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The nonlinear evolution of collisionless plasmas is typically a multi-scale process, where the

energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling

the global evolution requires to take into account the main micro-scale physical processes of

interest. This is why comparison of different plasma models is today an imperative task aiming at

understanding cross-scale processes in plasmas. We report here the first comparative study of the

evolution of a magnetized shear flow, through a variety of different plasma models by using

magnetohydrodynamic (MHD), Hall-MHD, two-fluid, hybrid kinetic, and full kinetic codes.

Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the

dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are

studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz

instability, to highlight the effects of small scale processes on the nonlinear evolution of

collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the

relative orientation of the fluid vorticity with respect to the magnetic field direction during the

linear evolution when kinetic effects are taken into account. Even if we found that small scale

processes differ between the different models, we show that the feedback from small, kinetic scales

to large, fluid scales is negligible in the nonlinear regime. This study shows that the kinetic

modeling validates the use of a fluid approach at large scales, which encourages the development

and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the

collisionless regime. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826214]

I. INTRODUCTION

In typical laboratory, space and astrophysical conditions,

the nonlinear dynamics of magnetized plasmas is driven by the

energy injected at large, fluid scales. The energy then cascades

self-consistently towards smaller and smaller scales, until

kinetic effects come into play. From a theoretical/modeling

point of view, space plasmas represent a laboratory of excel-

lence to study the physics of fundamental plasma processes,

because of the wealth of in-situ diagnostics of improving

quality accumulating in the form of electromagnetic profiles

and particle distribution functions. The plasma turbulent state,

routinely observed by satellites in the solar wind, is an arche-

type of plasma multi-scale behavior.1

Many plasma processes naturally lead to a multi-scale

dynamics, as, for example, at the interface between two dif-

ferent plasma regions, where large scale, fluid instabilities

develop self-consistently and act as an energy source. This

is the case for instance of the solar wind-magnetosphere

interface, which plays a key role in the context of space

weather modeling and forecasting. The connection between

the solar wind and magnetosphere is mediated through the

magnetosheath and magnetopause boundaries that strongly

depend on the solar wind properties and their variability.

At the transition region between the solar wind flowing

plasma and the magnetosphere plasma at rest at low

latitude, nearby the equatorial plane, the velocity shear

between the two plasmas is an efficient source for the
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development of the Kelvin-Helmholtz instability (hereafter

KHI).

Satellite measurements have supplied clear evidence

of rolled-up vortices at the flank of the Earth’s magneto-

pause,2,3 where the KHI has been invoked to provide a

mechanism by which the solar wind enters the Earth’s mag-

netosphere, in particular, to account for the increase of the

plasma transport. Indeed, during northward magnetic field

periods, when magnetic reconnection is considered as ineffi-

cient, at low latitude where the solar wind and magneto-

spheric fields nearly parallel, a relevant mixing between the

solar wind and the magnetospheric plasma is observed, even

larger than during southward configurations. KHI driven by

a velocity shear can grow at low latitude since the magnetic

field, nearly perpendicular to the plane where the instability

develops, does not inhibit its development. This provides an

efficient mechanism for the formation of a mixing layer and

for the entry of the solar plasma into the magnetosphere,

explaining the efficient transport during northward solar

wind periods. Other space observations have provided sup-

port for the development of the KHI in the environment of

Saturn4 and Mercury.5,6

After saturation, the KH rolled-up vortices drive the

formation of gradients at the ion inertial length and/or the

ion Larmor radius up to electronic scales, and act as a source

of secondary instabilities. In these conditions, previous stud-

ies have demonstrated that the nonlinear evolution of KH

vortices enables the occurrence of magnetic reconnection

driven by large-scale vortex motions, of interest for space

plasmas,7–10 as well as for astrophysical plasmas jets.11,12

The vortex formation process indeed drags the magnetic field

component parallel to the solar wind direction into the flow.

As a result, the magnetic field is more and more stretched

inside the vortices until it reconnects, redistributing the ini-

tial kinetic energy into accelerated particles and heating.

Moreover, the density jump between the magnetosheath and

magnetospheric plasmas drives fluid-like secondary instabil-

ities, such as the Rayleigh-Taylor instability.13–15 On top of

that, the downstream increase of the magnetosheath velocity

leads to super-magnetosonic regimes for which the KH vorti-

ces act as obstacles to the plasma flow, generating quasi

perpendicular shocks,10,16,17 thus modifying the transport

properties of the plasma of the solar wind-magnetosphere. It

is thus crucial to establish the role of these different second-

ary instabilities on the dynamics of the system, since they

strongly influence the increase of the width of the mixing

layer and its internal dynamics that are the most important

factors for the evolution at the flank of the Earth’s

Magnetosphere.

To summarize, the nonlinear evolution of the large scale

fluid vortices is a fundamental plasma physics process driv-

ing the development of secondary instabilities. The energy

then self-consistently cascades towards smaller and smaller

scales, where the dynamics become kinetic, playing a signifi-

cant role in the transport properties of the global system.

Even if numerical studies of the nonlinear evolution of

magnetized shear flows have been carried mainly by the

means of fluid models (ideal/resistive magnetohydrodynamic

(MHD), Hall MHD, two-fluid), the increase of computational

power has recently enabled to address the problem of the

kinetic modelling of shear flows in collisionless plasmas

through hybrid Particle-in-cell (PIC)18,19 and full PIC

simulations.20–22 Low resolution simulations of the KHI

have also been computed as a test problem to benchmark

Vlasov codes.23 One of the main difficulties in the kinetic

modeling of shear flows however remains the choice of the

initial conditions. Indeed, few kinetic equilibriums are

known for shear flow configurations.24

To progress beyond the current state of the art in the

nonlinear study of collisionless plasma evolution, the pri-

mary kinetic effects and physical processes at play should be

understood through the complementary use of different mod-

els, from fluid to kinetic. At the end, only the kinetic model-

ing can validate or not the choice of a fluid approach. This is

why a multi-model study is necessary to shade light on the

fluid modeling of the nonlinear evolution of collisionless

plasmas.

