminary physical sorption of a hydrophobic free radical initiator on the PVC 

surface followed by radical polymerization of a suitable monomer in hydrophilic media. 

Different hydrophilic polymers were introduced on the PVC surface, such as poly(acrylic 
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acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(dimethyl acrylamide) 

(PDMA), poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(2-hydroxyethyl 

acrylate) (PHEA) and poly(4-vinylpiridine) (P4VP). The thickness, roughness and chemical 

composition of the modified P-PVC surfaces were extensively investigated and the results 

showed the effective formation of a covalent coating of the hydrophilic polymers on the 

PVC surface. The authors presented their strategy as a valid method for reducing DEHP 

leaching from PVC but they did not demonstrate the above statement with objective data. 

Tests of plasticizer leaching from the treated samples are necessary to assess their 

reliability as alternatives to DEHP in medical applications.   

2.2.1. Plasticizers covalently bound to PVC 

The migration of DEHP from P-PVC can be achieved by the covalent linkage of the 

plasticizer to the hosting polymer. However, the broad modification of the bulk of the matrix 

is a major drawback of this strategy. The chemical treatments aimed at conjugating the 

plasticizer to the polymer could compromise its properties irreversibly and in an 

unpredictable manner. The wide use of chemicals could even worsen its safety profile. 

Navarro et al. published the covalent linkage of phthalates onto a PVC backbone upon 

suitable functionalization of the plasticizers [100]. Two different phthalate-containing thiol 

groups, namely di-(2-ethylhexyl) 4-mercaptophthalate (DOP-SH) and di(2-ethylhexyl) 5-

mercaptoisophthalate (isoDOP-SH) were successfully synthesized and used as 

nucleophiles in the substitution reaction of the chlorine atoms of PVC (Figure 7). The 
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reactions were carried out in cyclohexanone at 60°C. Under the selected conditions, no 

side reactions such as crosslinking or elimination were recorded.  

The migration behavior of the plasticizers in the new materials was tested by extraction 

experiments using heptane at room temperature, and the results showed complete DEHP 

retention in the polymer.  

Although most of the described findings were promising in reducing the leaching of 

plasticizers from P-PVC, the developed materials have been mainly tested with organic 

solvents, but no data regarding their behavior in aqueous media are available. The wide 

use of organic solvents reported in conventional migratory tests has revealed mainly the 

mobility of the plasticizer within the bulk of the polymer but  data is lacking about the 

leaching extent in an aqueous environment. Further studies would be needed to obtain 

information regarding the leaching behavior of the developed materials in their envisaged 

working conditions. 

 

(Figure 7) 

 

A general overview of the advantages and disadvantages of chemical/physical treatments 

on P-PVC is summarized in Table 3. 

 

(Table 3) 
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2.3 Alternative Polymers 

The possibility of using materials that do not require the use of plasticizers is undoubtedly 

an appealing approach to overcoming P-PVC concerns in medical applications. The use of 

PVC-free medical devices would limit the life-cycle hazard associated with PVC by 

reducing the emission of carcinogens such as vinyl chloride monomer and ethylene 

dichloride that are produced during PVC manufacturing, and also dioxins and hydrochloric 

acid formed during the combustion of PVC-medical waste in incinerators [101]. Modern 

technologies of PVC disposal and incineration are currently facing the above concerns but 

the exploitation of alternative polymers with favorable LCA profiles would be advisable. 

Substitution of PVC represents a challenging task due to the overall performance and low 

cost of this polymer. Any valid alternative material should provide similar performance at a 

comparable total system cost. The polymer needs to be inherently flexible, biocompatible 

and inert during the  sterilization process. 

Polymers considered to be suitable alternatives to PVC include poly(ethylene vinyl-co- 

acetate) (EVA), polyolefins, silicones and polyurethanes (Figure 8). 

 

(Figure 8) 
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Although most of the selected materials perfectly matched the performance of P-PVC, 

their high cost is still a major limit to their exploitation. The safety profile of these polymers 

would also need to be tested properly since the toxicity data on humans, especially 

regarding their long-term effects, are lacking.  

Relevant data of the described alternative polymers are summarized in Table 4. 

 

(Table 4) 

 

 

2.3.1 Ethylene/vinyl acetate copolymers (EVA) 

EVA comprises copolymers of ethylene and vinyl acetate at various compositions of the 

monomeric units (Figure 8). The finely tuned combination of these components resulted in 

polymeric materials able to match the requirements of medical devices. Indeed they 

displayed prominent characteristics such as good flexibility, resistance to UV radiation, 

durability and ability to retain their structure properties over the time.  

The inherent flexibility of EVA-based products depends on the vinyl acetate comonomer 

content and do not require the addition of softener agents. Accordingly they are well-suited 

for packaging and administration of lipophilic fluids. The material is approved for blood 

storage containers although it has been found to be more suitable for applications such as 

parenteral and enteral administration devices [102]. However, the release of plasticizers is 
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also encountered with the commercial EVA-based devices since they are commonly 

assembled with connectors made in DEHP-PVC [103]. Kambia et al. investigated the 

exposure of children to DEHP from perfusion kits during long-term parenteral nutrition 

containing fat emulsions [103]. This study revealed both a constant release of DEHP from 

EVA bags with PVC-DEHP connections and a linear increase of DEHP leaching from 

outlet tubing. While EVA proved to be  a promising alternative to PVC, the design of  

commercial medical products should also take into account the safety of the additional 

components.    

