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Abstract

We prove decay and scattering of solutions of the nonlinear Schrédinger equation
(NLS) in R with pure power nonlinearity with exponent 3 < p < 5 when the
initial datum is small in ¥ (bounded energy and variance) in the presence of
a linear inhomogeneity represented by a linear potential that is a real-valued
Schwarz function. We assume absence of discrete modes. The proof is analogous
to the one for the translation-invariant equation. In particular, we find appropriate
operators commuting with the linearization. © 2014 Wiley Periodicals, Inc.

1 Introduction

We consider
1.1) (@ +Ay)u+AuPlu=0 forr>1, x e R,and u(l) = uy

with Ay := A — V(x) and A := 92 and A € R\{0}. In this paper we focus
on exponents 3 < p < 5. V is a real-valued Schwartz function and Ay is taken
without eigenvalues.

It is well known that for 2 < p < 5 the initial value problem in (I.I) is globally
well posed in H!(R). Our goal is to study the asymptotic behavior of solutions
with initial data u(1) = ug of size € in a suitable Sobolev norm, with € sufficiently
small. It is natural to ask whether such solutions are asymptotically free and satisfy

1
(1.2) lu(@)|lLom) < Cot™ 2e,

that is, whether they have the decay rate of the solution to the linear Schrédinger
equation.

We recall some of the results for V' = 0. For spatial dimension d, McKean
and Shatah [14] answered positively to our question for 1 + % <p<l1l+ %.
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The case p > 1 + % and p < 1+ ﬁ for d > 3 was answered positively by
W. Strauss [17], who proved that the zero solution is the only asymptotically free
solution when 1 < p <1+ % ford > 2andwhen1 < p <2 ford = 1 [16].
This result was extended to the case 1 < p < 3 and d = 1 by J. Barab [1], using
an idea of R. Glassey [[11]].

The exponent p = 1 + % is critical and particularly interesting. The existence
and the form of the scattering operator was obtained by Ozawa [15] for d = 1 and
by Ginibre and Ozawa [10] for d > 2. The completeness of the scattering operator
and the decay estimate were obtained by Hayashi and Naumkin [12]. Complete-
ness of the scattering operator and decay estimate for all solutions, not only for
small ones, for d = 1 and A < 0 were obtained by Deift and Zhou [[7]. See also
[4} 5] for earlier references and [8] for a simpler proof. The result was extended
to perturbations of the defocusing cubic NLS for d = 1 in [6]. For the focusing
cubic NLS for d = 1, the pure radiation case, along with other cases reducible to
the pure radiation one by means of Darboux transformations, was treated in [2],
proceeding along the lines of [7]].

Our goal in the present paper is to extend the result of McKean and Shatah
[14] to the case V # 0 and d = 1, which to our knowledge is open. For V we
assume the following hypothesis, where we refer to Section [] for the definition of
the transmission coefficient 7'(7).

(H) The potential V is a real-valued Schwartz function such that for the spec-
trum we have 6 (Ay) = (—o00, 0]. Furthermore, V is generic; that is, the
transmission coefficient 7'(t) satisfies 7(0) = 0.

We denote by X the Hilbert space defined as the closure of C5°(R) functions with
respect to the norm

2 . 2 2
lulld, = T2y + 2P ull2 -
Our main result is the following:

THEOREM 1.1. Assume that V satisfies (H), s > % and p > 3. Then there exist
constants €9 > 0 and Co > 0 such that for € € (0,¢€9) and ||u(1)||s, < €, the
solution to (1.1) satisfies the decay inequality (L2)) for t > 1. Furthermore, there
exists uy € L?(R) such that

(13) Jim (u() = e Cus 2@y = 0.

The hypothesis 0 (Ay) = (—o0, 0] is necessary since otherwise for any s > %

there are periodic solutions u(z, x) = ei**¢, (x) of arbitrarily small ¥ norm. The
interesting case is for p € (3, 5) since the case p > 5 follows from [9} [19]]. The
case V = 01is due to [14].
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If 6(Ay) = (—o0, 0], the existence of wave operators intertwining Ay and A
and of Strichartz and dispersive estimates for AV is well known; see [9, (19} 120].
Such estimates are not sufficient to prove Theorem[I.I]even in the case V = 0.

The argument in McKean and Shatah [14] is based on the introduction of ho-
mogeneous H* (1) norms, defined by substituting the standard derivative % with

operators J; (t); see Section |2 The authors [14] prove almost invariance of these
norms and, by a form of the Sobolev embedding theorem, the dispersion (I.2).
Such use of invariant norms goes back to the work on the wave equation by Klain-
erman; see, for example, [13]].

The development of a theory of invariant norms in the case of non-translation-
invariant equations such as (I.T]) is an important technical problem. Here our main
goal is to adapt the framework of [[14] for d = 1 and to introduce appropriate
surrogates | Jy (7)|* for the operators |J(¢)|*; see Section 2]

The operators |Jy (¢)|° are used to define homogeneous spaces 7-[%, () that are
then shown to be almost invariant.

The argument is more complicated than in [14] because of the presence of an
additional commutator. But we can show that if Ay is generic in the sense of
hypothesis (H), then the commutator can be treated by a bootstrap argument.

