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1 Introduction

The present paper revisits the study of the dynamics of a nonlinear duopoly à la Bertrand
(Bertrand 1883) with horizontal product differentiation analyzed by Zhang et al. (2009).1

Given the importance of product differentiation in the current industrial organization
literature (see Singh and Vives, 1984), differently from Zhang et al. (2009), in this paper
we develop a model with sound microeconomic foundations that determine the demand
of differentiated products faced by each firm on the market. In this way, by using the
degree of product differentiation as the key parameter some dynamic behaviors, which are
of importance in both mathematics and economics, are discovered. From the former point
of view, we establish that the unique interior fixed point of the two-dimensional system is
locally stable if the degree of product differentiation is close to zero (i.e. products of both
varieties tend to be independent). On the other hand, we show that if products tend to
become homogeneous or complementary, then the Nash equilibrium is more likely to be
destabilized, because the degree of horizontal product differentiation plays an ambiguous
role on marginal profits and consequently on the reaction that every firm can adopt when
setting the price to maximize profits in the future period.2 From the latter point of view,
therefore, policies aiming at reducing the degree of product differentiation tend to destabilize
a duopolistic economy with price competition if players have limited information with regard
to the profit function. Indeed, the burgeoning interest in nonlinear dynamic oligopolies
(see, e.g., Dana and Montrucchio, 1986; Bischi et al., 2010; Rosser, 2010) has renewed the
use of expectations formation mechanisms at all different from the paradigm defined by the
rational expectations hypothesis. In fact, as claimed by Agliari et al. (2006, p. 527), “When
one takes into account the fact that nonlinear dynamical systems can produce dynamic
paths that are not so regular and predictable, one of the major arguments against adaptive
expectations does not seem so strong.”, because linear models represent an approximation
of nonlinear models.3

The paper is organised as follows.
In Section 2 the Bertrand duopoly with horizontal differentiation is presented and the

noninvertibility property is discussed. It plays a crucial role in the study of the topological
structures of attracting sets of the map and related basins of attraction.

In Section 3 we determine the fixed points of the two-dimensional non-invertible map
T . We also estabilish its invariant trapping sets and describe the dynamics occurring along
the diagonal giving rise to synchronized trajectories. The question of synchronization in
the long term is studied.

In Section 4 we deal with the case in which the invariant set on the diagonal loses
transverse stability. We show how the attractor increases in complexity as the degree of
substitutability or complementarity between products increases. We also study the global
dynamics of T : the contact bifurcations related to tangiencies between critical curves and
basin boundaries are described. They are responsible of changes in the basin structure while
also causing a final bifurcation after which, through numerical simulations, it seems that
any attractor at finite distance disappears.

Section 5 outlines the conclusions.
1For the notion of differentiated products see the original contributions by Hotelling (1929) and Cham-

berlin (1933).
2Of course, when products are perfect substitutes (homogeneous markets) the price equals the marginal

cost. This result does not hold in Zhang et al. (2009).
3See also Kopel (1996).
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2 The economic model

In order to describe the long-term behavior of a duopolistic market with price competition
(Bertrand 1883) and horizontal product differentiation, we briefly present the economic
setup leading to the final model studied in this paper. In particular, we explain the mi-
croeconomic foundations of the differentiated commodity setting and clarify the economic
reasons why we assume specific demand and cost functions.

Consider an economy with two types of agents: firms and consumers.
The economy is bi-sectorial, i.e. there exists a competitive sector that produces the

numeraire good y ≥ 0, and a duopolistic sector with two firms, namely firm 1 and firm
2, each of which produces a differentiated good (or service), of variety 1 and variety 2,
respectively. Denote with pi ≥ 0 and qi ≥ 0, i = 1, 2, the price and quantity of product of
firm i, respectively.

Assume that there exists a continuum of identical consumers that have preferences
towards q = (q1, q2) and y. They are represented by a separable utility function V (q, y) :
R3

+ → R+ given by
V (q, y) = U (q) + y

where U (q) : R2
+ → R+ is a twice differentiable function. The representative consumer

maximizes V (q, y) with respect to quantities q subject to the budget constraint

p1q1 + p2q2 + y = M,

where M ≥ 0 denotes the consumer’s exogenously given income.
The representative consumer’s optimization problem is then given by

max
q1,q2

U (q1, q2)− p1q1 − p2q2 + M.

By solving this problem, one yields the following inverse demand functions

pi =
∂U

∂qi
= pi (q) , i = 1, 2 (1)

representing the price of the goods and services produced by firm i as a function of the
quantities produced by both firms.

Following Dixit (1979) and Singh and Vives (1984), we assume that the utility function
is quadratic (leading to linear demand functions) and given by:

U (q1, q2) = a (q1 + q2)− 1
2

(
q2
1 + q2

2 + 2dq1q2

)
, (2)

where a > 0 is a parameter that captures the size of the market demand and −1 < d < 1
represents the degree of horizontal product differentiation.

Observe that if d = 0, then the products of variety 1 and 2 are independent, that is
each firm behaves as if it were a monopolist; if d = 1, then products 1 and 2 are perfect
substitutes or, alternatively, homogeneous (in this case, the Nash equilibrium is such that
the price equals the marginal cost); 0 < d < 1 describes the case of imperfect substitutabil-
ity. More precisely the degree of substitutability increases, or equivalently, the extent of
product differentiation decreases as the parameter d raises. In contrast, a negative value
of d implies that goods 1 and 2 are complements, while d = −1 reflects the case of perfect
complementarity.
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From equation (2) it follows that

∂U

∂qi
= a− qi − dqj , i, j = 1, 2, i 6= j.

By substituting the previous formula in (1), the inverse downward sloping demand functions
of products of the variety i are as follows:

pi (qi, qj) = a− qi − dqj , i, j = 1, 2, i 6= j. (3)

By inverting the inverse demand functions, one obtains the direct demand functions
describing the quantity of goods and services produced by firm i as a function of the prices
of the products of both firms, i.e. qi = qi (p).