2.3.2 Polyolefins 

Polyolefins are currently the most widely used materials in the world for the fabrication of 

plastic items due to their relative low cost, durability and ease of processing. Mechanical 

properties of polyolefins are strictly dependent on the method and conditions of the 

polymerization process adopted, such as temperature, pressure and catalyst. The overall 

inertness of polyolefins make them suitable for applications requiring safety regulations 

such as food packaging and medical devices. Modifications of the polymer structure would 

provide the final material with the required flexibility to match the performances of P-PVC 

without the use of plasticizers. However, commercial polyolefins need the addition of 

stabilizers, such as anti-oxidants, to maintain their physical-chemical properties during 

processing, shelf life and use. The extent of migration of antioxidants and low molecular 

weight products from polyolefin should be of as much concern as the case of plasticizers 
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in PVC. At present most  studies have been devoted to the use of polyolefins in food 

packaging [104-106], while little information is available about the impact of these 

materials in medical fields [107-109]. The use of anti-oxidants in products intended for 

human-contact applications is nowadays strictly regulated by health issues and mandatory 

toxicity tests required by authorities and governments [110]. To address the above 

regulations, research is focusing on the exploitation of naturally occurring (biological) anti-

oxidants and on limiting the leaching of additives through their proper immobilization in the 

polymeric matrix [110]. The formulation of safer antioxidants and/or reduction of  leaching 

concerns would be a decisive step for the substitution of P-PVC with polyolefins. At 

present polyolefins are considered one of the most promising and recommended 

alternatives to P-PVC [21, 107, 108, 111-113], also in virtue of their competitive cost. 

The recent progress in metallocene catalyst technology has led to the development of 

even cheaper polyolefin materials [114]. By metallocene technology it is possible to obtain 

the polymer with a precise molecular architecture and a narrow molecular weight 

distribution. A fine control of the final properties of the material would allow for the 

preparation of polyolefins with improved flexibility without the use of toxic plasticizers. The 

major drawback of these materials is  their petrochemical origin and  concerns regarding 

their disposal. 

 The most common types of polyolefins are polyethylene and polypropylene. 

Polyethylene (PE) (Figure 8) is a thermoplastic polymer, inert, biocompatible and nontoxic 

[115]. It is used in a wide range of medical applications such as tubing, packaging films, 
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sutures, blood collection and especially infusion lines. Co-extruded infusion lines of PE 

and P-PVC are currently available to limit the stiffness and opacity of PE. These devices 

combines the flexibility of P-PVC (outside of tubing) with the inertness of a polyethylene 

liner. However several studies have shown that co-extruded PVC-PE lines leached levels 

of DEHP comparable to those of pure PVC when submitted to extraction by lipid emulsions 

[108, 116-117]. Loff et al. compared the performances of pure PE lines with those of pure 

PVC and co-extruded PVC-PE devices. The authors showed a safer use of this material, 

especially for applications in newborns [108]. These observations were corroborated 

subsequently by the same authors by comparing the toxicity of PVC with that of 

polyethylene medical devices. A lipid emulsion was administered to prepubertal rabbits 

through central IV lines continuously for 3 weeks either via PVC or polyethylene infusion 

systems. The PVC-administered group revealed multiple aberrations after  exposure to the 

material while minor effects were detected for the PE treated-group [111]. 

 Polypropylene (PP) (Figure 8) is a thermoplastic polymer with characteristics such 

as high clarity, good barrier properties and high flex resistance, which make it suitable for 

medical applications. Typical medical applications include tubing, bags and (especially in 

Europe) parenteral nutrition and dialysis films [115]. Its resistance to light and irradiation 

processes is relatively poor due to the presence of tertiary carbon atoms that facilitate the 

formation of radicals in the macromolecular backbone. Accordingly, polypropylene is 

added with antioxidants and radical scavengers to be stabilized from oxidative 
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degradation. Nowadays the safety profiles and leaching aptitude of these additives are  

questions to be resolved for the  safe use of polypropylene in medical applications. 

 

2.3.3 Polysiloxanes 

Polysiloxanes are a family of synthetic polymers whose main chain comprised the 

repetition of alternating silicon and oxygen atoms (Figure 8). In the lateral chain the silicon 

atoms are generally linked to organic groups (e.g., aliphatic and aromatic). 

Polysiloxanes are now one of the most thoroughly tested and widely used class of 

biomaterials due to their intrinsic biocompatibility and stability. Properties such as thermal 

stability, low surface tension and hydrophobicity have made polysiloxanes excellent 

materials in the production of catheters and other medical devices. They have been 

successfully applied in short- and long-dwelling catheters, dialysis machines and blood 

oxygenators [118]. Polysiloxane-based catheters used for parenteral nutrition have been 

shown to cause significantly less sepsis compared to alternative materials [119]. Patient 

compliance  improved in comparison to that found with PVC catheters, due to the 

extended working life of the polysiloxane materials. However, a recent study proved the 

deterioration and device failure of gastrostomy polysiloxane catheters upon exposure to 

lipidic media [120]. 