Another complication is that the |Jy (¢)|* do not enjoy Leibniz-rule-type prop-
erties like |J(¢)|%, which play a key role in [14]. Nonetheless, we are able to treat
|Jy (t)|5 by switching from | Jy (¢)|* to |J(¢)|® by using the Leibniz rule for | J(¢)|%,
and by going back to |Jy (¢)|*.

In the part of the argument on the Leibniz rule, an essential role is played by
the observation that | - ||7_-[§/ o X Il - ||7_~[S(t) with fixed constants independent of

t when 0 < 5 < % The proof of this equivalence is based on Paley-Littlewood
decompositions associated to phase spaces both of A and Ay. We are able to
prove this equivalence when the transmission coefficient 7'(t) is such that either
T (0) = 0 (the generic case) or 7(0) = 1. Notice incidentally that the inclusion of
this nongeneric case at least in this part of the paper is natural, since the fact that
T(0) = 1 makes Ay more similar to A than the case when 7'(0) = 0 (recall that
T(0) =1 for A).

We now introduce some of the notation used later. Inequalities of type A < B
mean the existence of a constant C > 0 so that A < CB. Similarly, A ~ B means
A < B and B < A. The standard scalar product in L? = L?(R) will be denoted
by (-, -)z2. We use the notation L% to mean L?(R). L?(X) stands for the
L? norm of functions with values in Banach space X. The homogeneous Sobolev
space H°(R) (respectively, perturbed Sobolev space Hi, (R)) for s > 0 is defined
as the closure of C5°(R) functions with respect to the norm

I(=A)2 fll,2  (respectively, [[(—=A + V)3 f],2).

These norms are used in two cases: functions depending only on x and functions
depending on both ¢ and x.
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2 Definition of | Jy (¢)|*

In this section we assume x € R? with d a generic dimension, and we consider

. {G=n?
Recall that the fundamental solution is given by e (x, y) = % fort > 0.

Consider the Fourier transform F and its inverse:
Ff(x) = @n)y% / e £(y)dy.
]Rd

Ff() = am) 4 [ Y £(y)dy.

R4

2.1)

We also introduce the dilation operator D () (x) = (2ir)~4/ 247(x2t) and the
multiplier operator M (t)y(x) = exp(ix?/4t)¥ (x). Then we have the following
well-known formula:

A = M@E)D()F~IM(1).

Let g(x) be a function and denote by g(g) the multiplier operator g(g)v (x) :
g(x)¥(x). Weset p;j :=idx; and p = (p1, ..., pqg). More generally, set g(p) :=
F~1g(gq)F. The following identity is well-known:

(2.2) 'Pg(q)e B = M(1)g(2tp)M(—t)

for any g(x). With an abuse of notation we will denote the operator g(gq) by g(x).
Notice that we have

[id; + 2. e"Bgx)e ™8] =
ME-A g ()] + A, g ()] THA =0,

so obviously the same commutation rule holds for the right-hand side of (2.2)). In
particular, for g(x) = x; we get on the right-hand side of (2.2) the operators

Ji = 2tiexp(%)8xj exp(—lj:—:) = Ztiaxj + xj,
and we have
[id; + A, J;] =0.
We introduce for any s > 0 the following two operators:
23) @) 1= M) (> 8)2 M(~1),
24 [Ty (DI := M@)(=1> Ay) 2 M(=1),
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3 Commutative Properties of | Jy (¢)|°

We start the section by establishing some useful commutator relations. In this
section x € R? with d a generic dimension and M (¢) = eil* /41

LEMMA 3.1. We have the following identities:

%2 . %2
[0, M()] = M), (10 M(=1)] = — 5 M(=1).
PROOF. A simple calculation gives
2
. . . X
10, M(1) f — M®)id, f = (10, M(1)) f = 7M@)
The second relation can be verified similarly. g
Furthermore, we shall prove the following:
LEMMA 3.2. We have
id x* ix-V
A, M(t M)W ——— ,
(& M) = ()(21 o )

id x%2 ix-V
A, M(—t M(-t)|——-——— .
(8,4 -0] = M) (=57 — 7 =P )
PROOF. For the first relation we have
f=fAM() —|—2VM(t)-Vf

= MY [ - MO f+M(t)lx vy

The second relation follows by taking complex conjugates. O
From Lemma [3.1]and Lemma [3.2] we get the following

LEMMA 3.3. The following commutator relations hold:

t

id x2 ix-V
19 + A, M(—1)] = M(— ’)(_Z_;t_z_lxz )

00+ A, M()] = M(r)(% L V),

PROOF. We shall check only the first relation, which follows directly from the
above lemmas and

[10; + A, M(t)] = [id;, M(1)] + [A, M(2)]. O

LEMMA 3.4. We have

. s is S
3.1 [(0; + Ay, (—t?Ay)2] = 7(—rzAV)z.
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PROOF. To prove (3.1)) we shall use the fact that (—Ay/)*/? and Ay commute.
Thus, we have

[19: + Ay, (=12 Ay)3)f = [0, (=2 Ay) 31 f + [By. (<2 Ay) 3] f
—i(2onhf = Detapis 0
Now we are ready to establish the main commutative property of the operator
|Jy (t)|* with s > 0 defined in (2.4).
PROPOSITION 3.5. We have the relation
(3.2) [i0: + Ay, [Jy ()] = it"" M) A(s) M (~t)

where

A(s) i= s(=Ay)? + [x -V, (=Ay)2].