From (3), the corresponding direct demand function of the products of variety 1 and
variety 2 are given by:

q1 (p1, q2) = a− p1 − dq2 (4)

and
q2 (p2, q1) = a− p2 − dq1. (5)

By combining (4) and (5), we obtain:

q1 (p1, p2) =
1

1− d2
[a (1− d)− p1 + dp2] , (6)

q2 (p1, p2) =
1

1− d2
[a (1− d)− p2 + dp1] . (7)

Following Correa-López and Naylor (2004), we assume that firm i produces goods and
services of variety i through a production function with constant (marginal) returns to labor
given by qi = Li, where Li ≥ 0 represents the labor force employed by firm i. In addition,
the firms face the same (constant) average and marginal cost w ≥ 0. Therefore, firm i’s
cost function is linear and given by:

Ci (qi) = w Li = w qi i = 1, 2. (8)

Hence profits of firm i can be written as follows:

πi = piqi − wqi = (pi − w) qi i = 1, 2. (9)

By substituting (6) and (7) into (9), profits of firm 1 and firm 2 are respectively given
by:

π1 (p1, p2) =
p1 − w

1− d2
[a (1− d)− p1 + dp2] , (10)

and
π2 (p1, p2) =

p2 − w

1− d2
[a (1− d)− p2 + dp1] . (11)

Therefore, the marginal profits are obtained as follows:

∂π1 (p1, p2)
∂p1

=
a (1− d)− 2p1 + dp2 + w

1− d2
, (12)

∂π2 (p1, p2)
∂p2

=
a (1− d)− 2p2 + dp1 + w

1− d2
. (13)
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Consider now a dynamic setting such that, at any time t ∈ Z+, the profit of firm i
depends on the price set by both firms at time t. Equations (10) and (11) can then be
written as follows:

πi,t (pi,t, pj,t) =
pi,t − w

1− d2
[a (1− d)− pi,t + dpj,t] , i, j = 1, 2, i 6= j

while equations (12) and (13) are given by:

∂πi,t (pi,t, pj,t)
∂pi,t

=
a (1− d)− 2pi,t + dpj,t + w

1− d2
, i, j = 1, 2, i 6= j. (14)

It is now important to specify the set of information of both players regarding profit
functions (i.e., demand and cost functions), to determine the behavior of prices over time.
If a player has complete knowledge of the profit function, then it will use some form of
expectations about its rival’s price decision (for example, naive, rational or adaptive expec-
tations, or, alternatively, some weighted sum of previous choices) to set the price at time
t + 1. In contrast, if a player does not have complete knowledge of the profit function, it
can use some form of local estimation (where local means at the current production state)
of the marginal profit in order to follow the steepest (local) slope of the profit function.
This because under the hypothesis of limited information, players are unable to completely
solve the optimization problem maxpi,t+1 πi,t+1

(
pi,t+1, p

e
j,t+1

)
by considering expectations

about the price that the competitor will choose for the next period, but they are able to
get a correct estimate of their own local slope, i.e. the partial derivative of the profit func-
tion computed at the current state of production, so that firm i increases or decreases the
price at time t + 1 depending on whether its own marginal profits at time t are positive or
negative.

Therefore, by assuming limited information and following Dixit (1986) and Bischi and
Naimzada (1999), the adjustment mechanism of prices over time of the ith firm is described
by:

pi,t+1 = pi,t + αipi,t
∂πi,t

∂pi,t
, (15)

where αi > 0 is a coefficient that captures the speed at which firm i adjusts its price with
respect to the consequent marginal change in its profits.

Taking into account equation (15), the two-dimensional system that characterizes the
dynamics of the Bertrand duopoly with horizontal differentiation is the following:

T :=

{
p1,t+1 = p1,t + αp1,t

∂π1,t

∂p1,t

p2,t+1 = p2,t + αp2,t
∂π2,t

∂p2,t

, (16)

where, we set α1 = α2 = α in order to consider the case in which the speed of adjustment
is equal for both firms (the case with α1 6= α2 is left for further studies). By taking into
account (14), system (16) becomes the following:

T :=
{

p1,t+1 = p1,t + αp1,t

1−d2 [a (1− d)− 2p1,t + dp2,t + w]
p2,t+1 = p2,t + αp2,t

1−d2 [a (1− d)− 2p2,t + dp1,t + w]
, (17)

or equivalently

T :





x′ =
[
1 + αa

1+d + αw
1−d2

]
x− 2 α

1−d2 x2 + αd
1−d2 xy

y′ =
[
1 + αa

1+d + αw
1−d2

]
y − 2 α

1−d2 y2 + αd
1−d2 xy

, (18)
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where x′ = p1,t+1, x = p1,t, y′ = p2,t+1, and y = p2,t, which is a two-dimensional dynamic
system, continuous and differentiable in R2

+.
Consider now, for any given value of the speed of adjustment α, the role played by the

(horizontal) differentiation parameter (d) on marginal profits. The extent and direction of
the movement of future prices as d varies is ambiguous in the cases of both substitutability
(0 < d < 1) and complementarity (−1 < d < 0). In the former (resp. latter) case, a
reduction (resp. an increase) in the degree of substitutability (resp. complementarity)
between products of variety 1 and variety 2, i.e., the parameter d moves towards 1 (resp.
−1), directly reduces (resp. increases) the reaction of the ith firm, because it tends to
reduce (resp. increase) its marginal profits, while also playing an indirect positive (resp.
negative) effect through the reply of the rival (i.e., firm j) when d varies.

2.1 Noninvertibility property

Map (18) is a noninvertible map on R2
+. In fact, given the initial condition (x(0), y(0)) ∈ R2

+,
the forward iteration of T defines a unique trajectory, while its backward iteration is not
uniquely defined since a point belonging to R2

+ may have more than one preimage (or,
equivalently, different initial conditions may be mapped into the same point under T )4 so
that two, or more, distinct points are mapped into the same point, i.e. rank-1 preimages
(x, y) = T−1(x′, y′) may not exist or may not be unique.

By considering map T in equation (18), it can be noticed that rank-1 preimages of a
given point (x′, y′) ∈ R2

+ are solutions of the fourth degree algebraic system

(x′, y′) = T (x, y),

and consequently it can have four or two real solutions or no real solution at all. As
a consequence, T is of Z4 − Z2 − Z0 type as R2

+ can be subdivided into regions whose
points have 4, 2 or 0 preimages and the boundaries of such regions are characterized by the
existence of at least two coincident (merging) preimages. Following the notation by Mira
et al. (1996) and Abraham et al. (1997), we denote the critical curve of rank-1 by LC (it
represents the locus of points having two or more coincident preimages) and the curve of
merging preimages by LC−1.