We decided to focus in this work on the comparison of

the evolution of a magnetized shear flow through the devel-

opment of the KHI, using different plasma codes/models.

However, we underline that the numerical modeling of

plasma dynamics is a fundamental problem of major interest

in present plasma physics research. Therefore, this study is

of broad interest and is not limited to the KHI itself and

related nonlinear dynamics.

The paper is organized as follows. The different models

and codes used in this study are described in Sec. II and the

configuration of the system under study is described in Sec.

III. The results are presented in Sec. IV: first, the kinetic

relaxation to the initial fluid sheared flow equilibrium is

discussed in Sec. IV A, then the linear growth rates of the

magnetized Kelvin-Helmholtz instability are compared in

Sec. IV B, the nonlinear phase of the magnetized Kelvin-

Helmholtz is then studied for the different models in

Sec. IV C. We finally discuss and conclude this work in

Sec. V.

II. MODELS AND CODES

The primary goal of this comparative study is to use dif-

ferent plasma models to solve a given physical problem,

namely, the evolution of a shear flow in a magnetized

plasma. Multiscale properties of magnetized plasmas arise

when nonlinear processes, hardly modeled by analytical

studies, are at play. This is why numerical tools are needed

to efficiently integrate in time the equations describing the

plasma dynamics. On the other hand, benchmarking different

numerical algorithms of the same model is out of the scope

of this paper.

A. Hierarchy of plasma models

The multiscale intrinsic nature of collisionless magne-

tized plasmas has lead to the development of a variety of

plasma descriptions starting from a N-body description,

through a mean field kinetic Vlasov description, to fluid

descriptions (multi-fluid and magnetohydrodynamic). The

underlying idea is that unresolved phenomena at small scales
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can be averaged out, leading to models much easier to handle

than a N-body description.

In this work, we have restricted our study to the follow-

ing models: (i) MHD, (ii) Hall-MHD, (iii) two-fluid, (iv)

hybrid model with kinetic ions and massless electrons fluid,

(v) full kinetic description of ions and electrons.

The full kinetic model (full PIC code) contains all the rel-

evant plasma length scales: the ion and electron inertial lengths

di and de, respectively, as well as the ion and electron Larmor

radius qi and qe, respectively. The hybrid model (hybrid PIC

code) contains the ion length scales di and qi, while the two-

fluid model contains the ion and electron inertial lengths di and

de. Ideal and resistive MHD are both transparent to the plasma

lengths scales. This is summarized in Table I, third column.

Concerning the closure of the models (summarized in

Table I), the fluid codes (MHD, Hall-MHD and two-fluid)

use either an isothermal or an adiabatic closure c ¼ 1 or 5/3,

respectively, the hybrid code uses an isothermal closure for

electrons, while no closure is needed for the species described

by a kinetic model: this is case for ions for the hybrid PIC

code and for electrons and ions for the full PIC code.

We stress that even if the kinetic models (full PIC in

Sec. IV B and hybrid PIC in Sec. IV C) should be considered

the “models of reference,” the initial equilibrium setup is

chosen fluid-like, because of the difficulty of finding a

Vlasov equilibrium, so that it does not describe a kinetic

equilibrium for these two models. This is why the inter-

model comparison should be done carefully, taking into

account the fact that the force equilibrium can readjust dur-

ing the initial phase.

The numerical algorithms used to solve the different

plasma models are described in Sec. II. (i) Two different

codes are used to solve the MHD equations, they are

described in Secs. II B and II C, (ii) and (iii) the code solving

the Hall-MHD and the two-fluid models are described in

Sec. II D, (iv) the hybrid and (v) full kinetic models are

solved using two different PIC algorithms described in Secs.

II E and II F, respectively. These different codes have all

been extensively tested and previously used to produce peer-

reviewed scientific publications, so their validation is

assumed and out of the scope of this paper.

B. MHD stagger code

One of the MHD codes used in this work, the “Stagger

Code,” is a grid based, resistive and compressible MHD

code. The code incorporates an adaptive hyper-resistivity

and -viscosity scheme for enhanced control of dissipation

introduced in fastmode waves, advective motion and

shocks—see, for example, Ref. 25 for an overview of the dis-

sipation scheme and further code features. The MHD

variables are defined on staggered grids, and the code con-

serves mass, momentum and r � B to machine precision.

Interpolation of variables between different staggered grids

is handled by using 5th order interpolation. Spatial deriva-

tives are computed using 6th order accurate differential

operators. The time integration of the MHD equations is per-

formed using an explicit 3rd order low storage Runge-Kutta

procedure.26 For the MHD simulations conducted here, the

resistive MHD equations solved in the Stagger Code are

@q
@t
¼ �r � ðquÞ

@ðquÞ
@t
¼�r � ðquuþ sÞ � rpþ j� B

@e

@t
¼�r � ðeuþ feÞ � pr � u; (1)

@B

@t
¼ �r� E; (2)

j ¼ r� B; (3)

E ¼ �u� Bþ gj; (4)

p ¼ ðc� 1Þe; (5)

sij ¼ ��ijqsij; (6)

sij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
; (7)

fe ¼ ��eqrðe=qÞ: (8)

Here, q is the mass density, u the bulk velocity, p the

pressure, j the current density, B the magnetic field, e the

thermal energy. �ij is the viscosity, �e is a thermal conductiv-

ity, and g is the resistivity. sij is the velocity shear tensor, sij

the viscous stress tensor. fe is a diffusive heat flux, needed

for numerical stability. From Eqs. (14) and (15) in Ref. 25,

using parameters �1 ¼ 0:007; �2 ¼ 0:007, and �3 ¼ 0:4, the

resistivity is g � 10�3 for both the adiabatic and isothermal

cases with the setup described below. This initial resistivity

will adjust during the instability growth and deviate from an

approximate constant. This hyper-resistivity/-viscosity

scheme will consequently yield larger effective values of the

resistive and viscous terms, locally on the grid, when and

where numerical critical structures appear. For the simula-

tions with isothermal conditions, the energy equation is not

active in the code and c ¼ 1 (with p ¼ q). The ideal gas law

with c ¼ 5=3 is assumed for the adiabatic case.