PROOF. The proof relies on Lemmas 3.1]through[3.4]and the following commu-
tator equalities:

[AB,C] = A[B,C] + [A, C]B, [A4, BC] = [A, B]C + B[A,C].
Indeed, we have
[i0: + Ay, [Ty @)|] = [0, + Ay, M(t)(—12 Ay)3 M(—1)]
= [id; + Ay, M()](~t>Ay)2 M(—t)
+ M@)[id; + Ay, (=12 Ay)2 M(—1)]
= SV OF + MO V(287 M0
+ M@®)[i0; + Ay, (—12Ay) 3 M(—1)
+ M) (=12 Ay)2[i0; + Ay, M(—1)]
= %UVUNS + §M(t)x V(=12 Ay)2 M(~1)

N e

1
2t 212 t
iS s i 2 s
=~V O + M) V(> Ay)EM(-1)

. 2
- ;M(t)(—tzAV)%M(—t)x V- M(t)(—tzAV)%;?M(—t)
= Sy O + MO - V. (2 8y) (=)

s Xz
—M@)(—t2Ay)2 ﬁM(—I).
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Note that
[x - V., (=12 Ay)3 M(—1)]

=[xV, (12 Ay)2IM(~1) + (12 Ay) 2 [x - V, M(~1)]

)
(3 =[x V(280 M) — (128y)E M (=),
and hence we get
. is i s
i0: + Ay Iy OF] = Iy (OF + -M@O)x -V, (=12 Ay)2 M (1)
The proof of (3.2)) is completed. O
In the next lemma we shall assume d = 1.

LEMMA 3.6. Assume d = 1 and let A(s) be the operator that appears in (3.2))
with s < 2. Then for a fixed constant Cs we have the inequality

(34 1AG) fllpy = Csll fllge-
We postpone the proof of Lemma [3.6]to Section

4 Spectral Theory for Ay

From now on we shall always work in the space dimension d = 1.

In this section we remind the reader of some classical material needed later. Re-
call that the Jost functions are solutions f4(x,7) = e ™ my (x,7) of —Apu =
t2u with

lim mi(x,7)=1= lim m_(x,1).
xX—>+00 X—>—00

We set xT := max{0,x}, x~ := max{0, —x}, and (x) := +/1 + x2. We will
denote by L7 the space with norm
4.1 lullLrs = {x)* fll e

The following lemma is well known:

LEMMA 4.1. For V e S(R) we have my € C®(R?,C). There exist constants
Ci=C1(|Vpr.1) and Cy = Co(||V || p1.2) such that

+o00
42) e (e, 7) — 1] < Oy (xF)e) ! / <y>|V<y>|dy',

(4.3) 10:m4(x,7)] < Ca(1 + x2).

See lemma 1 in [3| p. 130]. The regularity follows by iterating the argument.
The transmission coefficient 7'(t) and the reflection coefficients R4 (t) are de-
fined by the formula

4.4 T()mz(x,7) = R+ (1)eT2 ™ my (x,7) + m(x, —7).

From [3]] and [20]] we have the following lemma:
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LEMMA 4.2. ForV € S(R) we have T, Ry € C*°(R). Moreover,
4.5) IT(x) =1+ [Re(D)] = C() ™" for C = C(IIV[[L1.0),
(4.6) TP + [Re () = 1.

4.7 ‘%T(r) <C forC =C(Vp13).

+ '%Ri(‘r)

In particular, and follow from [3| sec. 3] and (@.3) follows from the-
orem 2.3 in [20].

Setnow W(x,7) = T(t) f+(x,7) fort > 0and W(x,t) = T(—1) f-(x,—1)
for ¢ < 0. Then the distorted Fourier transform associated to Ay is defined by

48) Fy f(z) = @m) 3 / W(x, 1) f(x)dx.

R

and we have the inverse formula

(4.9) fx) = 2n)"2 [ U(x, 1) Fy f(v)dr.

R

Our first application of this theory is the following lemma:

LEMMA 4.3. Let V € S(R) and 6(Ay) = (—o0,0]; then for any s > % there
exists a fixed C such that

(4.10) 1/l = CIAUZ 21 g

PROOF. We claim that || f||pee < c0||FVf||L)1C for a fixed ¢co = co(V). As-
suming the claim, we have

1 _
IFy £l < IFv Fll2qei<o V26 + 11 Fr f z2qgi0 1117 22120
2
< V2R | fllz + G2 f gy with Gy o= ([ 5

For x = (2_1/2Cs||f||f1g/)l/s||f||Zzl/s the last two terms are equal and we get
@.10). }

We now prove || fllLee < collFv fll1- By it suffices to prove |¥(x, 7)| <
Cy for fixed Cy. It is not restrictive to assume x > 0. Then for T > 0 we get the
bound by ¥(x, 1) = T(7) f(x, ) and Lemmas[4.1]and[4.2] Similarly for r < 0
we get a similar bound by

V(x, 1) = T(=1) f-(x, —7) = R4 (=0) [+ (x, =) + f+(x, 7). 0
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. . 1.
Consider now a function u (¢, x). By LemmaH we have for s > 3:

. zge = CIM oyt )13 O ot 13

L%
4.11) C
1-1/(2 1/(2
= @O Iy OF )l 5.