The locus LC−1 for a two dimensional continuous and differentiable map is given by the
set of points such that the determinant of the Jacobian matrix is null. For system T the
Jacobian matrix is given by

J(x, y) =
(

1 + α[a(1−d)+w]
1−d2 − 4 α

1−d2 x + αd
1−d2 y αd

1−d2 x
αd

1−d2 y 1 + α[a(1−d)+w]
1−d2 − 4 α

1−d2 y + αd
1−d2 x

)
. (19)

so that its determinant vanishes in points (x, y) ∈ R2
+ such that

A2 + BC(x2 + y2) + A(B + C)(x + y) + B2xy = 0 (20)

where A = 1 + α[a(1−d)+w]
1−d2 , B = −4 α

1−d2 and C = αd
1−d2 .

The set of points such that condition (20) holds is given by the union of two branches
namely LC

(a)
−1 and LC

(b)
−1 (see Figure 1 panel (a)). Curves LC given by LC(a) = T (LC

(a)
−1 )

and LC(b) = T (LC
(b)
−1) separate R2

+ into regions having a different number of preimages (see
Figure 1 panel (b)).

4See Mira et al. (1996) for a description of the main properties of noninvertible maps of the plane.
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Figure 1: (a) Critical curves of rank-0, LC−1, for system T and the following parameter
values: α = 0.5, a = 3, w = 0.5, d = −0.395. (b) Critical curves of rank-1, LC = T (LC−1),
for the same parameter values as in panel (a). These curves separate the plane into the
regions Z4, Z2 and Z0, whose points have different number of preimages.
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The noninvertibility property plays a crucial role in the study of the global dynamics of
system T . In particular it is useful in the investigation of the topological structures of the
attracting sets of the map and of the related basins of attraction, as it will be shown later
in this paper.

3 Fixed points, invariant sets and synchronization

3.1 Fixed points and local stability

Equilibria or fixed points of T are solutions of the following equation:

T (x, y) = (x, y).

Trivially the following proposition holds:

Proposition 1. System T given by (18) admits four fixed points for all parameter values.
They are given by:

E0 = (0, 0) , E1 =
(
0, 1

2 [a (1− d) + w]
)
, E2 =

(
1
2 [a (1− d) + w] , 0

)
,

and E∗ =
(

a(1−d)+w
2−d , a(1−d)+w

2−d

)
.

(21)

Notice that fixed points E0, E1 and E2 are located on the invariant coordinate axes and
that E1 and E2 are in symmetrical positions with respect to the main diagonal

∆ = {(x, y) ∈ R2
+ : x = y}.

On the other hand, E∗ ∈ ∆ is the unique interior Nash equilibrium of this model.
The previous evidence is due to the fact that, since the two players are identical, system

T must remain the same under the exchange of the players, that is T ◦ S = S ◦ T where
S : (x, y) → (y, x) is the reflection through the diagonal ∆. We call this symmetry property.
It is worth to recall also that, since map T is symmetric, then either an invariant set
(attractors, basins of attraction, etc.) of the map is symmetric w.r.t. ∆, or its symmetric
set is invariant as well.

By substituting out the equilibrium price x∗ into the direct demand functions (equa-
tions (6) and (7)), and profit function (equation (9)), we obtain the equilibrium values of
quantities and profits of both firms related to the unique interior fixed point, respectively,
that is:

q∗ =
a− w

(2− d) (1 + d)
, (22)

π∗ =
(a− w)2 (1− d)
(2− d)2 (1 + d)

. (23)

From equation (22) it can easily be seen that a > w must hold to ensure q∗ > 0, while
from equation (23) we observe that the case of perfect substitutability (d = 1) perfectly
replicates the original result by Bertrand (1883), as prices of both firms equal the average
and marginal cost w and profits are zero.

The local stability analysis of the four fixed points of T can be carried out by considering
the Jacobian matrix associated with system T given by (19).

We observe that, since the eigenvalues of a diagonal or triangular matrix are given by
the elements of the main diagonal, then E0 is an unstable node while E1 and E2 can be both
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unstable nodes or saddle points (in this case the invariant axes are the stable manifolds of
the saddle points).

About the local stability of the unique interior fixed point E∗, we recall that the Jacobian
matrix associated with system T is given by (19). Since T is symmetric with respect to ∆,
then its Jacobian matrix evaluated at a point on the diagonal ∆ is of the kind

J(x, x) =
(

J1(x) J2(x)
J2(x) J1(x)

)
,

where
J1 = 1 +

α[a(1− d) + w]
1− d2

+
α

1− d2
(d− 4)x (24)

and
J2 =

αd

1− d2
x. (25)

As a consequence, the eigenvalues of J(x, x) are both real and they are given by:

λ‖(x) = J1(x) + J2(x) = 1 +
α[a(1− d) + w]

1− d2
+ 2

α

1− d2
(d− 2)x

and
λ⊥(x) = J1(x)− J2(x) = 1 +

α[a(1− d) + w]
1− d2

− 4
α

1− d2
x

while the corresponding eigenvectors are respectively given by v‖ = (1, 1) and v⊥ = (1,−1).
The eigenvalues evaluated at the fixed point E∗ are then given by

λ‖(E∗) = 1− α[a(1− d) + w]
1− d2

and
λ⊥(E∗) = 1− 2 + d

2− d

α[a(1− d) + w]
1− d2

so that only the interior fixed point E∗ can be attractive for suitable values of the parameters
such that both λ‖(E∗) and λ⊥(E∗) belong to the set (−1, 1).