C. MPI-AMRVAC

The second code used in this work is the MHD module

of the MPI-AMRVAC software.27 The code uses a finite-

volume discretization, combining explicit multi-step time-

stepping schemes with a variety of shock-capturing spatial

TABLE I. Summary of the closure used in the different models for ions (first

column) and electrons (second column). The length scales that are intrinsi-

cally part of the model are listed in the third column: LHD the hydrodynamic

scale of the system, di and de the ion and electron inertial lengths, qi and qe

the ion and electron Larmor radii.

Model Closure on ions Closure on electrons Length scales

(i) MHD Isothermal/Adiabatic LHD

(ii) Hall-MHD Adiabatic LHD; di

(iii) Two-fluid Adiabatic Adiabatic LHD; di; de

(iv) Hybrid No closure Isothermal LHD; di; qi

(v) Full kinetic No closure No closure LHD; di; qi; de; qe
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discretizations. The code is designed to solve equations of

generic form

@U

@t
þr � FðUÞ ¼ S; (9)

and in this work, we employ two variants of the physical

equations, which are (1) the isothermal, ideal MHD equa-

tions where conservative variables U ¼ ½q; qv;B� include

density, momentum, and magnetic field; and (2) the full set

of ideal MHD equations where in addition a total energy

density equal to qv2=2þ B2=2þ p=ðc� 1Þ is evolved. For

the isothermal case, the pressure appearing in the momentum

equation is at any time set from p ¼ 0:5q in dimensionless

units, such that it maintains the same equal uniform tempera-

ture conditions as initially in the full MHD case. The ratio of

specific heats is set to c ¼ 5=3 for the latter run. Although

the code allows inclusion of physical sources S, such as

viscosity or resistivity, in this work, we omit any explicitly

added physical source that would introduce deviations from

the pure conservation form. This means that any reconnection

of the magnetic field is entirely due to the nonlinearities in the

shock-capturing discretizations. To make the comparison possi-

ble with all other fixed grid simulations, we use MPI-AMRVAC

in a domain decomposition approach, using only 1 grid of overall

size 1536� 512, but employing 3072 grid blocks of size 16�
16 to exploit the MPI parallelism. The actual scheme used is an

overall third-order Total Variation Diminishing (TVD) Lax-

Friedrichs scheme, using a three-step Runge-Kutta variant com-

bined with the third order Cada limiter.28 The r � B control is

handled through a diffusive approach, introducing a (non-physi-

cal) source term diffusing monopole errors, which is handled in

a split fashion. For the explicit time-advance, a courant parameter

of 0.9 is used throughout.

D. Two-fluid code

The two-fluid code29 is based on a two-fluid, ion-elec-

tron plasma approach, including electron inertia effects in a

fluid framework. The dimensionless equations of the model

are obtained by using ion characteristic quantities: the ion

mass mi, the Alfv�en velocity cA, and the ion inertial scale

length di (in dimensionless units the electron inertial length

reads d2
e ¼ me=mi). The density and motion equations read

@n

@t
þr � ðnUÞ ¼ 0; (10)

@ðnUÞ
@t
þr � ½nðuiui þ d2

e ueueÞ þ Ptot I � BB� ¼ 0; (11)

where U ¼ ui þ d2
e ue is the fluid velocity, Ptot ¼ Pth þ B2=2

is the total pressure, with Pth ¼ Pi þ Pe the thermal pressure,

and n ¼ ni ¼ ne the density (we assumed quasi-neutrality).

We adopt adiabatic closures for ions and electrons

@ðnSe;iÞ
@t

þr � ðnSe;iue;iÞ ¼ 0; (12)

where Se;i ¼ Pe;in
�c. In the following, we take c ¼ 5=3. The

dimensionless sound velocity is defined as cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cPth=n

p
.

The electric field is calculated by means of a generalized

Ohm’s law, including electron inertia effects30

ð1�d2
er2ÞE¼�ue�B�1

n
rPe

�d2
e ui�B�1

n
rPiþ

1

n
r� ½nðuiui�ueueÞ�

� �
:

The two-fluid code can also be run as a Hall-MHD code by

imposing de ¼ 0. Finally, the magnetic field is calculated by

solving the Faraday equation (Eq. (2)) and the current is

given by J ¼ nðui � ueÞ ¼ r � B (we neglect the displace-

ment current). These equations are integrated numerically in

a 2D (x, y) slab geometry �Lx=2 � x � Lx=2; 0 � y � Ly

using fully 3D fields (the so called 2.5D geometry). This

code is based on a standard third-order Adams-Bashforth

method for temporal discretization. It uses fast Fourier trans-

form routines for spatial derivatives along the periodic

y-direction and sixth-order compact finite difference scheme

with spectral like resolution for spatial derivative along

the inhomogeneous x-direction.31 Numerical stability is

achieved by means of filters, a spectral filter along the peri-

odic y-direction and a sixth-order spectral-like filtering

scheme along the inhomogeneous x-direction.31

E. Hybrid PIC code

The hybrid code is based on a current advance method

and a cyclic leapfrog algorithm.32 In the model, ions are

treated by using a particle in cell scheme while electrons are

represented by a massless, isothermal, charge neutralizing

fluid. The code self-consistently solves equations of motion

for ions,

dxs

dt
¼ vs; (13)

dvs

dt
¼ qs

ms
ðEþ vs � BÞ; (14)

together with Faraday’s law for magnetic field (Eq. (2)) and

a generalized Ohm’s law for electric field in the form

E ¼ 1

qc

ðr � BÞ � B

l0

� Ji � B�rpe

� �
þ gðr � BÞ;

here xs; vs are positions and velocities of particles of species

s; qc ¼
P

s qc;s and Ji ¼
P

s Ji;s are total ionic charge and

current densities, B is the magnetic field, l0 is vacuum per-

meability, and g is a resistivity parameter. The pressure of

electrons is obtained as pe ¼ qekBTe where the electron tem-

perature Te is set as initial condition and remains constant

during the simulation (the electron fluid is isothermal). The

electron density is computed from the total ionic charge den-

sity using the assumption of quasineutrality qe ¼ qc=e, here

e stands for elementary charge.