Jt
5 Proof of Theorem [L.1]
Using the notation of Proposition [3.5] we have the following equation:
5.1 (9, + A)|Jyfu—ir TM@OAS)M(—t)u + A|Jy [P F =0

with F = |u|?~!u. Let 0 < s < 2. Then by Strichartz estimates, which follow by
[20], there are fixed C; and C such that

|||JV|SM||Loo((1,T),L§)
(5.2) < ClIvI Mullgz + Gl A M(=0)ullarsq .1
+ CIIvI Fllpia.ry.n2)

By combining Lemma 3.6, (.11), and the conservation of charge we get for every
8 > 0 a constant M (§) such that

-1 -1
15" AM (=0l parspy < Cslle® ™ HlullLge Nl a3

g3 1-1/(2s) s,,11/(2s)
= Dslle” 2 a3 llu (DIl v Pl o2

< M@lluDll 2 + 8ll1Iv[*ull o2
where we have considered s < % so that 973/2 € L4/3(1, 00). Inserting this
estimate in (3.2)) we conclude
v Full e ry.22) < CHI (D2 + Colue(Dll2
+ Cs”|JV|SF||L1((1,T),L)2€)-
We shall use the following result:

LEMMA 5.1. We have

(5.3) VI g ~ 10 Fllzz for0<s <.

Fors € (%, 1) and any ¢ € (0, %) we have

54 WP fll = Cor I flla + NI £l2),
55 M flla = Cor (v Bl + v fl2).

PROOF. (5.3) is a simple consequence of Corollary in the next section,
which states

s s 1
(5.6) I(=2)2 fllg2 ~ (A + V)2 flig2 for0 <s <.
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To prove (5.4) (respectively, (5.3)) we use
IV=2y fl72 < IV=AF172 + 1Vt

1_46
VA2l < Wl 1120 < ClE=2)4 2 )2,

1 1 1
for—z——(——5)=5
2p 2 \2

(respectively, the inequalities with Ay and A interchanged: this will also use
(3.6)). We thus obtain

18 1,8
IV=2v fll2 < Cl(=2)F2(1 + (=2)*F2) fll2
(respectively, the inequality with Ay and A interchanged). Interpolation with (5.6))
fors = % — § yields

A3 iz < CI=2)F73(1+ (=2)37338) £l

< CI=)473 fllp2 + 1(=8)% £1,2)

(respectively, the inequality with Ay and A interchanged). Multiplying this esti-
mate by #* and using again the fact that M(¢) is an L2 bounded operator, we see
that

_1 1_
11 Fllga < CE ST £l + 11 Fll2),
and for ¢ = § we get (5.4) (respectively, (5.3)). O
By Lemma5.1 we get
|||JV|SM||Loo((1,T),L)26) < Gslu(Mls, + Cs”|JV|SF||LI((1,T),L§C)’
since
NI Ful2 = Clluls,.
If we can show that for a fixed C for all T’
5.7) v Eull oo 122 < Clu(Dllss

then by (.11)) this will yield (I.2)). Then scattering (L.3)) will follow from (I.2) by
a standard argument that we do not repeat.
By combining Lemma 5.1 with lemma 2.3 in [12], which states that

1P Qul?~ )l 2 < Clull 22 N1 Pullz for0 <y < 2and p > 3,
we have
|||JV|S(|“|p_1“)||L1((1,t),L)2€)
< Y25l )z + 175 (P 0l
< Oy 2l 2 N 12wl + Il )

_1 —1 1_
< 'yl P v 125l + I Pl 2) |
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Again by Lemma [5.1] we can continue the estimate as follows:

= R 22 (v B2l + W9v ) [y
t
=c' [ >2“+8>—*(||u||25 iy Full ) 5

1_
< (I1v12 5l + v IFullz)dr

where in the last line we used @.11).
Since p > 3 we can choose s > % and ¢ > 0 such that pTH — 25 —2¢ > 1.
Then

|||JV|S(|u|p_1u)IIL1Lz =<

(p— 1)2s=1 S 1_
CslluI;, = |||JV|s””LooLz(”|JV|2 “Ulpeorz + Iy ullpoor2)

on any interval (1, t) with a constant Cys independent of . Notice that the norm
Ty |1/ 2~y Loor2 can be bounded in terms of the other norms using interpola-
tion; hence the lproof of follows by a standard continuity argument provided
that we fix the constant €p > 0 in the statement of Theorem sufficiently small.