Before studying the stability of the interior fixed point and the bifurcations occurring
as some parameters are changed, it is very important to observe that an attractor at finite
distance of system (18) cannot be globally attracting in R2

+. To show this fact let y(0) =
kx(0) with k ∈ [0, 1]. Then if x(0) > 0 is sufficiently large, the first iterate of T gives a
negative value of x′, that is x(1) < 0 (for the symmetry property the same behavior holds
for y′ while considering x(0) = ky(0), k ∈ [0, 1], if y(0) > 0 is sufficiently large). This
means that (x(1), y(1)) exits the set R2

+; furthermore all the subsequent iterates never enter
R2

+. In fact, bytaking into account the second iterate, it can easily be shown that, if at
least one component of the pair (x(1), y(1)) is negative, then (x(2), y(2)) = T (x(1), y(1))
has at least one negative component. Trivially, this fact implies that if (x(i), y(i)) /∈ R2

+

then T t(x(i), y(i)) /∈ R2
+, ∀t ∈ Z+. In particular, numerical computations show that system

(18) always generates unbounded trajectories if the initial condition (x(0), y(0)) belongs to
a suitable neighborhood of infinity.
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3.2 Invariant sets and synchronized trajectories

We now want to consider the invariant sets of system T and their stability. First of all, we
observe that T (x, 0) = (x′, 0) and T (0, y) = (0, y′), i.e. each coordinate semiaxis is invariant
for map (18) and consequently the dynamics of T on such lines are governed by the following
one-dimensional map:

x′ = φ0(x) =
[
1 +

αa

1 + d
+

αw

1− d2

]
x− 2

α

1− d2
x2. (26)

It is easy to prove that T (x, 0) = T (0, x) = φ0 and that map (26) is topologically conjugate
to the standard logistic map ω′ = λω(1− ω) through the linear transformation

x =
[
1− d2

2α
+

1
2
[a(1− d) + w]

]
ω, (27)

where
λ = 1 +

α

1− d2
(a(1− d) + w).

Thus the dynamics generated by map T on the two invariant axes are completely known,
as these can be obtained from those of the logistic map.

Observe now that also the diagonal ∆ is invariant for T , i.e. T (x, x) = (x′, x′); this
means that equal initial conditions imply equal dynamic behavior forever. As a consequence
T (∆) ⊆ ∆ and the dynamics generated by T on the invariant submanifold ∆ can be studied
through the restriction of system T to the set ∆ given by

T∆ = φ(x) =
[
1 +

αa

1 + d
+

αw

1− d2

]
x− α

1− d2
(2− d)x2, (28)

that is topologically conjugate to the logistic map z′ = µz(1− z) with

µ = λ = 1 +
α

1− d2
(a(1− d) + w), (29)

by the linear transformation

x =
1

2− d

(
1− d2

α
+ a(1− d) + w

)
z.

Thus also the dynamics generated by map T on the diagonal are completely known, since
these can be obtained from those of the logistic map (see Devaney 2003).

Our previous considerations enable us to completely understand the dynamics of the
model on both the coordinate axes and the main diagonal.

More precisely, trajectories embedded into ∆, i.e. those characterized by x = y for all t,
are called synchronized trajectories (see Bischi and Gardini 2000 and Bischi et al. 1998). The
phenomenon of synchronization arises when the diagonal is an invariant one-dimensional
submanifold of R2. As we have proved, ∆ is an invariant one-dimensional submanifold, since
T is obtained by coupling two identical one-dimensional maps and synchronized trajectories
are governed by φ (with regard to systems of coupled logistic maps see Bischi and Gardini
1998 and Bischi et al. 1998).

We now study the synchronized trajectories of system T , i.e. the properties of the
sequences generated when both firms start from the same initial state, i.e. x(0) = y(0). Let
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Figure 2: Bifurcation curves on the parameter plane (d, α) related to the bifurcation values
of map φ for a = 3 and w = 0.5 being x(0) = 0.3.

A ⊂ ∆ be the attractor of map φ. Then from the well-known properties of the logistic map
(see Devaney, 2003) we can find suitable values of µ such that the synchronized trajectories
converge to a cycle or a m−piece chaotic attractor etc.

Since we are interested in the role played by parameters d and α, in Figure 2 we depict
different bifurcation curves in the parameter plane (d, α) corresponding to the set of points
such that

µ = 1 +
α

1− d2
(a(1− d) + w),

where µ is equal to some bifurcation values of the logistic map (µ1, µ2, µ∞ and µ′ respec-
tively). The set S∗ = {(d, α) : 1 < µ < 3}, given by points belonging to R2

+ that are located
below the curve C1, are such that z∗ is stable (i.e. the synchronized trajectories converge
to the unique interior fixed point), while the set S′ = {(d, α) : µ > 4}, given by the points
belonging to R2

+ that are located above the curve C ′, characterizes the parameter region
corresponding to divergence. The region between curves C1 and C2 is associated with the
existence of a two-period cycle to which the duopoly model converges if the firms start from
the same initial condition; when passing from the points on C2 to curve C∞, the standard
period doubling cascade occurs.

About the existence of divergent trajectories the following Proposition holds.

Proposition 2. Let T be given by (18). Then, a threshold ᾱ (or ā or w̄, respectively)
does exist such that synchronized trajectories are divergent ∀α > ᾱ (or a > ā or w > w̄,
respectively), given the other parameter values.

Proof. This fact immediately follows when considering that the synchronized trajectories of
T are those governed by φ, which behaves as the logistic map. Hence the generic trajectory
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diverges if µ > 4, that is
α

1− d2
(a(1− d) + w) > 3.

This relation holds if α (or a or w) is great enough. For instance if

α >
3(1− d2)

a(1− d) + w
= ᾱ.

The result proved in Proposition 2 is immediately confirmed when observing Figure 2,
as the set S′ is unbounded in (−1, 1)×(0, +∞). Observe also that, according to Proposition
2, a necessary condition for the attractor A on the main diagonal to exist is that parameters
α, a and w are not too large.

Since we are wondering about the stability effects of horizontal product differentiation,
in what follows we take d as the parameter of interest. As it is known from the existing
literature on the dynamics of oligopoly models (see, amongst many others, Bischi and
Naimzada, 1999; Agiza and Elsadany, 2003, 2004; Zhang et al., 2007; 2009; Tramontana,
2010), when at least one of the two players has limited information about profit functions,
the higher the speed of adjustment α, the more likely the destabilization of the equilibrium
of the map (see Proposition 2).

About the role played by d, from Figure 2 it is easy to observe that the positive fixed
point z∗ is stable for intermediate values of d if α is small enough (as set S∗ contains points
of the kind (d, α) : d ∈ (d1, d2) and α < ᾱ(d)). This fact is proved in the following
Proposition.

Proposition 3. Let φ be given by (28).
Then, a threshold value N̄ > 2 and −1 < d1 < d2 < 1 exist such that if α(a + w) < N̄ then
z∗ is a locally stable fixed point of φ for all d ∈ (d1, d2).

Proof. Let φ be given by 28. Then z∗ is locally stable if and only if

1 +
α

1− d2
(a(1− d) + w) ∈ (1, 3) ⇔ α

1− d2
(a(1− d) + w) < 2 ⇔

f(d) = −aαd + α(a + w) < 2(1− d2) = g(d).