F. Full PIC code

iPIC3D is a fully kinetic, fully electromagnetic Particle-

in-Cell code.33 It implements the moment implicit method.34
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In this code, the second order formulation of Maxwell’s

equations for the electric field is discretized implicitly in

time:

Enþ1 � ðcDtÞ2r2Enþ1 ¼En þ cDtðr � Bn

�4pðJnþ1=2 þ cDtrqnþ1=2ÞÞ: (15a)

Once the electric field Enþ1 is calculated, the magnetic field

is advanced in time solving the discretized Faraday’s law:

Bnþ1 � Bn

Dt
¼ �r� Enþ1: (15b)

The Maxwell’s equations are differenced in space on a uni-

form Cartesian grid and the simple box scheme is used for

the spatial differentiation of spatial operators in the field

equation (Eq. (15)). The linear system arising from Eqs.

(15a) and (15b) is solved using the Generalized Minimal

RESidual (GMRes) solver. The equations of motion of par-

ticles are differenced in time using the implicit midpoint

integration rule:

xnþ1
p ¼ xn

p þ vnþ1=2
p Dt; (16a)

vnþ1
p ¼ vn

p þ
qs

ms
Enþ1

1=2 þ
vnþ1=2

p � Bnþ1
1=2

c

 !
Dt: (16b)

Enþ1
1=2

and Bnþ1
1=2

are the electric and magnetic field, calculated

at the midpoint of the orbit and vnþ1=2
p is the average of vn

p

and vnþ1
p . The iPIC3D code solves the particle equation of

motion (Eq. (16)) by an iterative method based on a fixed

number of predictor-corrector iterations.

III. DESCRIPTION OF THE SIMULATIONS SETUP

The different models and corresponding codes previ-

ously described are used to integrate the linear and nonlinear

evolution of a magnetized shear flow plasma unstable to the

KHI (Secs. IV B and IV C, respectively).

The simulation setup is identical for the different mod-

els. We consider a 2D (x,y) physical space, with 3D vector

fields and an initial MHD equilibrium (note: not a Vlasov

equilibrium). In order to avoid additional/spurious effects

due to different implementations of boundary conditions, a

double shear layer is considered in order to impose periodic

boundary conditions. The initial flow configuration is shown

in Fig. 1.

In the following, all quantities are normalized to ion

quantities: the ion gyro-frequency, xci, the ion inertial

length, di, and the Alfv�en velocity VA. The size of the

numerical box is given by Lx ¼ 180 and Ly ¼ 30 p. The

number of grid points in the XY-plane of the simulation is

Nx ¼ 1536 and Ny ¼ 512. We use 1024 particles per cell in

the hybrid PIC code and 200 particles per cell in the full

PIC code.

The initial velocity field U ¼ UyðxÞ ey contains a peri-

odic double shear layer where the velocity varies from �Aeq

to þAeq. The shear layers are located in xc;1 ¼ Lx=4 and

xc;2 ¼ 3=4 Lx. The velocity profile reads

UyðxÞ ¼ Aeq tanh
x� xc;1

Leq

� �
� tanh

x� xc;2

Leq

� �
� 1

� �
;

where the maximum velocity field strength is Aeq ¼ 0:5 and

the shear length scale is given by Leq ¼ 3 (in di units), which

implies Leq ¼ 24de in terms of the electron inertial length de

for the two-fluid and full-PIC simulations, using a mass ratio

mp=me ¼ 64. The initial current is taken to be zero, Jeq ¼ 0.

The initial magnetic field is Beq¼B0 sinðhÞeyþB0 cosðhÞez,

where B0¼ 1 and h¼ 0:05, so that Bz¼ 20By.

Note that the (mostly out-of-plane) magnetic field is

constant, always pointing in the same direction. On the con-

trary, the direction of convective electric field E ¼
�U� Beq varies from one layer to the other: It is directed

towards (resp. away from) the shear layer at xc;1 (resp xc;2).

Note also that the vorticity is parallel to the out-of-plane

magnetic field (Beq �X > 0, where X ¼ $� U) at xc;1, while

it is anti-parallel (Beq �X < 0) at xc;2.

The initial electron and ion pressures are isotropic, with

Pe ¼ Pi ¼ 0:5, corresponding to a total thermal pressure

Ptot ¼ Pe þ Pi ¼ 1. The initial density is constant in the sim-

ulation box, n ¼ 1:0, so that the electron and proton tempera-

tures are equal, Te ¼ Ti ¼ 0:5. Quasineutrality ni ¼ ne ¼ n
is imposed at the beginning of the simulation for the full PIC

code, while it is assumed in the other models. Finally, in the

two-fluid and full kinetic models, the proton-to-electron

mass ratio is mp=me ¼ 64.

An initial incompressible perturbation dU on the veloc-

ity field is imposed in the fluid models (not needed in the

hybrid and full PIC codes) as follows:

dU ¼ ez � $w

with

w ¼ � f ðxÞ
XNy=4

m¼1

cosð2pmy=Ly þ /mÞ=m ;

where

f ðxÞ ¼ exp½�ððx� xc;1Þ=LeqÞ2� þ exp½�ððx� xc;2Þ=LeqÞ2�;

and � is such that maxðjdUjÞ ’ 10�3 and /m are random

phases.

FIG. 1. Initial double periodic setup for the Kelvin-Helmholtz benchmark. The

direction of the velocity, magnetic, and electric fields is shown. The magnetic

field has also a small component in the y-direction (not shown here). Note that

the layers are characterized by either B �X > 0 or B �X < 0.
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When studying the linear phase of the KHI (Sec. IV B),

random phases /m are considered that may vary from one

simulation to the other, since this does not modify the evalu-

ation of the linear growth rate. On the contrary, identical ran-

dom phases are considered for all runs, but different from

one layer to the other, when studying the nonlinear phase of

the instability (Sec. IV C), since the initial phases influences

the nonlinear evolution of the full system.

The plasma beta is b ¼ 2, so that the ion inertial length

and the ion gyroradius are equal. The setup has been chosen

so that the initial shear length is close to the ion inertial

length and the ion gyroradius, in order to study the transition

between the fluid and kinetic regimes. The grid length has

been chosen so that the fastest growing mode is m¼ 2, this

way two rolled-up vortices form in the simulation box.