6 Equivalence of Homogeneous Sobolev Norms

Along this section the functions m 4 (x, t), fr(x,7), T(t), and Ry (t) are the
ones defined in Section Also, the norm ||V | 1».« is the one defined in the
same section. We consider for an appropriate cutoff ¢ € C§° (R, [0, 1]) a Paley-
Littlewood partition of unity

1= e@27). >0,
JEZ
Then for any s € R we have
I=2v)2 flI7 ~ Y2027/ V=2v) £ )2
JEZ
~ 2Pl V=20 L
JEZ

We have the following result:

LEMMA 6.1. Let V be a real valued Schwartz function such that 6 (Ay) = (—o0, 0]

and T (0) is equal to O or 1. Then for any pair of integer numbers j, k € 7 with
k < j and for any f € S(R) such that

(6.1) supp £ (§) € {J&] ~ 2},
the following inequality holds for Cy = C(||V||1.3):

(6.2) W@ V=0v)f Nz = Cra I f112.
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PROOF. For ¢(|z|) := 2% (|7|) we have
(0@ V=2v) [ )z = 40 + Bi(f).
Aj(f) = =27y (27 V=Av) L83 f)2,
Bi(f) =27y (27 V=Lv) £ VS
It is straightforward that
4, () =272 {27 V=Dv) £, )2 ]
<27y @ V=bv) f] 2103 S 12 < €2 £

Notice that this constant C depends on the cutoff ¢ but not on V. This follows
from the fact that the distorted Fourier transform (4.8) is an isometry.

The next lemma in conjunction with (6.3)) will complete the proof of Lemma
6. 1]

LEMMA 6.2. Assume the hypothesis of Lemma [6.1] Then there exists a fixed C =
CIV llL1.3) such that | B;(f)| < C27*=IN 1|2,

(6.3)

PROOF. The first step in the proof is the following representation formula:

LEMMA 6.3. We have

W Q2™ V=0y) )(x)
=—%/dr¢(2_jr)
R

(6.4) x|:T(r)m+(x,f) f m—(y, 0)e" ) f(y)dy

y<x
om0 [ im0 sy |
y>x
PROOF. We recall the limiting absorption principle:
o0

gan6) = [ 8 Eac@x).
(6.5) (i

Ea.c.(d)‘)(X, y) = 2_7Ti|:R__|—AV (xv Vs A) - R:AV (x’ Y, A’)]dk’

where for A > 0 and x < y (for x > y exchange x and y in the right-hand side)

fo(x, £V (3, £VA)
w(++/2)

(6.6) REL, (x,3,2) =

for the Wronskian

(6.7) w(z) := (Ox fH)(x, 1) [~ (3, 7) = [ (x, T)0x - (x. 7).
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Then for x < y (for x > y exchange x and y in the right-hand side)

f—(x’f)f-i-(y’t) N f—(x,_f)f—i-(y,_f)] ﬁ

w(T) w(—T1) i

e-snwn = [ rg(zz)[
— o [ T8 £ 0 fir 0
R

w(T)
2it

where we used the formula ﬁt) =
change of variable, we get

g(=Ay) f(x)
— _%[dfg(fz)[nr)ﬁ(x,r) [_oo J-. ) f(y)dy
R

; see 3l p. 144]. Therefore, making also a

(6.8)
+T(—r)f—(x,—f)/ f+(y,—f)f(y)dy]

For g(A) = ¥ (277 v/A) and fi(x,€) = e my(x, £) we get Lemma O

We continue with the proof of Lemma [6.2] by writing

Bi(f) =B () +B2(f)

with
BV (f)
= —%272-’. /dx V(x) f(x)
R
(6.9) x [ dr«/x(z—fr>[r<r)m+(x,r) [ (m_(y.1) — DT £(3)dy
R y<x
om0 [ (m+(y,—r)—1)e“<"—y>f<y)dy]
y>x
and
1 . -
BP(f) =52 [ dx VT
R
(6.10) < [arven|T@mn [ o
R y<x

+ T(=1)m_(x,—1) / eTY) f(y)dy}.

y>x
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LEMMA 6.4. Assume that f, j, and k are as in Lemma Let V be a real-valued
Schwartz function such that o (Ay) = (—o0, 0]. We do not impose other hypothe-

ses on V. Then, for fixed C = C(||V||1.3), we have |Bj(1)(f)| < C2k_-/||f||iz.

PROOF. The inequality follows from the following:

6.11) BN = C2 NPV f 7 < €2 112,

with C = C(||V'||11.3), and where we used the Bernstein inequality

k
(6.12) Ifllge <2210 f N2

To prove the first inequality in (6.11)), observe that the second line of can
be bounded by C (x)?3 [ fllzee with C = C(|[V||L1.1) by using the following esti-
mates, which follow from #.2)):

xXA0 xVvo0

/ mww%mﬂmwswm{[

—00 —00
2
SECON WA 52

02y + |

0

mw)

and
Im4(x, 7)| < (x).

Proceeding as above, the fourth line of (6.9) can be bounded by C (x)3| f || L
with C = C(||V'||1.1) using estimates like

o) o) 0
| PWH%—ﬂ—JHﬂwMysﬂfhy(/ cw”dy+/‘<m@)
X xVvO0 xAO
S )2 fllLee
and
Im_(x,7)| < (x).
This proves (6.11) and so also Lemma [6.4] O

LEMMA 6.5. In addition to the hypotheses of Lemmal[6.4] let us assume now that
either T(0) = 0 or T(0) = 1. Then we have |B}2)(f)| < C2k=J ||f||i2 for fixed
C =C(IVILra).
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PROOF. We use (#.4)) and substitute
(6.13) T(—t)m_(x,—1) = Ry (—1)e 2% my (x,—7) + my(x, 7).