Recall that d ∈ (−1, 1). Function g(d) is a concave parabola s.t. g(−1) = g(1) = 0 that
has its maximum at (0, 2); function f(d) is linear, decreasing, f(1) = αw > 0 and it has a
positive intercept given by N = α(a + w). Hence a value N̄ > 2 does exist such that f and
g intersect each other at two points, namely d1 and d2 (being −1 < d1 < d2 < 1) for all
N < N̄ . In such a case f(d) < g(d) ∀d ∈ (d1, d2).

From the previous Proposition the following Remark trivially holds.

Remark 4. If α(a + w) < 2 then z∗ is a locally stable fixed point of φ for all d ∈ (d1, d2),
where −1 < d1 < d2 < 1, and 0 ∈ (d1, d2).

According to Proposition 3, the local stability of the fixed point is necessarily associated
with intermediate values of d, as it is shown in Figure 3. In particular, if Remark 4 holds,
then z∗ is locally stable for d = 0 and it loses stability via a period doubling bifurcation
(the sequence of bifurcations related to the logistic map occurs) due to an increase in the
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degree of substitutability (resp. complementarity) between products, i.e. d moves from
0 to 1 (resp. to −1). This fact shows that synchronized dynamics increases in complex-
ity while moving from the case of products of independent varieties to complementary or
substitutable, while, at the limit cases (d → ±1) no bounded dynamics occurs on ∆. In
any case, if the generic trajectory does not diverge, then it is bounded inside an absorbing
interval I = [φ2(c−1), φ(c−1)] (being c−1 the critical point of φ) and it may consist in either
a cycle or more complex set. The attractor A belongs to I, and I corresponds to a segment
on the diagonal that is absorbing w.r.t. perturbation along ∆.

Similar arguments to that used to prove Proposition 3 can be taken into account to
obtain the following result.

Proposition 5. A threshold value ¯̄N > N̄ does exist such that if α(a + w) < ¯̄N , then φ
admits an attractor A ⊆ I for all d ∈ (d̄1, d̄2), where d̄1 ∈ (−1, d1) and d̄2 ∈ (d2, 1).

This result guarantees the existence of an attractor at finite distance of system T re-
stricted to ∆ for opportune parameter values such that α(a+w) is not too large (i.e. if the
speed of adjustment α is sufficiently small for any given value of w and a). In addition, it
is shown that A exists iff d belongs to a given neighborhood of the origin.

In this subsection we have studied the dynamics of synchronized trajectories, i.e. we
have proved that, for all µ ≤ 4 system T admits an attractor A ⊆ I on the diagonal.
Obviously, if the firms start from the same initial condition and µ ≤ 4, then the duopoly
model converges to A in the long term. Thus the fate of any synchronized trajectory (i.e.
any trajectory starting from identical initial conditions) is known.

An important question arising is whether an attractor A ⊂ ∆ of φ is also an attractor
of the two-dimensional map T on the invariant submanifold ∆. In fact, it is of importance
to know whether a duopoly with identical players starting from different initial conditions
(i.e. (x(0), y(0)) 6∈ ∆) evolves toward synchronization.

3.3 Synchronization

In this subsection we consider producers starting from different initial conditions and we
study the mechanisms that can lead to the synchronization of trajectories. We recall that
a trajectory starting out from ∆, that is with x(0) 6= y(0), is said to synchronize if |x(t)−
y(t)| → 0 as t → +∞.

A natural question arising in our framework is whether identical competitors starting
with different initial conditions synchronize in the long term. As an attracting set A ⊆ I
is stable w.r.t. perturbations along ∆, therefore in order to study the stability of A for T
one has to consider the transverse stability (hence the stability of A w.r.t. perturbations
transverse to ∆).

Obviously, at least partial synchronization is achieved when a transversely stable orbit
exists on the diagonal (in the sense that it attracts points that do not belong to the diagonal
itself). Such an attractor can also coexist with non synchronizing trajectories, as we will
see later in this paper.

In order to see whether I ⊆ ∆ is a trapping segment for system T , its transverse
attractivity must be studied. For the fixed points and cycles embedded into the invariant
line ∆, the stability conditions along ∆ are the same as for the corresponding fixed points
and cycles of the quadratic map φ(x). Therefore, in what follows we consider the transverse
stability of invariants sets located on ∆.
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Figure 3: Bifurcation diagram of map φ w.r.t. d for α = 0.6, a = 3 and w = 0.5 with
x(0) = 0.3
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Recall that for the fixed point E∗ the transverse eigenvalue is given by:

λ⊥(E∗) = 1− 2 + d

2− d

α[a(1− d) + w]
1− d2

.

Hence E∗ is transversally attracting iff

2 + d

2− d

α[a(1− d) + w]
1− d2

∈ (0, 2), (30)

and the following Proposition holds.

Proposition 6. Let T be given by (18). Then, a threshold value Q̄ > 0 and −1 < d∗1 <
d∗2 < 1 exist such that if α(a + w) < Q̄, then E∗ is an asymptotically stable node for all
d ∈ (d∗1, d

∗
2).

Proof. Let T be given by (18). Then E∗ is a stable node if and only if condition (30)
holds and Proposition 3 applies. Recall that Proposition 3 applies iff α(a + w) < N̄ and
d ∈ (d1, d2) (with N̄ > 2 and −1 < d1 < d2 < 1). On the other hand, condition (30) holds
iff

f(d) = −aαd + α(a + w) < 2(1− d2)
2− d

2 + d
= G(d)

and d ∈ (−1, 1). After some algebra it can be observed that G(d) is a continuous and
differentiable function such that G(−1) = G(1) = 0, and it has a unique maximum point
at d̄ ∈ (−1, 0). Since function f(d) is linear, decreasing, such that f(1) = w > 0 and it
has a positive intercept given by P = α(a + w), then a threshold P̄ does exist such that
f and G intersect each other at two points, namely d′1 and d′2 (with −1 < d′1 < d′2 < 1)
for all P < P̄ . In such a case f(d) < G(d) ∀d ∈ (d′1, d

′
2). Let Q̄ = min{N̄ , P̄} and

(d∗1, d
∗
2) = (d1, d2) ∩ (d′1, d

′
2), then the statement is proved.