IV. COMPARATIVE STUDY

The kinetic relaxation observed with kinetic models is

first studied in Sec. IV A. We then discussed the linear part

of the KHI in Sec. IV B and its nonlinear part in Sec. IV C.

A. Initial kinetic relaxation

In both kinetic simulations (hybrid and full PIC), the ini-

tial profiles are (asymmetrically) modified at the velocity

shear location on the ion gyration time scale, before the KHI

develops. This is due to the kinetic relaxation in response to

the initial fluid (not Vlasov) equilibrium.24 This phenomenon

is particularly evident in the case B �X < 0 and becomes

stronger as the plasma beta increases. This effect, illustrated

by the average mean (fluid) velocity shear computed for

times 5 < txci < 60 (Fig. 2, top panels), may explain part of

the differences between the fluid and kinetic linear growth

rates, since the fastly modified initial shear profile will

respond differently to the imposed fluid profile.

Furthermore, Fig. 2 also shows that the shear layer is

modified more significantly in the full kinetic simulation

than in the hybrid simulation. To quantify this feature, the

layer with X � B > 0 broadens from the initial (fluid) thick-

ness Lf luid ¼ 3 to LHyb ¼ 3:06 and LFull ¼ 3:16 in the hybrid

and the full (#2) kinetic simulations, respectively. While

the layer with X � B < 0 broadens to LHyb ¼ 3:14 and LFull

¼ 3:45 in hybrid and full kinetic simulations, respectively.

Note that both simulations are computed for the same ion

beta bi ¼ 1. Here, L is computed as the distance from the

layer center (xc;1 or xc;2) at which the velocity field reaches

the value Uy ¼ 6Aeqtanhð1Þ.
This effect on the mean velocity goes together with a

modification of the plasma density nearby the center of the

velocity shear layer, due to finite Larmor radius effects. A

“bump” for X � B > 0 (resp. a “dip” for X � B < 0) in the

plasma density is generated in both the hybrid and the full

PIC simulations, as shown in Fig. 2, bottom panels, where

the blue and red lines, respectively, show the hybrid and the

full PIC simulations and the black dashed lines show the

fluid (MHD and two-fluid) profile.

Since the initial condition is not a Vlasov equilibrium, a

disturbance on the plasma density is excited and travels at

constant speed through the simulation domain along the x-

direction, as shown by two kinetic simulations (hybrid PIC

and full PIC) in Fig. 3. This localized travelling perturbation,

of magnetosonic nature, excited at a given shear layer even-

tually reaches the other layer and may modify the dynamics

of the system. This artificial effect is further increased by the

double periodic boundary conditions that do not allow to get

rid of these density perturbations. We do not observe in our

hybrid and full simulations a clear relaxation of this

disturbancy.

Still considering the growing phase of the instability, we

observe an initial deformation of the distribution functions in

FIG. 2. Initial relaxation of the kinetic

simulations due to the absence of a ki-

netic equilibrium. The fluid profile

(MHD and two-fluid models) is shown

with a black dashed line. The hybrid

PIC and full PIC profiles are, respec-

tively, shown by blue and red lines. To

illustrate the influence of the plasma

beta on this initial kinetic relaxation

process, two full PIC simulations have

been used: PIC #1 and PIC #2 simula-

tions, respectively, use Uth;i=VA ¼ 1=3

and 1, so that bi ¼ 0:1 and 1, respec-

tively, where Uth;i is the ion thermal

velocity.
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both the full and hybrid PIC simulations, which is interpreted

in terms of the kinetic relaxation from an initial setup that is

an MHD equilibrium but not a kinetic equilibrium. At the

velocity shear layers location, the initially gyrotropic plasma

becomes agyrotropic after a few gyro-periods (so that tem-

peratures in x and y directions are different), as illustrated in

Fig. 4 where we show the result of the full PIC simulation.

Note in the right panel, the generation of a temperature

anisotropy: Tx < Ty corresponding to the bottom layer

X � B < 0. The agyrotropy leads to the modification of the

full pressure tensor35 which is properly included only in the

kinetic models. It is unclear whether this behavior affects

significantly the evolution of the instability. Note also that

the ion tracer shows a different thickness in the two different

shear layers (central panel), due to the cumulative effect of

the (fluid) velocity shear and (particle) ion gyromotion.21

B. Linear growth rate

The different codes first run with the previously

described initial conditions until the end of the linear phase

of the instability.

In Fig. 5, we show the growth rates for the first three

unstable modes, computed using the different models, with

the growth rate of the KHI (over-plotted with a black contin-

uous line) calculated from the linear MHD theory with an ad-

iabatic closure, using the linear MHD LEDAFLOW code.36

In the figure, the cross and square symbols refer to the rela-

tive orientation of the vorticity with respect to the magnetic

field. The fastest growing mode in this setup is the mode

m¼ 2, which corresponds to a wavenumber kFGMdi ¼ 1=30.

The different models show a good agreement at large wave-

length (mode m¼ 1) and differ at smaller wavelengths

(modes m¼ 2 and m¼ 3). This is a first signature of the

expected disagreement between different plasma descrip-

tions, when kinetic and ion inertial scales are reached.

Hereafter, we will refer to the MPI-AMRVAC code

(Sec. II C) to model ideal MHD, and to the Stagger code

(Sec. II B) to model resistive MHD. The growth rates

obtained using the two MHD codes with an adiabatic closure

are the same and identical to the growth rate resulting from

the linear MHD (adiabatic) theory. In a compressible fluid,

part of the available energy also goes to compression. This is

FIG. 4. Snapshot of the ion tracer at

time txc;i ¼ 48 (before the beginning

of the Kelvin-Helmholtz instability)

(left panel) for a PIC simulation with

no in-plane magnetic field. The ion dis-

tribution functions (right panel) are

computed at the bottom shear layers

(inside the red box in the left panel).

The black lines represent the expected

gyrotropic contours of the distribution

function. Note the generation of the

temperature anisotropy Tx < Ty corre-

sponding to the layer X � B < 0.