In spite of the above finding, polysiloxane catheters and tubes are considered more stable 

than  those made of PVC, and polysiloxane has been proposed as one of the most 
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suitable alternative polymers for the production of medical devices characterized by a 

relatively short service life [70, 121]. 

Available data on the toxicity of polysiloxanes  mainly regard the effects of the implantation 

of silicone devices or  injection of the liquid precursors. The subcutaneous implantation of 

silicone preparations in mice has been shown to produce no significant changes in the 

weight of the most important organs and tissues [118]. 

The acute toxicity and the reproductive and developmental effects of polysiloxanes were 

tested in rats and rabbits in very dated works [122, 123]. The results showed a lack of 

reproductive or teratogenic effects [122, 123] of several types of polydimethylsiloxane.  

 

2.3.4 Polyurethanes 

Polyurethanes (PU) are a family of synthetic polymers obtained by the polyaddition 

reaction of a di-isocyanate with a diol in the presence of a catalyst and other additives 

(Figure 8). By varying the nature of the two components it is possible to obtain 

polyurethanes characterized by different structural features responsible for their ultimate 

behavior ranging from hard to soft and flexible.  

Similarly to polysiloxanes, polyurethanes possess greater durability than PVC, thus being 

excellent alternatives to PVC for the production of medical devices that are used for long 

service times such as percutaneuos endoscopy gastronomy tubes (PEG-tubes). Several 

papers have reported comparative studies on the durability of PEG-tubes made of PVC, 
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PU and silicone. All the researchers agreed on the better performance of PU and silicones 

tubes with respect to their PVC counterparts, while conflicting data have been obtained by 

comparing the durability of polysiloxanes with that of PU [124-126].  

Polyurethanes have been proposed as a valid alternative to P-PVC in blood bags mainly 

due to their low degree of thrombogenicity and ability to be sterilized by either ethylene 

oxide and ã-irradiation without any appreciable degradation [127]. 

The toxicity data of polyurethanes are nowadays limited and mainly related to the 

exposure and production of foams  [128]. The potential health effects of polyurethanes in  

medical devices have not been fully assessed and would be worthy of further investigation 

in the light of their possible applications. 

 

 

3. Conclusions 

The substitution or modification of commercial P-PVC formulations in medical applications 

is increasingly demanded due to the risks associated with exposure to DEHP. The task is 

challenging, since a valid alternative material should be completely biocompatible and 

match the overall performance of P-PVC. Several approaches have been developed to 

improve the safety profile of the plasticizer and/or prevent its release from P-PVC medical 

devices. The alternatives described in this review are potentially suitable candidates for P-

PVC substitution. The chemical modification of PVC appears to be the least interesting 

approach, due to the questionable effects of the introduced chemicals both on its 
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biocompatibility and the overall characteristics of the developed material. At present most 

of the strategies are devoted to decreasing the leaching of conventional plasticizers rather 

than improving their safety profiles. Indeed, the leaching behavior of the plasticizer cannot 

be universally optimized since is strongly affected by the chemical nature of the 

surrounding environment. Research on biocompatible plasticizers and/or materials, 

possibly of natural origin, is a safer approach to overcoming these P-PVC concerns. The 

exploitation of waste and renewable resources could be envisaged to overcome the 

economic drawbacks typically encountered in the production of materials from natural 

origin. However, all the proposed materials suffer from a significant lack of data regarding 

their toxicity and long-term effects on human health. These findings underline the need for 

a synergic interdisciplinary approach between clinicians, biologists and chemists to 

determine the best alternative to P-PVC for the production of safe and often long-term 

effective medical devices. Any proposed substitutes should be subject to a careful 

toxicological characterization including long-term studies, as well as to an accurate 

chemical-physical characterization to fully assess their compliance. 
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Captions to figures 

Figure 1. Different flexibility grades of commercial PVC-type materials according to their 

different plasticizer content and related medical applications. 

Figure 2. Outline of current approaches for the substitution of DEHP plasticized PVC. 

Figure 3. Chemical structures of common low molecular weight plasticizers selected as 

alternative to DEHP. 

Figure 4. Chemical structure of polymeric plasticizers investigated as alternatives to DEHP 

Figure 5. Scheme of the surface crosslinking of PVC induced by UV irradiation after 

nucleophilic substitution of chlorine atoms of PVC with(a) sodium azide  or (b) N,N-diethyl 

dithiocarbamate.  

Figure 6. Scheme of the surface crosslinking of PVC induced by UV irradiation after 

nucleophilic substitution of chlorine atoms of PVC with (a) sodium thiosulphate or (b) 

sodium sulphide. 

Figure 7. Scheme of the nucleophilic substitution of chlorine atoms of PVC with di(2-

ethylhexyl) 4-mercaptophthalate and di(2-ethylhexyl) 5-mercaptoisophthalate 

Figure 8. Chemical structure of common polymers studied as alternative to P-PVC 