From Proposition 6, it follows that the unique interior equilibrium is locally asymp-
totically stable if α(a + w) is not too large and parameter d assumes intermediate values.
Obviously, in such a case the trajectories that start from a neighborhood of E∗ synchronize,
i.e. if firms start from different initial conditions, they will behave in the same way in the
long term.

In addition, let D = (d1, d2), D′ = (d′1, d
′
2) and D∗ = (d∗1, d

∗
2). As long as d ∈ D∗

then the trajectories synchronize, while it can easily be observed that E∗ is a saddle for
all d ∈ (D ∪ D′) − D∗ with unstable (or stable) set along ∆ and stable (or unstable) set
orthogonal to it, if d ∈ (D′ −D∗) (or d ∈ (D −D∗)) .

We now want to consider the case in which attractor A on the diagonal is different from
the fixed point E∗. Recall that bounded dynamics on ∆ occur if µ ∈ (1, 4] corresponding
to the condition

α[a(1− d) + w]
1− d2

∈ (0, 3] (31)

that is, a set D̄ = (d̄1, d̄2) does exist such that if d ∈ D̄ and α(a + w) is less enough, then
φ admits an attractor A ⊆ I.

In order to study the transverse stability of A, recall that for an m-cycle {(x1, x1), ..., (xm, xm)}
of T embedded into the invariant line ∆ where synchronizized dynamics take place and cor-
responding to the cycle {x1, ..., xm} of φ, the multipliers are given by

λ
(m)
‖ =

m∏

i=1

λ‖(xi) and λ
(m)
⊥ =

m∏

i=1

λ⊥(xi),

15



where λ‖(xi) and λ⊥(xi) are the eigenvalues of the Jacobian matrix evaluated at a point
(xi, xi) associated with eigenvectors parallel to ∆ and with eigenvectors normal to ∆, re-
spectively.

Consider now a more complex situation, i.e. A is a chaotic attractor on ∆. In such a
case A includes infinitely many periodic orbits which are unstable in the direction along
∆. For any of these cycles the associated eigenvalues can be obtained. Making use of
the eigenvalue λ

(m)
⊥ and of the transverse Lyapunov exponent, we can study the transverse

stability of the chaotic attractor A, that is we can investigate whether initial conditions
that are not synchronized give trajectories converging to it. We recall that, given a chaotic
set A ⊂ ∆, the transverse Lyapunov exponent is defined as

Λ⊥ = lim
N→∞

1
N

N∑

n=0

ln |λ⊥(xn)| (32)

where x0 ∈ A and xn is a generic trajectory generated by φ. If A is an m−cycle then
Λ⊥ = ln |λ(m)

⊥ | and the cycle is transversely stable if Λ⊥ < 0.
If x0 belongs to a generic aperiodic trajectory embedded inside the chaotic set A, then Λ⊥

is the natural transverse Lyapunov exponent Λn
⊥, where natural indicates that the exponent

is computed for a typical trajectory taken in the chaotic attractor A (see Bischi and Gardini,
2000). Since infinitely many cycles, all unstable along the diagonal, are embedded inside
the chaotic attractor A, a spectrum of transverse Lyapunov exponents can be defined by
the inequality

Λmin
⊥ ≤ ... ≤ Λn

⊥ ≤ ... ≤ Λmax
⊥

and the natural transverse Lyapunov exponent represents a sort of weighted balance between
the transversely repelling and transversely attracting cycles (see Bignami and Agliari, 2010).
If all the cycles embedded in A are transversely stable, that is Λmax

⊥ < 0, then A is asymp-
totically stable in the Lyapunov sense, for the two dimensional map T ; nevertheless it may
occur that some cycles embedded in the chaotic set A become transversely unstable, that
is Λmax

⊥ > 0, while Λn
⊥ < 0. In such a case A is not stable in the Lyapunov sense but

it is a stable attractor in the Milnor sense. If a Milnor attractor of T exists then some
transversely repelling trajectories can be embedded into a chaotic set which is attracting
only on average (see Bischi et al. 1998). In addition, such transversely repelling trajectories
can be re-injected toward ∆ so that their behavior is characterized by some bursts far from
the diagonal, before the synchronization or before converging to a different attractor. This
situation is called on-off intermittency.

Let us come back to the system T . In order to investigate the existence of a Milnor
attractor A, we estimate the natural transverse Lyapunov exponent Λn

⊥, represented w.r.t.
parameter d in Figure 4 (a). It is possible to observe that it can assume negative values;
as an example, we consider d = −0.3614 at which Λn

⊥ < 0 while Λmax
⊥ > 0 and the one

dimensional map φ exhibits a 2-piece chaotic attractor. The unique attractor A at finite
distance of system T belongs to the diagonal (see Figure 4 (b)), but a trajectory starting
from an initial condition that does not belong to the diagonal has a long transient before
converging to A (see Figure 4 (c)). In fact, by considering the difference x(t)− y(t) for any
t we can observe that the transient part of the trajectory is characterized by several bursts
away from ∆. It then exhibits the typical on-off intermittency phenomenon. The whole
trajectory starting from x(0) = 1.5 and y(0) = 1 is shown in Figure 4 (d).

The study of the geometrical properties of the critical lines may be used to estimate
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the maximum amplitude of the bursts, by obtaining the boundary of a compact trapping
region of the phase space in which the on-off intermittency phenomena are confined.5

Following Mira et al. (1996), a practical procedure to obtain the boundary of the
absorbing area in Figure 4 (e) is now described. Starting from a portion of LC−1 (taken in
the interesting region and depicted in green), its images up to rank-6 are computed until the
closed region is obtained. Since such a region is mapped into itself, then it is an absorbing
area A. The length of the initial segment has been taken by a trial and error method. Once
an absorbing area is found, in order to see if it is invariant, the same procedure is repeated
by taking only the portion γ = A ∩LC−1 as the starting segment. Since a natural m exists
such that the union of the iterates of γ covers the whole boundary of A, then A is invariant.

Following the procedure proposed by Bischi and Gardini 1998, the trapping region so
determined is given by a minimal absorbing area including the Milnor attractor. In Figure
4 (e) the absorbing area for the case presented in (d) is depicted: observe that such a region
contains the whole trajectory presented in panel (d). In order to check that the absorbing
area obtained is the region in which on-off intermittency occurs, we have to verify that it
is the smallest one including the Milnor attractor. A procedure that can be used is the so
called parameter mismatch proposed in Bischi and Gardini (1998).