FIG. 3. Initial relaxation of the mean

ion density profile in the kinetic simu-

lations due to the absence of a kinetic

equilibrium. Left panel: hybrid PIC

simulation. Right panel: low resolution

full PIC simulation (in a smaller box).

The relaxation process is similar for

both simulations.
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why the growth rate is slightly smaller when the closure is

isothermal, since the compressibility is larger.

The MHD, Hall MHD, and two-fluid models show very

similar results during the linear stage of the instability,

before the nonlinear dynamic of the vortices create gradients

at scales of the order of the ion inertial length. The growth

rates obtained from the Hall-MHD and two-fluid simulations

are however slightly larger than those obtained from the

MHD simulations. The Hall effect modifies the effective

magnetic tension since the magnetic field lines are now

frozen-in in the electron fluid and no more in the ion fluid.

Thus, the stabilizing effect of the magnetic tension is

reduced in the presence of the Hall term, explaining why the

KHI growth rate is slightly larger when using the Hall-MHD

or the two-fluid model.

Squares (resp. crosses) are used in Fig. 5 to represent the

growth rate computed at the shear layer where B �X > 0

(resp. B �X < 0). The relative orientation of the velocity field

vorticity X compared with the background magnetic field Bz

does not modify the KH growth rate in the MHD, Hall-MHD,

and two-fluid regimes, as shown in Fig. 5. Indeed, the fluid

models used in this study do not contain intrinsic information

on the particle gyration. On the contrary, models that include

ion kinetic effects (Hybrid and full PIC codes represented by

yellow and red lines in Fig. 5) show that the relative orienta-

tion of X, and Bz modifies the linear dynamics of the KHI.

Note that different fluid models that take into account Finite

Larmor Radius (FLR) corrections in a fluid description37 are

expected to exhibit the same asymmetry in the KHI growth

rate, observed here with hybrid and full kinetic models, as

shown in previous studies with FLR-MHD models.38 In par-

ticular, we observe that both hybrid and full PIC calculations

show the same qualitative feature: The growth rate for B �X
< 0 is smaller than that for B �X > 0, as observed also in

previous PIC simulations.20,21 This result is in contrast with

previous analytic calculations, including FLR effects in an

extended MHD description,39,40 where the growth rate was

found to be larger for B �X < 0 than for B �X > 0. It is

particularly striking that all kinetic simulations exhibit the

contrary. This is most probably due to the lack of initial

kinetic equilibrium that implies a fast readjustment of the

kinetic plasma which modifies the effective setup before the

instability starts (see Sec. IV A). The discrepancies observed

in the growth rate computed from the hybrid and full kinetic

descriptions are most probably due to the treatment of elec-

trons as a massless isotropic isothermal fluid in the first case

and kinetically in the second case. In this setup, electrons and

ions have the same initial temperature so that the total pres-

sure is initially equally divided between them. In this case,

the electron compressibility is also expected to play a key

role. The high level of noise in PIC codes, which implies a

greater uncertainty on the calculation of the KHI growth

rates, could also account partly for the growth rate discrepan-

cies using the kinetic models.

Note that the ion inertia should also affect the growth

rates depending on the relative orientation of X and B.41

However, at least in the range of parameters used in this

study, the Hall term does not give any measurable difference

in the growth rate between B �X > 0 and B �X < 0 cases.

On the other hand, the hybrid and full kinetic models show

different growth rates for different orientations of the vortic-

ity and the magnetic field. Therefore, since in these models,

both the Hall and the FLR effects are included, we conclude

that the difference observed in the growth rates for the two

orientations is dominated by the FLR effects.

Interestingly, including ion inertial effects (spatial scale

di) in the model increases the growth rates, as seen when

comparing (adiabatic) MHD growth rates to (adiabatic) Hall-

MHD and two-fluid growth rates. On the contrary, including

ion kinetic effects by means of a kinetic code (in particular,

the ion gyroradius qi) decreases the growth rates whatever

the relative orientation of X and B.

The observed difference between fluid and kinetic

growth rates could be a consequence of different effects: (i)

the absence of initial kinetic equilibrium, which could induce

significant modifications in the shear layer, (ii) a difference

in the plasma compressibility between the fluid and kinetic

models, (iii) the influence of finite ion Larmor radius effects.

C. Nonlinear evolution

In this section, we consider the following models:

isothermal ideal MHD, isothermal resistive MHD, adiabatic

ideal MHD, adiabatic resistive MHD, two-fluid and hybrid

models. The full kinetic (PIC) model is not used in this part

because of the huge computational time required to model

electrons kinetically. A full kinetic simulation of the KHI is

a computational challenge that will be tackled in future

works. To properly compare the nonlinear evolution of the

KHI obtained from different models, we consider identical
initial velocity perturbations in the different runs by impos-

ing the same first random phases Um; m ¼ 1;…; 6, however

different from one layer to the other. The initial amplitude of

the perturbations is now set to � ¼ 0:05.

D. Comparative nonlinear evolution at large scales

The nonlinear evolution of the KHI is shown in Figs. 6

and 7 (layers centered at x ’ 45 di and x ’ 135 di,

FIG. 5. Comparative Kelvin-Helmholtz growth rates for different models

using the same initial setup. Squares and full lines (resp. crosses and dashed

lines) are used to represent the growth rate computed at the shear layer

where B �X > 0 (resp. B �X < 0).
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FIG. 7. Evolution of the density n with

superimposed magnetic field lines for

the shear layer centered on x ’ 135 di,

characterized by B �X < 0. The time

evolves from left to right: txci ¼ 230;
280; 330; 380, and 430 for each respec-

tive column. From top to bottom, each

line shows a single model: isothermal

ideal MHD, isothermal resistive MHD,

adiabatic ideal MHD, adiabatic resistive

MHD, two-fluid and hybrid models.

The axes, shown at the bottom and on

the right for sake of clarity, represent

the xy-positions expressed in ion inertial

length.