We then write

1 - -
B () =52 [ dx v 7
R

. drw(z-fr)[T(r)m(x,r) ) £ () dy
R/ /

y<x
b me(xT) / FCD) £ (3)dy
y>x
+ Re(-oms (o) [ e—if<x+y>f<y)dy].

y>x

Notice that Lemmal6.1]is elementary for |k — j| < ko for any preassigned k¢ > 1.
So we will focus only on the case k — j > ko with a fixed sufficiently large «o. We
write

V27 f(=7)
————
v ) / D) F()dy =y (27T 1) / T ().
(6.14) y>x R
—y (27 7) / T f(y)dy = —y (27 1) / T f(y)dy,
y<x y=<x

because ¥ (277 1) f (—7) = 0for |j — k| > ko and k¢ sufficiently large.
By (6.14) we can write

B () =527 [axveofe
R

x / dry @ r)[(T(r) CDma(x) / FT) f(y)dy
R

y<x

+ Ry (—0)my(x, —1) / e‘”(x”)f(y)dy]-

y>x
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We rewrite the above as
B (f)

- _iz—z-/ f dx V() Fx)
R

x | drw(z—f'r)§[r(r)—1—R+(—r)1m+(x,r) [ e sy
R

y<x

(6.15)
—Ri(—7) (e my(x,—1) — " m4 (x,1)) / e ' f(y)dy
y<x
+ R (om (—0e ™ [ e Gy

R

The last factor is /27 fA (—=7) = 0 on the support of ¥ (27/ 1) as after (6.14). So
the last line in (6.15)) cancels out.
We now focus on the terms originating from the fourth line of (6.15). We will

set fx(t) := f(t + x) and H fx(7) := ffoo e f(y + x)dy. We have

0
He@ = [ e g00dy = [ 2ot - OFEOUE = Ao * 20
00 J
where here and below we use definition (2.1)) of the Fourier transform.
We also have the relation X(_0,01(7) = —i(27)"Y2(z —i0)~! [18] chap. 3,
p- 206] and take into account the definition of the Fourier transform there. By the
Sokhotskyi-Plemelj formula, (r —i0)~! = P.V.% +i7é(t). Then

Hg(1) = F(Coo0) * 8(1) = (2m) 72 (x§(~1) — iHg(~1)),

N g2(&)
He(@) = sgr(?Jr £ — rdg'
[E—1|>€

(6.16)

By Lemma4.1| we get
le ™™ my (x. —1) — €™ my (x.7)]
(6.17) < [e7H — 1| |my(x, D] + |m4 (x, —1) = m4(x,7)]
< (C1 + C)(x)?|z],

where the first term in the second line can be bounded by using (4.2)) and the second
term in the second line can be bounded using the mean value theorem and (@.3),
and where C; = C(||V||p1./)-

By and by |R4+(—1)| < C(r)™! with C = C(||V||.1.1), which follows
from (4.5)), the terms originating from the fourth line of (6.15)) can be bounded by
aconstant C = C(||V||1.2) times

618) 27| fllLee / dx|V ()| (x) [ dely 0| [o(7) " | H fe@)l.
R R
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By |j —k| > ko, by fx(t) = 7 f(x), and by (6T6), we get
YOOI H@) =y QT OH A
We have then the upper bound

-y id /®)
18] =22 eVl [ depy [0
lt|~2/ |§|~2K
<21 e lVine [ 17 @IS
|&[~2%

. B
< 22| fllegel £ < €25 17,

where we used |t — &| ~ |t] and where C = C(||V||11.2).
Now we consider the contribution from the third line of (6.13]). We assume
(6.19) T(0) =1 — R4(0) = 0.

(6.19) occurs if T(0) = 1 (then R+ (0) = 0 by the identity (4.6)) and in the generic
case T(0) = 0 (when R4 (0) = —1, see [3, p. 147], as can be seen by setting t = 0

in (¢.4)). By (6.19) and for the bound near T = 0 and by (@.3)) for the bound
away from 0, we get

|7l

IT(x) =1 =Ry (—7)[ = CW with C = C([[V|1.3).
Then, by a similar argument to that for the fourth line of (6.15) we see that the
contribution is bounded by C2%K—/ || f ||i§ with C = C(||V||1.3). O
Lemmas [6.4] and [6.5] together yield Lemma [6.2] O
The proof of Lemmal6.1|follows by combining (6.3) with Lemma|[6.2] O

We remark that if 7(0) = i“az with a # 0, then R4 (0) = ;;‘;i see, for
instance, [19 p. 512]. Then the right-hand side of (6.19) equals 21"+;al2 # 0 for
a # 1, and our proof of Lemmal6.5|breaks down.

We have proved (6.2)) for k < j. The next lemma shows that (6.2) also continues

to hold for k > j.

LEMMA 6.6. Let V be a real-valued Schwartz function with o(Ay) = (—o0,0]
and with T (0) equal to 0 or 1. For any integer numbers j,k € Z with k > j and

forany f € S(R) satisfying (6.1)), inequality (6.2)) holds for a Cy of the same type.