In our model the speed of adjustment α can be used as the parameter breaking the sym-
metry: in fact the existence of a minimal invariant absorbing area is a structurally stable
property, persisting under a small perturbation of the parameters, even if such a perturba-
tion breaks the symmetry. We introduce a slight difference in the speed of adjustment, i.e.
we consider map T with α1 6= α2 as in equation (15), more precisely we assume α1 = 0.5 and
α2 = 0.51. Obviously the invariance of the diagonal is lost and the Milnor attractor as well,
but the map T presents a strange attractor having the same shape as that of the absorbing
area depicted in Figure 4 (e). This proves that the absorbing area previously obtained is
minimal since it is completely covered by the attractor of T , and that the amplitude of the
bursts arising in the trajectories of the map T can be estimated by considering the critical
segments of critical curves and their iterations.

4 Global dynamics: basins and contact bifurcations

In this section we consider the situation in which the firms start from different initial
states and we focus on the case in which an attractor exists on ∆ but trajectories may not
synchronize, for instance almost all initial conditions are locally repelled away from such
an attractor. In this case, the generic trajectory starting from an interior point of R2

+ is
attracted by a set Ω belonging to an absorbing area A.

Recall Proposition 6 and consider the case in which α(a + w) is small enough. Then a
set D∗ = (d∗1, d

∗
2) does exist such that if d ∈ D∗, then E∗ is asymptotically stable. First,

we want to describe the bifurcations occurring as d increases (resp. decreases) so that E∗

is no longer a stable node. We fix all the parameter values but d at the following levels:
a = 3, α = 0.5 and w = 0.5. Observe that for the parameter constellation we have chosen,
α(a + w) = 1.75 < 2 so that 0 ∈ D∗; furthermore d′1 < d1 < 0 < d′2 < d2. If d = 0, then E∗

is a stable fixed point while as d < 0 decreases E∗ becomes a saddle and ∆ is transversally
attracting (this is the reason why on-off intermittency occurs). On the other hand, as d > 0
increases and E∗ becomes a saddle then the diagonal is its stable set.

5For the application of the critical curves technique in economic models see, amongst others, Bischi and
Gardini (1998), Bischi and Lamantia (2002), Brianzoni et al. (2009).
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Figure 4: Parameter values α = 0.5, a = 3 and w = 0.5. (a) The natural transverse
Lyapunov exponent w.r.t. parameter d. (b) Two-piece chaotic attractor A of system T
belonging to the diagonal for d = −0.3614. (c) Bursts away from the diagonal before
synchronization for d = −0.3614, x(0) = 1.5 and y(0) = 1. (d) The whole trajectory
starting from initial condition as in panel (c) and converging to the attractor in panel
(b). (e) The minimal absorbing area in which on-off intermittency phenomenon occurs.
Parameters and initial condition as in (c). (f) The introduction of parameter mismatch,
which breaks the symmetry, makes it possible to check the absorbing area properties (we
used α1 = 0.5 and α2 = 0.51). Indeed we obtain a strange attractor having the same shape
as in (e).

18



0 3.5
0

3.5
y

x

(a)

0 3.5
0

3.5

y

x

(b)

0 3.5
0

3.5

y

x

(c)

0 500
−1

0

1

x(
t)

−
y(

t)

t

(d)

Figure 5: Attractor of T for different negative values of parameter d: (a) d = −0.34;
(b) d = −0.355, (c) d = −0.395. (d) For d = −0.395, and initial condition x(0) = 0.2
and y(0) = 0.3, the evolution of x(t) − y(t) versus time is depicted and the intermittency
phenomenon is observed.

We now describe the change in the qualitative behavior of the system in these two cases.
Consider first the case in which d < 0 decreases (i.e. products tend to be complements)

then as value d1 (where d1 ' −0.14) is crossed, a flip bifurcation occurs creating a two period
cycle on ∆; as d still decreases a sequence of period-doubling bifurcations is observed on
∆ that increases the complexity of the attractor of T . As long as d ∈ (d′1, d1) then ∆ is
transversally attracting and the trajectories synchronize. As d still decreases and the value
d′1 is crossed the diagonal becomes a repelling set. In Figure 5 panels (a), (b) and (c) a
4-piece, 2-piece and one-piece chaotic attractor existing outside the diagonal are presented.
Recall that these attractors coexist with the one on the diagonal. While looking at Figure
5 panel (c) it can be noticed that the density of the iterated points inside the chaotic area
is mainly concentrated along the diagonal revealing the occurrence of on-off intermittency
dynamics. In Figure 5 panel (d) the difference x(t) − y(t) is presented versus time; it can
be seen that x(t) ' y(t) several time periods and that, in other periods, the state variables
are distant from each other, so that it is very difficult to make predictions about their
occurrence.

We now consider the case in which d is positive and increasing. As d crosses the value
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Figure 6: Attractor of T for different positive values of parameter d: (a) d = 0.64; (b)
d = 0.65, (c) d = 0.675. (d) d = 0.701.

d′2 (where d′2 ' 0.3596) the fixed point E∗ becomes a saddle and a two-period cycle is
created outside the diagonal via a transverse flip bifurcation of E∗. The attractor Ω is
given by a two-period cycle for d ∈ (d′2, d̃) (where d̃ ' 0.5875). As d crosses d̃ this two-
cycle undergoes a supercritical Neimark-Sacker bifurcation, leading to the existence of two
cyclical attracting closed invariant curves6 that arise around the unstable two-period cycle
(see Figure 6 panel (a)). Then, after the Neimark-Sacker bifurcation, the generic trajectory
exhibits a quasi-periodic or a periodic behavior. As d further increases, an m−period cycle
is observed (see Figure 6 panel (b)), while in Figure 6 panels (c) and (d) we observe a one-
piece chaotic attractor for greater values of d. The attractor presented in panel (c) may be
due to a homoclinic bifurcation of the saddle E∗ (a similar bifurcation occurs in Bignami
and Agliari (2010)).

As it can be observed by comparing Figures 5 and 6, the structure of the attractor Ω
existing outside the diagonal and coexisting with the one belonging to ∆ increases in com-
plexity as the degree of complementarity or substitutability of the two products increases;
anyway, while in the case of negative values of d (complementarity) intermittency may be
present, with positive values of d (substitutability) this phenomenon is ruled out.