FIG. 6. Evolution of the density n with

superimposed magnetic field lines for

the shear layer centered on x ’ 45 di,

characterized by B �X > 0. The time

evolves from left to right: txci ¼ 230;
280; 330; 380, and 430 for each re-

spective column. From top to bottom,

each line shows a single model: iso-

thermal ideal MHD, isothermal resis-

tive MHD, adiabatic ideal MHD,

adiabatic resistive MHD, two-fluid and

hybrid models. The axes, shown at the

bottom and on the right for sake of

clarity, represent the xy-positions

expressed in ion inertial length.
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FIG. 8. Evolution of the out-of-plane

current Jz with superimposed magnetic

field lines for the shear layer centered

on x ’ 45 di, characterized by

B �X > 0. The time evolves from left

to right: txci ¼ 280; 330; 380, and 430

for each respective column. From top

to bottom, each line shows a single

model: adiabatic ideal MHD, adiabatic

resistive MHD, two-fluid and hybrid

models. The axes, shown at the bottom

and on the right for sake of clarity, rep-

resent the xy-positions expressed in ion

inertial length. The color dynamics is

saturated to better identify the current

structures.

FIG. 9. Evolution of the out-of-plane

current Jz with superimposed magnetic

field lines for the shear layer centered

on x ’ 135 di, characterized by

B �X < 0. The time evolves from left

to right: txci ¼ 280; 330; 380 and 430

for each respective column. From top

to bottom, each line shows a single

model: adiabatic ideal MHD, adiabatic

resistive MHD, two-fluid and hybrid

models. The axes, shown at the bottom

and on the right for sake of clarity, rep-

resent the xy-positions expressed in

ion inertial length. The color dynamics

is saturated to better identify the cur-

rent structures.

102118-10 Henri et al. Phys. Plasmas 20, 102118 (2013)



characterized by B �X > 0 and B �X < 0, respectively),

through the evolution of the density and of the magnetic field

lines. For sake of clarity, both layers are plotted separately

on different pictures, Figs. 6 and 7, respectively; however we

recall that the simulations are periodic in both directions.

Each row corresponds to a single model, while time evolves

from left to right.

At the beginning of the nonlinear phase (txci ¼ 230,

first column in Figs. 6 and 7), two fully rolled-up vortices

develop along each shear layer. The differences between the

two shear layers are mainly due to the different phases /m

used in the initial perturbations. At this early nonlinear stage,

before small scale processes develop, no appreciable discrep-

ancies arise between the different models for a given shear

layer.

The classical evolution of the hydrodynamic KHI, in the

absence of magnetic field, is an inverse cascade character-

ized by the merging of the different vortices generated from

the fastest linear growing mode, up to the formation of a sin-

gle large vortex in the numerical box.12 In the magnetized

case reported here, the onset of vortex pairing is shown at

txci ¼ 280 (second column in Fig. 6), on the first shear layer,

x ’ 45 di, with B �X > 0. The merging from two rolled-up

vortices to a single one then develops at successive times

txci ¼ 330 and 380 (third and fourth columns). On the con-

trary, in the case B �X < 0 (Fig. 7), no vortex merging is

observed. Instead, at txci ¼ 280 (second column), the vorti-

ces remain aligned with the initial shear layer direction at

x ’ 135 di. At later times, the onset of vortex pairing is

observed at txci ¼ 330 (third column) but small scale proc-

esses disrupt the vortices before the pairing is completed,

leading to the formation of a mixing layer instead of a large

single vortex.

To summarize the global non linear dynamics observed

in the two different layers, we observe that in the first layer,

the final state is given by a large scale, coherent single

vortex, while in the second layer, the final state is given by a

turbulent layer. Both cases are well captured at large scale

by all the considered models, from ideal MHD to hybrid

kinetic.

In Figs. 6 and 7, the y-direction is represented in order

to give a better feeling on the matching (or mismatchings)

between the successive models. We recall that the numerical

box is periodic. Note that the different models perfectly con-

nect one another at the early stage of the KH nonlinear evo-

lution (first column) and connect well at large scales during

the nonlinear evolution, showing the agreement between all

models at large scales. Note also that some discrepancies

arise at small scale in the late stage of the KH nonlinear evo-

lution (last column, in particular), as can be seen when look-

ing at the “boundaries” between two successive models.

E. Comparative nonlinear evolution at small scales:
The essential role of magnetic reconnection

At scales much smaller than the hydrodynamic scale

LHD, the magnetic field is stretched and compressed by the

plasma motion, forming current sheets between and inside

the vortices, at scales of the order or smaller than the ion

inertial length di (Figs. 8 and 9). In the ideal and resistive

MHD simulations, strong current sheets are formed but mag-

netic reconnection does not start at early stage. On the con-

trary, the same current sheets modeled by the two-fluid and

the hybrid models become tearing unstable and develop

magnetic reconnection. Such a difference at small scales is

due to the Hall effect, included in the two-fluid and the

hybrid models, but absent from the ideal and resistive MHD

models. The Hall effect allows for magnetic reconnection to

develop at a faster rate in the two-fluid and the hybrid mod-

els, while the MHD models rely on the explicit (resistive

MHD code) or the numerical (ideal MHD code) resistivity

for reconnection to occur.42

In the nonlinear phase of the magnetized KHI, two

regions are typically subject to reconnection: (i) the com-

pressed region that separates two merging vortices and (ii)

the sheared magnetic regions inside the vortices themselves.