PROOF. The proof is similar to that of Lemma[6.1]
We have f = @2 /=A) f for some @ € Cs° (R4, [0, 1]), and we have

(07 V=2v)f flrz = =2 e 7 V=2av) £ Ay (27FV=2) )
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with 72V (7) = @(z). Then we have
0@ V=B) £ flp = =2 M ave (T V=8) £ (TEV=8) £y
— 27 Vo2 V=ay) Ly (27V=8) ).
It is straightforward that, for a constant C independent of 1/, /
6200 27|(Aye(27 V=By) LY (@QTFV=R) f)a] = C27 | fIT

In what follows we prove the following for C = C(||V||.1.3), which with (6.20)
yields Lemma [6.6}

©21) 27|V 27 V=ay) LY (2TEV=D) | < CYTRIFIL,

Denote by K(x, y) the integral kernel of ©(27/ /=Ay). Then, setting g(r) =
(277 /7), from (6.8) we get

K(x,y) ~ Xx=y(x, ) / e Dm (x. Om_(y. DT (2)eTE)
R

+ Arey (@) / 02 Dym_(x, —0)m (v, —1)T(~7) 7Dt
R

with yx>,(x,y) = 1 forx = y and yx>,(x,y) = 0 for x S y. Then the bound

(6.20)) is obtained, for W(x) = ¥ (¥ z_kA) f, by bounding

272k [ ax W(x)V(x) | dre2 /1)
o]

(6.22) X[T(T)m+(x’f) / m_(y. 1)) f(y)dy
y<x
+ T(—t)m—(x,—7) / my(y, —1)eTE) f(y)dy:|.
y>x

We split (6.22)) as I1 + I where

I :=2"% [ dx U()V(x) | dt e /1)
e

(6.23) x [T(f)”“r(x’f) /('ﬂ—(y,f)—l)ei’("_y)f(y)dy

y<x

+ T(—0)m—(x,—7) / (m+(y,—r)—l)ei’(x‘”f(y)dy]

y>=x
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and

I =272 dx W(x)V(x) | dt e/ 1)
e ]

(6.24) x [T(r)m(x, 7) / ) f(y)dy

y<x

+ T(—t)m—(x,—1) / eif(x_y)f(y)dyi|.

y>x

We start with /1 and show for C = C(||V||1.3) that
(6.25) 1] < C2Y7Ff117.

To prove (6.25) we focus for definiteness on the second line of (6.23) (the con-
tribution from the third can be treated similarly). Then we have

2_2k/dx|‘ll(x)V(x)|/dt|<p(2_jr)|second line of (6.23))|
R R
<272 [axweovel
R

< dr( / 0y + [ xv°<y>|f(y>|dy)

—o0

< C'Y o)l fllzse < €727 Ky 7R V=AY) Fll 21 1l
< CY7H|f117,

with constants C(||V'||;1.3) and where we used Bernstein inequality (6.12).
We turn now to /5 and show for C = C(||V||11.3)

(6.26) 12| < C27H| £117,.
We substitute (6.13) to get

I, =27% / dx U(x)V(x)
R

x / dw(z—fr)[(nr)—1)m+(x,r> / FO) f(y)dy
R

y<x

+ Re(-oms (o) [ e—“<x+y>f(y>dy].

y=Xx
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We rewrite, proceeding as for (6.15)),

I, =272 / dx ¥ (x)V(x)
R

(6.27) x/dr:p(z_jr)[(T(r)—1—R+(—r))m+(x,r) / eTCY) £(3)dy
R

y<x

— Ry (1) (e ™ my (x,—17) — ™ m 4 (x, 7)) [ e’”yf(y)dy]

Then proceeding as in Lemma|[6.5|we get for C = C(||V||1.3)

ol = C2 ¥l [axviw? dr|w<2—fr>|%|Hﬁc(r>|
R

with Hfo(r) = ffoo e % f(y + x)dy as before. From now on we focus only
onk — j > ko and we get

_ T f
Bl = ol Vie [ dr 1L / EAIP
T o —é|
|t|~27 |E|~2K
< 22Ky e / 1F©)lde
|E|~2k
:_ _k _ P
< G227 fll 2273 [ @7 V=R) | Lo = €22 111

where the constants are C(||V||;1.3). This completes the proof of (6.26) which,
along with (6.23)), yields (6.21)) and completes the proof of Lemma [6.6] O

From Lemma[6.6|and Lemma 6.1 we arrive at the following crucial result.