6For a better description of bifurcations related to the creation and destruction of closed invariant curves
see Aronson et al. (1982).
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We now describe some global bifurcations that are responsible for a change in the struc-
ture of the basins of attraction of the attracting set Ω. As previously discussed, system T
always admits divergent trajectories. Let B(∞) be the set of points generating diverging
trajectories. Assume now that T admits a unique attractor at finite distance, namely Ω,
and let B(Ω) be the basin of attraction of Ω (i.e. the set of initial conditions generating
trajectories converging to Ω). Then, B(Ω) = Int(R2

+/B(∞)) being Int(M) the interior
points of set M .

In order to determine the basin of attraction of Ω, we observe that the boundary of
B(Ω), namely ∂B(Ω), coincides with the boundary of B(∞), given by ∂B(∞). Hence in
what follows we explain the procedure to obtain ∂B(∞) for system T ; notice that a key role
is played by the two invariant coordinate axes. Recall that the one dimensional restriction
of T to the set of points (x, 0) is given by φ0 defined in (26) and that for the symmetry
property the same map governs the dynamics along the other invariant coordinate axis.
Since φ0 is topologically conjugated to the logistic map ω′ = λω(1 − ω) through a linear
transformation x = h(ω) given by (27) with λ = µ as defined in (29), hence system T admits
bounded trajectories along the invariant axes if µ ∈ (1, 4] and the initial condition is taken
inside the segment I = [0, 0−1], where 0−1 is the rank-1 preimage of the origin computed
by using φ0.

While computing the transverse eigenvalues associated to the points belonging to I, it
is easy to verify that the transverse directions to the coordinate axes are always repelling,
hence the two segments

I1 = ([0, 0−1], 0) ∈ R2 and I2 = (0, [0, 0−1]) ∈ R2, (33)

representing respectively the intersections of set I with the two coordinate x-axis and y-axis,
must belong to ∂B(∞) and, hence, all their preimages of any rank also belong to ∂B(∞).
Following these arguments, the following Proposition determining the boundary of B(∞)
(and hence the boundary of B(Ω)) holds.

Proposition 7. Let µ ∈ (1, 4] and I1 and I2 be the segments of the two coordinate axes
defined in (33). Then

∂B(A) =

( ∞⋃

n=0

T−n(I1)

)
∪

( ∞⋃

n=0

T−n(I2)

)
.

Notice that the whole ∂B(Ω) is given by the union of the preimages of segments I1 and
I2 (for further details see Bischi et al. 1998). In Figure 7 panel (a) we show the attractor
of T and its own basin (the white region) for suitable values of the parameters such that
µ ∈ (1, 4] and the differentiation parameter d is positive.

We also depict the critical curves LC; by using numerical simulations it can be shown
that the curve LC(b) moves upwards as parameter d increases so that, given the other
parameter values, a threshold value d̄ does exist such that a contact bifurcation (i.e. a
contact between a critical curve and the basin boundary) occurs.7 At this parameter value
LC(b) is tangent to ∂B(∞) at two symmetric points; at d̄ a global bifurcation occurs causing
the transformation of B(∞) from connected to non connected, i.e. it is given by an infinite
sequence of non connected regions (or holes) inside B(Ω). This bifurcation is due to the
fact that a portion of the basin B(∞) enters a region characterized by a higher number of

7For this kind of bifurcation see, amongst others, Abraham et al. (1997) and Mira et al. (1994).
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Figure 7: (a) Attractor of T and its basin for the following parameter values: α = 0.5, a =
3, w = 0.5, d = 0.675. Curves LC are also depicted. (b) Basin of attraction of Ω (white
region) and of infinity (gray region) for d = 0.702. After the global bifurcation, gray holes
are depicted. Curves LC are also depicted showing the tangent contact with the basin
boundary. (c) Attractor Ω and its basin in the same case of (b). (d) Basin of attractions
for d = 0.7021.
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primages (and hence the primages of any rank of such a portion also belong to B(∞)). By
using numerical computations, we obtain the value d̄ ' 0.7019 and in Figure 7 panel (b) we
show the situation occurring immediately after such a global bifurcation.

Observe that the attractor Ω does not disappear after such a bifurcation (it is presented
in Figure 7 panel (c)). This depends on the fact that the portion of curve LC involved in
the contact bifurcation does not belong to the boundary of the absorbing area inside which
the attractor Ω exists.

The invariant absorbing area is involved when the basin boundary has a contact with
the boundary of the invariant absorbing area and this happens as parameter d increases.
In Figure 7 panel (d) this situation is represented and the distribution of white and gray
points appears quite complicated. The white points are associated with the ghost attractor
surviving after the final bifurcation.

Finally, recall that when µ > 4 then the generic trajectory starting from a point of the
invariant diagonal is divergent. This case corresponds also to a global bifurcation for the
two-dimensional system T , called final bifurcation, due to a contact between the bounded
attractor Ω and the basin of infinity, causing the destruction of the attractor.

5 Conclusions and further developments

This paper has developed both local and global analyses in a nonlinear duopoly with price
competition and horizontal product differentiation, by assuming players with limited infor-
mation with regard to profit functions.

Analysis of both horizontal (quantity) and vertical (quality) differentiation is of impor-
tance in microeconomic literature (see Dixit (1979), Gabszewicz and Thisse (1979), Shaked
and Sutton (1982), Singh and Vives (1984), Vives (1985), Motta (1993)).

The aim of this paper is to revisit the study of the dynamic properties of a nonlin-
ear Bertrand duopoly, by taking the degree of horizontal product differentiation as a key
parameter. This has led us to bring to light some interesting dynamic events such as syn-
chronization, intermittency and global bifurcations. If the products of the two firms are
independent from each other (i.e., every firm acts as if it were a monopolist in the market),
then the unique interior fixed point is locally stable. In contrast with this, if every firm
acts to increase the extent of product differentiation, the interior fixed point is no longer
stable and attractors having a complex structure may appear. This holds because when
products are substitutes (resp. complements), an increase in the degree of substitutability
(resp. complementarity) induces firms to increase the price of their own product to capture
advantages of competition with regard to their own profits (resp. joint profits) in the case
of substitutability (resp. complementarity).

Further developments on the study of nonlinear duopolies with price competition are
possible. In particular, the cost function can be non-linear or it can be endogenized by
assuming the existence of imperfect labor markets (e.g., unions); a firm’s objective different
from pure profit maximization can also be considered through the study of managerial
delegation schemes (e.g., sales, market share or relative profits delegation).
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