The Hall effect enables the tearing instability to develop faster

in both regions: (i) between the two pairing vortices, as seen

by the X-points and magnetic islands formed at x ¼ 50 di

at txci ¼ 280 (first column) in Fig. 8 and at x ’ 135 di at

txci ¼ 330 (second column) in Fig. 9 for the two-fluid and

hybrid models (bottom two panels) in contrast to the surviving

magnetic shear in the two MHD models (top two panels) at

the same times; (ii) inside the single vortices, as seen by the

chains of magnetic islands (e.g., at x ¼ 60 di, y ¼ 60 di at

txci ¼ 330 (second column) in Fig. 8 and at x ’ 125 di at

txci ¼ 330 (second column) in Fig. 9. Note that vortex-

induced reconnection still occurs in resistive MHD in both

regions but at later times, x ¼ 60 di, y ¼ 40 di at txci ¼ 330

and y ’ 70 di at txci ¼ 380 in Fig. 9. In the hybrid simulation,

the reconnection process seems to be triggered earlier with

respect to the two-fluid simulations; as seen by the early for-

mation of chains of magnetic islands inside the vortices in

Fig. 8 (bottom left panel, x ¼ 65 di). This may be due to the

intrinsic higher level of noise in particle simulations, which

seeds the tearing instability at a higher initial level, possibly

through non-modal transient amplification, and makes it satu-

rate much earlier.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have reported the first comparison of

the magnetized Kelvin-Helmholtz instability, during its lin-

ear and nonlinear evolution. We have used several different

plasma fluid and kinetic models: an isothermal/adiabatic

ideal/resistive MHD, Hall-MHD, a two-fluid, a hybrid

kinetic, and a full kinetic model.

In the linear stage of the KHI, the MHD models do not

care about the relative orientation of the vorticity with

respect to the magnetic field direction, while the fluid simu-

lations that include ion inertia (Hall-MHD, two-fluid) are

insensitive to it; on the other hand, kinetic simulations

(Hybrid and Full PIC) clearly exhibit different growth rates

depending on this relative orientation, showing that FLR

effects dominate ion inertia, within the parameter range used

in this study.

With the parameters used in this benchmark, the fastest

growing mode m¼ 2 builds up two rolled-up vortices in the
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nonlinear stage of the instability, that eventually merge into

a single vortex or disrupted before merging because of sec-

ondary magnetic reconnection. At the end of the simulations,

even if differences are present between the two sides of the

layer, a common feature arises: Although the KH vortices

are large-scale MHD structures at the beginning of the non-

linear phase, their nonlinear evolution eventually leads to the

formation of smaller length scales, both inside the large

m¼ 1 merged MHD vortex (left side) or in the mixing layer

(right side). Even if small scale processes are strongly

dependent on the choice of the model, interestingly, the

global large-scale picture is well captured by all the consid-

ered models. Note however that the degree of plasma mixing

and the development of turbulence may strongly vary from

one model to another at later times due to the nature of the

small scale process at play.

The final stage of the instability is significantly different

between the two shear layers, and all models capture the

same final state, at least using a coarse graining view. Since

the differences between the evolution of the two layers are

also captured by the MHD model, we conjecture that such

differences are not driven by kinetic or inertial effects, in

particular, not by the relative orientation of the vorticity with

respect to the magnetic field. Previous works in the context

of the MHD modeling of the KHI have shown that the non-

linear interactions differ dramatically, as influenced through

the imposed phase differences between linear modes.12 In

the setup described here, the initial phases of the first per-

turbed modes are fixed among the various models but are

different for both shear layers. The origin of the two different

final states in the two shear layer could rely upon the fact

that the linear perturbations on both sides differ, as influ-

enced by the initial phases, and can hence nonlinearly evolve

differently.

The difference arising for a given model between the

two different shear layers (see the differences between

Figs. 6 and 7 considering a same row) is much more impor-

tant than the difference arising between different models on

the same shear layer (see the last columns of Figs. 6 and 7).

This indicates that the large scale, fluid structure is much

more influenced by the choice of the initial phases than by

the small scale processes at play. Moreover, the fluid models

are shown to capture the large scale dynamics as well as the

kinetic model, at least in the regime of parameters used in

this study. This indicates that the feedback of small (inertial

and kinetic) scales to the large scale dynamics does not

appear as a dominant process even in the nonlinear phase of

the magnetized shear flow. This study emphasizes the impor-

tance of the fluid behavior in the nonlinear evolution of

magnetized shear flows, which determines the large scale

structures and the saturation of the vortices. This result

should strongly encourage the development of fluid codes to

study the nonlinear dynamics of magnetized plasmas at

large, fluid scales. Note however that the complementary use

of kinetic models is necessary to carry out the validation of

the fluid approach at large scales.

We must also stress the important consequences of the

different closures used in the different codes. The MHD and

two-fluid codes both use a standard adiabatic closure, using a

polytropic law with polytropic index c ¼ 5=3 (on electrons

also in the two-fluid model). The electrons are treated as an

isothermal fluid in the hybrid PIC code. On the contrary, no

explicit evolution law is imposed on the ions (hybrid PIC,

full PIC) and electrons (full PIC), so that the behavior of

effective ion (and electron for the full PIC code) compressi-

bility remains a priori unknown and may change in space

and time. We recall that the compressibility plays a key role

in the development of the KHI. In particular, it modifies the

growth rate of the instability. Finding a clever closure on the

fluid codes, in accordance with the compressibility found in

the kinetic simulations, will enable to properly compare the

growth rate, in a first step, and the nonlinear dynamics of the

KHI, in a second step.

In order to accurately describe the cross-scale, nonlinear

evolution of collisionless plasmas, the coupling between dif-

ferent plasma models is showing recently an increasing

interest from the plasma community.43 In this context, com-

parisons of numerical simulations from different models, as

the one described in this paper, represent a necessary step

before coupling codes from different plasma models. In

order to properly couple different codes, it is a necessity to

make sure that the different physical ingredients, introduced

by the different models, describe the common features of in-

terest at the large scales. We have shown in this work that

the large, fluid scales are little disturb by the small, kinetic

scales, since fluid and kinetic simulations capture the same

behavior at large scales. Such a result is likely to strongly

encourage the development of multi-scale code coupling for

collisionless plasmas.

We stress here that the numerical modeling of plasma

dynamics is a fundamental problem of major interest in pres-

ent plasma physics research. Therefore, this study is of broad

interest and is not limited to the KHI itself and related non-

linear dynamics. We thus underline two important aspects of

the fluid and kinetic modelling of the nonlinear evolution of

magnetized plasma. From a fluid point of view, the question

of the fluid closure that plays an important role in the dynam-

ics is shown not to be trivial in a magnetized plasma. From a

kinetic point of view, we have illustrated the necessity to

find a correct initial setup that takes into account the kinetic

effects at play, such as finite Larmor radius effects. These

fundamental problems need to be addressed in future works.
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