COROLLARY 6.7. For() <s < % and for any f € C§°(R) we have

I(=2)2flig2 ~ (=2 + V)2 fllLa.
PROOF. The proof of = is as follows (that of < is similar): We have

A+ V37,
- BT,

J k J 1
ikiez 2 2 2 2

T V=A vV-A
SC Z 22]S2 2|] kl 2|J l| (p(—)f 2”([)(T)f||l,)zc
Lx
2

k
J.k,l€Z 2
—A / £ 2
(51|, ~ e,

< c’ Z 22ks

keZ
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Here we have used Young’s inequality and, for a fixed C,

DY 22s9—%1j—kl=41j~11y—ks

Jik

— y—ls ZZstz—%lj—ll [25 Z pks=% 4 % Z Zg—ks]
J k>j k=<j-1

~pls 222j32—%|j—l|2—js
J

— p5ls szs—%j 4p—5-ls Z 0 Js+3] <C. 0
e Jj=l-1

Remark 6.8. The proof of Corollary [6.7]also continues to hold when from hypoth-
esis (H) we drop the requirement that 6 (Ay) = (—o0, 0], but for f we require
additionally ( f, ¢);2 = O for all eigenfunctions ¢ of Ay.

7 Proof of Lemma

LEMMA 7.1. For V7 = 2V + xj—xV, for A(s) the operator in (3.2), and for
0 < 5 < 2 we have for a constant c(s)

o0
(7.1) A(s) =c(s)/ 3t — Ay) " WVi(r — Ay) Vdr
0
PROOF. Set S := xdy. Recall the formula
S o0 S
(a0t =) [T sy de
0
for0 <s <2and[c(s)]"! = [5° 27z + 1)"'d1. Then

(72)  A(s) = s(=Ap)2 + c(s) /Ooo 1278, —Ay(r — Ay) Vdx.

We have

[S.—Ay(t—Ay)7']
=[S, —Av]lz = Ay) "' = Ap[S, (r — Ay) 7]
=[S.—Apl(t—2p) " + Ay — Ay) TS, —Ayl(r — Ap) !
and also

[S.—Ay] =[S.—A]+ [S.V] =24+ SV =2(A—V) + V; = 2Ay + V.
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Then we get
[S.—Ay(z— Ap)7']
=2Ay(t— Ay) P+ 203 (r - Ay) 2
+ V= Ay) T+ Ayt —Ay) T Vi@ — Ay) !
=2tAy(t—Ay) 2+ 1(r — Ay) Vit — Ap) L
Inserting this into we get

(7.3)

A(s) = s(—AV)% + 2¢(s) /OofiAV(r —Ay)2dt

(7.4) o 0

+c(s)/ ‘C%(T—AV)_IVl(‘L'—AV)_ld‘E.
0

Then (7.1)) follows from the fact that the first line of the right-hand side is 0: for
y > 0 we have, integrating by parts,

o0 o0
—2c(s)y/ r%(t+y)_2dr = —2c(s)y%/ t%_l(t—l—y)_ldr = —sy%. O
0 0

LEMMA 7.2. Given hypothesis (H) there is a fixed C = C(||V||1.1) such that for
any f € S(R) and at any x € R we have

(1.5) [z — Ay) ' F1(0)| < C(x)~2 / e~V F()dy.
R

PROOF. Consider the Wronskian w(+/7) defined in (6.7). Recall that, since
V € S(R), we have w(4/T) > 0 for t > 0 and w(4/T) ~ 4/T as T — +o0o. The
hypothesis that 7(0) = 0 implies that w(0) > 0.

We have

(= Ap) " f)() = /

X my(x, JT)m_(y, ﬁ)e—ﬁlx—y|f(y)dy

—00 w(y/7)
T my(y, VOm-(x, /1) —JTlx—y|
+ / T F)dy.

We will use 0 < w™ (/) < C1(t)~ V2 forafixed C; = C(||V | 11.1). Inequality
(7.5) follows in elementary fashion by the following inequalities, where C, =
C(||V|Iz1.1) is a fixed sufficiently large number:

e for x > 0 we have |m4(x, /T)m—(y, J/7)| < C2(y),

e for x > 0 we have [m_(x, VT)m4+(y, VO pr+(y — x) < Ca{x) <
Ca(y),

. fozr x < 0 we have [m4(x, VO)m—(y, VO |yp+(x — y) < Ca{x) <
Ca(y),

e for x < 0 we have |m_(x, /T)m4(y, /7)| < C2(y). O
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LEMMA 7.3. Under hypothesis (H) there is a fixed C such that
(7.6) [t =2y) Vit —Ay) I <

d
C(||V||L1.z + HEV

)t

LY

PROOF. We can factorize V; = (x) ™2V, with 1, € L1(R). We have

Iz = Ay) Vi - AV)_lfHL;C <

e = 2v) ) s V2l g 1) ™ e = Av) T Hizge s nee.
and
I =A™ )Tl < C@ 72 le Y (I A COD I
< C'THO) 2| Sl
The following bound with the same C’ follows by duality:
1) @ = 89) 7 fllLge = C'e72 ()72 f g

Finally, by Vo = (x)2(2V +x V') it follows that || V2| .1 < ||V 1.2+ IIj—xV||L1.3.
This yields inequality (7.6). O

PROOF OF LEMMAB.6l Inequality [|A(s) fll,1 < C| fllLge for fixed C >0
follows by Lemmas[7.1]and[7.3] which justify the following inequalities:

1) £l < c(s) /0 3(r = Ay) " Vir = Ap) " fllpy de

A

IA

o0
Ol e fo 310y ldr < Ol f e

where the integral converges if 0 < s < 2 and where C = C(s, | V|[p1.2, |[V/||L1.3)-
Il
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